Приемные антенны кв диапазона. Магнитные антенны для сверхдальней радиосвязи Еще про магнитные рамочные антенны

За долгую радиолюбительскую жизнь бывал не на одном общественном радиомероприятии. И на хамфестах, и просто на шашлыках радиолюбителей. Как правило хорошим фоном к разговору является бубунящий тихонько в SSB или телеграфе приёмник. Если, конечно, вообще шашлык не занял рот, руки и мозги:-) Свободны только уши:-) На одном и увидел вот это. По моей просьбе автор описал конструкцию.
Валентин Побережник, UR5RGG
"Антенна применяется с приёмником TECSUN PL-600. Питание берётся с приёмника (в антенном гнезде есть свободный контакт). Обе схемы равнозначны по усилению, вторая позволяет его регулировку. Как гласит теория, на HЧ диапазонах рамки с большим количеством витков или размером эффективнее. Транзисторы использовались из наличного. Практически любой аналог будет работать так же хорошо. Ничего нового в этих схемах нет. Пробовал и симметричные схемы на 2-х транзисторах. Заметного выигрыша не заметил 1 , зато появились трудности с узлом вращения рамки антенны (или тогда вращать с корпусом усилителя и кабелем 2). Для вращения рамки относительно корпуса применены разъёмы, тройники и делители СР-50. В зависимости от желания исполнителя можно сделать два варианта."



P.S. UY2RA
1. Выигрыш от применения балансного (дифференциального) входа оценить могут жители городских кварталов. И дело не в усилении, вот почему - "No QRM magnetic loop " На природе помех почти нет, поэтому и незаметно:-).
2. Проблемы с узлом передачи от подвижной рамки к неподвижному корпусу действительно есть. Но есть и решение. Причем если есть денежки, то можно от этого еще и выиграть - nLogis RF-PRO-1B Active


Таким образом при желании можно получить не только антенну для походов и шашлыков, а вполне исправно работающую и "на больших трансиверах" вторую или специальную антенну. Упомянутый вариант с выносом вверх и вращением можно использовать инфракрасное управление или прямиком "заавтоматить" настройку выходного каскада через микроконтроллер Ардуино, слава богу стоит он копейки. Надо только иметь выход КСВ метра в трансивере.

А если больше доверяете механике - вот еще одно решение - верёвочное:-) Кстати, у нас в области есть радиолюбители, работающие на предприятиях, которые могли бы что-нибудь из этого выпускать. Беру на себя роль интернет-магазина:-)

  • Назад
  • Вперёд

You have no rights to post comments Недостаточно прав для комментирования

Ну вот мы уже провели не один десяток связей через летающие спутники и МКС в CW, SSB, RTTY и даже SSTV моде. И, как обычно это бывает, стали подумывать: а не "дотянуться" ли нам до какого-нибудь DX? Поэтому разбираться будем на примере попытки "достать" Японию. Первым делом вспомним события последних дней: будучи неудовлетворенными качеством связи, мы прикупили (или сделали сами) устройство управления антеннами в горизонтальной плоскости (хотя бы) и усовершенствовали своё антенное хозяйство хотя бы до 5/9 эл. Yagi на 145/435 мгц. Т.е. привели свою техническое состояние до "среднеобнадеживающего".

Как и прежде, наш надежный помощник компьютер и вложенный в него интеллект Sebastian Stoff - Orbitron, поможет нам выбрать спутник и время для попытки. Просматривая данные орбит спутников, ищем максимально высоко летающий спутник (апогей-перигей). На сегодня это АО-7 с данными а/п 1440х1459 км. Т.е.диаметр круга радиовидимости на Земле самый широкий. Второй спутник, через который можно попробовать - JAS-2 (FO-29) с апогеем 1322 км. Далее используя симуляцию движения АО-7 по орбитам, находим орбиту и время, на которой спутник займет место посредине между нами и Японией. Лучше это делать в не меркатор проэкции, а в азимутальной, как на нашем рисунке. Сразу же отбраковываем орбиты, приходяшиеся на то время, когда в Японии ночь. Вряд ли наши CQ-JA будут кем-то услышаны в Японии глухой ночью.
После этого в параметрах расчета проверяем каков угол места для спутника в этот момент. предварительно, для расчета, мы опустили эту планку до уровня 3 градуса. Если ваши антенны подняты высоко над землей, и ваш QTH расположен высоко над уровнем моря (например у меня всего 138 метров), то вы можете попробовать и меньшее значение, но среднестатистическому украинцу лучше этого не делать. Hi Теоретически, можно задать угол места даже отрицательным, связь возможна, но на практике вероятность тоже приближается к отрицательному диапазону...Хи Таким образом, как говорил Ходжа Насреддин, если звезды расположатся соответствующим образом, мы можем повернуть антенны в нужную сторону, в нашем случае это 54 градуса, и с трепетом ожидаем магических 2-3 минут расписания, на протяжении которых возможна связь. При определенном везении и настойчивости связи происходят. И часто. Посмотрите сами лог Оскара и убедитесь, что каждые сутки происходит десятка три-четыре межконтинентальных связей через этот спутник. Если получается у них, почему не выйдет у нас? Теперь мы хотим провести QSO с американским континентом. Методика уже отработана, как говоря, терпение и труд всё перетрут. Поэтому желаю успеха. Попробуйте.

  • EN5R Islands Activity

    EN5R Islands Activity: UIA award













  • 26 апреля 1986 года

    Я думаю говорить много не следует. Все всё помнят. Сейчас саркофаг накрывают новой крышей - конфайнментом.

    Но из песни слов не выбросишь. наши Славутичские радиолюбители 25 лет спустя работали из города-призрака в эфире. Короткий отчёт с несколькими фотографиями на сайте Гоши радиста .

  • Space sound

    Скажите, кто-бы отказался от такой антенной системы? Я - точно нет. Недаром ведь говорится что результаты радиолюбителя зависят больше не от его талантов, а от того, сколько сил и средств вложено в первую очередь в антенны, оборудование и аксессуары типа компьютеров, интерфейсов и проч. Наши скромные радиолюбительские результаты ни в какое сравнение не идут с возможностями таких вот конструкций. Она скорее всего более подходит для обнаружения сигналов внеземных цивилизаций чем для работы через FunCub1, фонограмма которого ниже. К сожалению, фонограмму сигнала ВЗЦ приложить не могу. Не имею:-) Да сегодня никто не имеет. Я начал читать книгу

  • УКВ тестеры

    Так вот, я думаю что у всех есть трансивер с диапазоном 29350-29500 кгц. Тогда там, сообразуясь со свободным временем, можно послушать в CW и SSB модах работу радиолюбителей через спутник АО-7. В дополнительных материалах (ссылку смотри выше) есть рассказ о программе, с помощью которой можно просчитать когда именно слушать - программе "Орбитрон". Она же поможет уточнить время "прибытия" МКС. К сожалению, самый популярный спутник, через который проведены миллионы связей в FM - Echo или АО-51, на сегодняшний день не функционирует. Но, к сожалению, он не единственный среди замолчавших. Из того, что сегодня доступно, имея только диапазон 145 мгц, всё. Два пути вперед. Первый - улучшить антенную технику или поставить усилитель для того чтобы лучше слышать. Он не будет помехой для второго:-) Второй - изобретать или покупать чего-нибудь с несколькими УКВ диапазонами, а может и модами. Но, пока думаем, можно пытаться реализовать движение по первому пути. Первая попытка улучшить приём - "приподнять" сигнал над шумами.
    - по широте - 10 градусов (1114,28 км);
    - по долготе - 20 градусов (1560 км).
    В свою очередь каждый такой сектор разбит еще на 100 больших квадратов которые обозначаются двумя ЦИФРАМИ и имеют следующие размерами:
    - по широте - 1 градус (78 км);
    - по долготе - 2 градуса (111,42 км). Kаждый большой квадрат разделен на 576 малых квадрата, эти малые квадраты обозначаются двумя МАЛЕНЬКИМИ буквами латинского алфавита и имеют следующие размерами:
    - по широте - 2,5 минуты (4,64 км);
    - по долготе - 5 минут (6,5 км).
    8-ми значный квадрат типа KO51bm33 определит расположение в пределах прямоугольника 400 на 800 метров, а 10-ти значный - внутри прямоугольника 40 на 80 метров.

  • Три трансивера на 1 антенну

    Все мы в той или иной степени путешественники. Правда часть из нас путешественники фанатичные. Особенно это можно сказать про радиолюбителей. Все знают программу URFF, программу UIA знают многие, но не все. Еще меньше народа знает про программу, например, маяков. Но если летом предложить какому-нибудь домоседу поехать в радиоэкспедицию на остров и быть востребованным больше чем обычно (почти пайлап:-), то думаю он согласится. Я сам очень люблю природу, а когда можно соединить в одно время отдых на природе и за трансивером - я просто счастлив. При этом забываешь сколько потрачено сил на перетаскивание тяжестей, ), денег на бензин и нервов на борьбу с пограничниками... (Дело в том, что все наши острова - на Днепре, на границе. И на реке командуют пограничники).

  • Статья 2. Магнитные антенны (magnetic loop):

    Антенна - устройство для излучения и/или приёма электромагнитных волн путём прямого преобразования электрического тока в излучение (при передаче) или излучения в электрический ток (при приёме).

    Магнитная антенна (magnetic loop) - это антенна, у которой излучение и прием электромагнитных волн осуществляется за счет магнитной составляющей, электрическая составляющая ничтожно мала и ею обычно пренебрегают.

    (На форуме ОДЛР.ru в ноябре 2010 года шло обсуждение одной антенны - метёлка, для лампового приемника, с использованием балконного варианта. Я вставил свой пятачок, и получилась статья.)

    И так попробую написать в стиле байка-быль.

    Но у нас разговор об антеннах. Жил я тогда в военном городке Калининец, в простонародье "почтовое отделение Алабино". Каждый день по утрам, я на автобусе добирался до Голицино, на электричке доезжал до платформы Фили, далее на метро доезжал до Площади Ногина (сейчас Китай-Город). потом пешком до Покровского бульвара, в стены родной альма-матер. Вечером тот же маршрут, но наоборот. И только по пятницам было исключение из правил, была остановка в районе Фили.

    Недалеко от платформы жил мой друг RA3AHQ , в миру он Болгаринов Александр (сейчас проживает в Марьино). Я брал пару "огнетушителей" и заходил в гости. У Александра был импортный трансивер фирмы Кенвуд "TS-450", по тем временам это было очень круто. Такие исключения из правил бывали практически каждую неделю, и только по пятницам. Вот однажды сидим мы, потягивая красенькое и крутим ручку верньера, слушаем разговоры радиолюбителей. Мое внимание привлекло необычное сооружение на подоконнике, я спрашиваю, вас из дас, а Саша и говорит, мол антенна это, называется магнетик луп (Magnetic loop) и показывает статью в журнале Радио № 7 за 1989 год, стр. 90, в разделе за рубежом. Одним словом, это та статья, что и привел Сергей Кашехлебов в обсуждении на форуме. Я приехал домой, у соседки выклянчил халохуп, и уже через два часа, я провел первую радиосвязь на 40 м с Питером, моя антена была смонтирована на дощечке, КПЕ прикручен винтиками к халохупу (дюраль не паяется). Это был мой первый опыт, после были и другие опыты, но об этом далее.

    В 2000 году меня взяли на работу в одну фирму, которая занималась профессионально системами радиосвязи. Был один проект в Заполярье, выехали на испытания. Взяли с собой несколько типов антенн, это и традиционные треугольники, выполненные из антенного канатика, и спирально-штыревые, в основании у которых были автоматические антенные тюнеры (Icom AT-130) и одна конструкция ML (Magnetic loop), выполненная из коаксиального кабеля, оплетка ввиде гофра толщиной 30 мм. Диаметр излучателя был 4 м, закреплена антенна была на обыкновенной деревянной жерди с крестовиной, и приставлена к железному вагончику. Через определенное время выходим на связь, тестируем прохождение, составляем суточный график прохождения. И вдруг все пропало, в эфире только "белый шум", и ничего больше. Мне с базы по телефону говорят, что магнитная буря, и перерыв на неопределенное время. Я от скуки начал щелкать, переключать антенны на любительских диапазонах. Какое же было мое удивление, когда я услышал на 40 м работающих радиолюбителей. Я за микрофон и айда. У всех корреспондентов просил послушать еще две антенны, переключал на "дельту" и спирально-штыревую, а затем ML, на те антенны я не слышал ничего и меня тоже не слышали.

    Позднее я уговорил коммерческого директора закупить в Германии пару антенн, хотел разных типоразмеров, но купили однотипные. В то время там было налажено производство и этим занимался Кристиан DK5CZ (царство ему небесное, замолчал ключ). Но люди и сейчас продолжают его дело. Так вернемся сюда. Немецкая конструкция была не практичная, диаметр излучателя 1,7 м, цельная, неудобная при транспортировке. В общем была изготовлена своя антенна, излучатель состоял из трех сегментов, материал АД-30 (я кусочек немецкой отвез на химический анализ), КПЕ был выполнен в виде бабочки и имел емкость от 170 до 200 пик, это позволяло перекрывать на передачу 3 любительскиз диапазона (160 м, 80 м и 40 м), при диаметре излучателя 4 м. Но это не главное, главное как работала эта антенна.

    Все кто бывал у нас на коллективке наверное обращал внимание, что в непосредственной близости от радиостанции (300-500 м) полукольцом проходит три ЛЭП, одна из них 500 КВ. Так вот трескотня у нас по S-метру всегда 8-9 баллов. И вот когда я на крыше положил горизотально (на колышках высотой 1 м) ML, используя ее как приемную антенну, то.... Шумов НОЛЬ, и только полезный сигнал. Стали слышны станции, которые шли с уровнем 2-3 балла, и которые я никогда бы не услышал. Это было на 20 м диапазоне.

    Второе. Наши гости подходя к школе видели на соседнем доме любительские антенны, это радиолюбитель, Александр, он любит участвовать в соревнованиях на КВ в однодиапазонном зачете, на 17-ти этажке 2 элемента Cushcraft 40_2CD, т.е. сидит себе на 40 м и всё, а у нас полный затык. На 40 м S-метр упирается в противоположную стенку, и на других бендах повыше не лучше. Так продолжалось несколко лет. И что вы думаете. Когда поставили ML по приему, так он работает в начале SSB участка, 7,045 Мгц, а мы в конце, 7,087 Мгц, мы его не ощущаем, как будто его нет.

    Были еще испытания на реке Северная Двина. На теплоходе была смонтирована антенна ML (с диаметром излучателя 1,7 м - та самая - немецкая). Это было в конце мая, мы шли в низ по течению в районе г. Котлас, где-то в 3.00 на 40 м слышу работает на Латинскую Америку ER4DX, Василий. У него антенна в несколько элементов и "добрый" помощник. Я напросился в группу, и по S-метру принимал сигналы латино-американских станций на 7 баллов, и рапорт от них получал 7 баллов.

    Да, кстати вот ссылка на сайт: сайт DK5CZ там все есть. И еще есть программка MagLoop4, позволяющая расчитывать магнитные рамки, которые могут выполняться ввиде круга, треугольника, квадрата, да вот ссылка, тестируйте сами: Программа для моделирования Magloop4 Если возникнут вопросы по пользованию программой, могу провести так сказать мастер-класс, или открытый урок. P.S. В качестве приемний антенны использовалась конструкция выполненная из медной трубки 10 мм (водопроводная) и конденсатор был переменный от лампового радиоприемника (настроенный один раз на средину диапазона). А в конце статьи выложу скан инструкции по ML.

    Ответ одного из пользователей ОДЛР. Воодушевленный беспрецедентным академическим материалом Павла, вспомнил о спортивном снаряде (гимнастическом металлическом обруче), изготовленным знамениой ракетно-космической фирмой им.Хруничева и без надобности покоящимся за диваном... Решил поэкспериментировать на скорую руку... В течение часа ремесленных работ изготовил из нее антенну, изображенную на прилагаемых фото... Шунтирующий конденсатор (0,01 мкф) подобрал по максимуму и чистоте слабого полезного сигнала... Результат замечательный! Прием отличный! А если вынести конструкцию за пределы балкона, то лучшего и не нужно! Концепция верная! Очень доволен. Спасибо Павел! Тема стремительно продвинулась уже к обмену конкретными практическими результатами... .

    Мой ответ. Александр. Все это хорошо, что вы сделали, но мне кажется это будет иметь такой же эффект, если вы поставите емкость в обыкновенный треугольник или квадрат, выполненные из обычной проволоки. Похоже конденсатор играет роль шунта или фильтр-пробки (мне так кажется). В ссылке на сайт DK5CZ приводится схематическая конструкция антенны MLoop. Она состоит из излучателя и петли возбуждения, их размеры соответственно равны 5:1, вот смотрите на рисунок. Петля выполнена из коаксиального кабеля, и она электрически не связана с излучателем (в моих конструкциях), и свой первый халохуп я делал именно так же. Но при других экспериментах вместо петли делалось гамма-согласование. В других случаях роль конденсатора выполнял воздушный зазор в месте распила излучателя, тогда периметр излучателя был равен половине длины волны, кстати это подтверждает и программа.

    P.S. Мой знакомый экспериментировал с этими антеннами на диапазоне 145 Мгц, сделал двойную антенну, т.е. два излучателя, расположенные на одной траверсе (Если смотреть сверху, то конструкция похожа на два колеса на одной оси). Хашником контролировали. Результат о-о-очень интересный, я имею ввиду и диаграмму направленности. И в сравнении с многоэлементной антенной, эта конструкция не проиграла. Возвращаясь к конструкции самой антенны, это мое личное мнение, что именно система запитки антенны, будь то петля или другой вид и дает тот эффект, что в сигнале электрическая составляючая ничтожно мала и ею пренебрегают, т.е. присутствует в основном магнитная составляющая. Отсюда и название антенны - Магнитная рамка. Обратите внимание, что петля возбуждения выполнена специфически с разрезами.

    Ответы пользователей. Павел, бывал у тебя не единожды, но вот антенным хозяйством не интересовался, а зря... Просвети народ, фото в студию, пожалуйста.

    Поскольку в те времена не было цифрового фотоаппарата, то я пользовался "мыльницей". Кстати я забыл. Был еще один опыт использования. Я защищал диплом в ВИА как раз с применением антенн такого типа, диплом имел гриф "секретно", но думаю, что за давностью лет можно и сказать об этом, тем более есть одно фото, это фрагмент пояснительной записки при защите. Это было в мае 1990 года.

    Затем подготовка к полевым соревнованиям "Радиоэкспедиция Победа". Апрель 2000 года, крыша школы (которая впоследствии стала испытательным полигоном). А это выезд под Волоколамск, к памятнику воинам-саперам (8-9 мая 2000 года) работали позывным RP3AIW. Это как раз антенна из кабеля "на кресте".

    В сентябре 2000 года я уже был в Заполярье. На первом фото монтаж спирально-штыревой антенны с тюнером (9 м высотой, самодельная) и опечатка на надписи фотографии, не 2001, а 2000. В дали видна осветительная мачта, между двумя такими была смонтирована дельта (треугольник) с периметром 90 м. На втором фото - магнитная рамка, располагается горизонтально на расстоянии 80 см от железной крыши вагончика нефтяников.

    Февраль 2001 года, опять испытания. Крыша школы. Антенна диаметром излучателя 4 м. Первая антенна, заказанная на производстве. В эфире я проводил эксперименты, как по расстоянию, так и в сравнении с другими типами антенн, поэтому был "популярен" в эфире и многие радиолюбители с удовольствием приезжали посмотреть и принять участие в этом процессе. Кстати на основном сайте, в гостевой книге есть отзыв одного из радиолюбителей.

    Июнь 2001 года, испытания приемной антенны, я о ней писал, выполнена из медной трубки и перевернута (кондер внизу, вакуумный).

    Июль 2001 года, на одном из объектов (на надписи фото тоже опечатка, не 2000, а 2001 год).

    Август 2001 года. Получена антенна АМА-5, от DK5CZ. Рядом выполненная в России диаметром 1,7 м (видны болты на излучателе, в местах соединения сегментов) и "горизонтально" расположена диаметром 4 м (улучшенная, точнее усовершенствованная модель).

    Июнь 2002 года. Плещеево озеро, слет радиолюбителей центральной части России. Привезли антенну диаметром излучателя 4 м, утановили возле палатки и сравнивали со всеми имеющимися у членов слета (а были и диполя и J-антенны, и треугольники).

    Июль 2002 года. Река Северная Двина. Первоначально привезли антенну диаметром излучателя 4 м, но позднее заменили на антенну диаметром излучателя 1,7 м. Причина, не проходили по высоте под мостами.

    В сентябре испытания с антенной диаметром излучателя 1,7 м на буксире "Лимендский комсомолец" (Лименда - это речка, впадающая в Северную Двину) в районе города Котлас.

    Конденсаторы переменной емкости. Первое фото - это с антенны АМА-5, остальные нашего производства.

    Были изготовлены автоматические тюнеры - точнее написана программа для однокристального процессора, команды которого управляют электромотором - поворотом конденсатора.

    Появилась книжка инженера С.И. Шапошникова «Радиоприем и радиоприемники» из серии Библиотека радиолюбителя, издание Нижегородской радиолаборатории им. В.И. Ленина, 1924 год.

    В данной книге есть раздел об антеннах, я его перепечатываю и выложу скан рисунка.

    "Прием без антенн"

    раздел "Прием без антенн"

    Прием на рамки . Если на деревянную рамку, изображенную на рис. 27а, намотать некоторое количество витков изолированной проволоки, к концам которой присоединить переменный конденсатор С, то получится замкнутый колебательный контур, могущий колебаться волной, длина которой зависит от емкости С и самоиндукции L рамки. Такой контур, располагаеый в вертикальной плоскости и называемый приемной рамкой, обладает следующими свойствами:

    1. Магнитные линии электромагнитной волны, пересекая вертикальные части витков, индуктируют в рамке вынужденные колебания, на которые можно настроить собственную волну рамки конденсатором С. Если к конденсатору С присоединить детекторную цепь, то на такую рамку можно принимать работу передатчиков.
    2. Рамка обладает направляющим действием, т.е. будучи установлена, как показано на рис. 27, и настроена на приходящую волну, она лучше всего принимает сигналы в направлениях, указанных стрелками 1 и 2, т.е. волну, приходящую в плоскость рамки, и совсем не принимает волн, приходящих в направлениях 3 и 4, т.е. волн, приходящих перпендикулярно плоскости рамки. Таким образом, установив рамку в некотором направлении, при котором получается наиболее громкий звук, мы можем определить в каком направлении от нее находится передающая станция.

    Рамки обладают своими достоинствами и недостатками. К первым относится их легкое устройство, малый размер, позволяющий устанавливать их дома, направляющее их действие и т.п. Главный недостаток их тот, что они воспринимают слишком мало энергии, так что детектор ими может принимать лишь на небольшие расстояния. Однако при работе с хорошим усилителем мощные передатчики принимаются посредством рамок на тысячи верст.

    Приведем некоторые размеры рамок, считающиеся наивыгоднейшими. Рамка квадратная, со стороной = 70 см. Для волны 300 м кладется 4 витка; 600 м - 7 витков; 800 м - 10 витков; 1200 м - 14 витков; 1600 м - 20 витков; 2500 м - 40 витков, и т.д. Виток от витка укладываются на расстоянии одного сантиметра. Емкость конденсатора С должна быть около 1000 пф.

    Рамки могут быть разнообразной величины и формы. Наиболее практичной считается рамка в виде ромба, поставленная на угол, рис. 27в.

    (Ссылки на инфо из интернета)

    • Magnetic Loop Antennas - by PY1AHD (a superb loop site!) Бразилия.
    • Stealth ST-940B Mobile HF NVIS Magnetic Loop Antenna - by Stealth Telecom. Объединенные Арабские Эмираты.
    • HF LOOP AND HALF-LOOP ANTENNAS - by STAREC. Франция.
    • PA3CQR Magnetic loop antenna page - by PA3CQR. Нидерланды.
    • 80m Frame Antenna - by SM0VPO. Швеция.

    Всем привет!
    Вчера осталось пару часов свободного времени. Решил воплотить давнюю идею - сделать магнитную антенну (магнитная рамка). Тому способствовало появление радиоприемника Degen. Сделав магнитную антенну для радиоприемника Degen, я удивился - она не плохо работает!

    Т.к. много спрашивают про эту антенну, размещаю простенький эскиз
    Данные рамки

    Эскиз магнитной антенны на КВ диапазоны
    • диаметр большой рамки 112 см (трубка от кондиционера или газобалонного оборудования авто), очень удобно и недорого применить гимнастический алюминиевый обруч
    • диаметр малой рамки 22см (материал - медный провод диаметром 2 мм, можно и тоньше, но уже не держит форму сам круг)
    • кабель RG58 подсоединяется к малой рамке напрямую и уходит к радиоприемнику (можно применить трансформатор 1 к 1, чтобы исключить прием на кабель)
    • КПЕ 12/495х2 (можно применить любой другой, просто изменится полоса рабочих частот)
    • диапазон 2.5 - 18.3 МГц
    • чтобы рамка начала принимать 1.8 МГц добавил параллельно конденсатор 2200 пФ

    Идея не нова. Один из вариантов лежит . Это одновитковая рамка. У меня получилось нечто следующее



    Прием прекрасный даже на 1-м этаже частного дома. Я поражен. Эта простая магнитная антенна (магнитная рамка) имеет селективные свойства. Настройка на НЧ острая, на ВЧ поплавнее. С обычным КПЕ 12/495х2 с одной секцией антенна работоспособна вплоть до диапазона 18 МГц. С подключением второй секции - нижняя граница 2.5 МГц.
    Особенно впечатлила работа рамки на диапазоне 7 МГц. Оказывается прекрасная магнитная антенна для Degena.

    напоследок видео

    Что не понятно спрашивайте. de RN3KK

    Добавлено 19.06.2014
    Вот переехал на новый QTH 9 этаж 9-ти этажного дома. На штатный телескоп приемника Sony TR-1000 принимается значительно меньше станций нежели на магнитную рамку. +очень узкая полоса антенны делает ее прекрасным преселектором. Увы волшебства нет, когда сосед снизу включает свою плазму, прием тухнет везде... даже на 144 МГц...

    Добавлено 18.08.2014
    Удивлению нет предела. Разместил данную антенну на лоджии 9-го этажа. В диапазоне 40м было слышно очень много Японских станций (дальность до Японии 7500 км). В диапазоне 80м была принята всего одна японская станция в тот же день. Антенна заслуживает внимания. Я не мог даже и подумать что на эту магнитную антенну (магнитную рамку) возможен прием дальний трасс..

    Добавлено 25.01.2015
    Магнитная рамка работает и на передачу. Как бы не казалось странным, но отвечают. Не плохо она работает на 14 МГц, на нижних диапазонах эффективность уже не та - нужно увеличивать диаметр. Даже при мощности 10 Вт, поднесенная энергосберегающая лампа светилась почти в полную силу.

    При упоминании магнитной антенны сразу наполняют память конструкции на ферритовом стержне, отчасти правильно. Разновидности одного типа устройств. Магнитной называется рамочная антенна, периметр которой много меньше длины волны. Всем известные зигзаги, биквадрат (слова-синонимы) являются родственниками рассматриваемой технологии. Никакого отношения не имеют антенны на магнитном основании. Просто способ крепления. Магнитное основание для антенны надежно удерживает прибор на крыше авто. Поговорим сегодня об особой конструкции. Прелесть магнитных антенн: удается обеспечить сравнительно большое усиление на сравнительно длинных волнах. Размер магнитной антенны мал. Давайте обсудим заглавие, расскажем, как может быть сделана магнитная антенна своими руками.

    Магнитная петлевая антенна

    Магнитные антенны

    Теория гласит: в колебательном контуре из катушки индуктивности, конденсатора излучения не происходит. Замкнуто, волна качается на резонансной частоте сколь угодно, затухая, ввиду наличия активного сопротивления. Элементы контура, индуктивность, емкость, имеют чисто реактивный (мнимый) импеданс. Причем размер зависит от частоты по незамысловатому закону. Нечто вроде произведения круговой частоты (2 П f) на значение индуктивности или емкости, соответственно. При некотором значении противоположные по знаку мнимые компоненты становятся равны. В результате импеданс становится чисто активным, в идеале равен нулю.

    В действительности биения затухают, каждый контур на практике характеризуется добротностью. Напомним, что импеданс состоит из чисто активной (действительной) части (резисторы), мнимой. К последним относятся емкости, сопротивление которых мнимое отрицательное и индуктивности с положительным мнимым сопротивлением. Теперь представим, что в контуре обкладки конденсатора начали разводить до тех пор, пока не оказались на противоположных концах индуктивности. Называется вибратором (диполем) Герца, представляет собой разновидность укороченного полуволнового, прочих видов вибраторов.

    Если превратить катушку в единое кольцо, получаем простейшую магнитную антенну. Упрощенное толкование, примерно верное. Сигнал снимается с противоположной конденсатора стороны через усилитель на полевых транзисторах. Предоставит высокую чувствительность устройства. Ну, а антенна на ферритовом стержне считают разновидностью магнитной, только колец заместо одного сонм. Название этот род устройств получил за высокую чувствительность к магнитной составляющий волны. При работе на передачу генерируется, порождая отклик электрического поля.

    Максимум направленности соответствует оси стержня. Оба направления равноправны. Ввиду малого периметра рамочной антенны относительно длины волны сопротивление достаточно низкое. Не просто 1 Ом, доли Ома. Приближенно значение оценим формулой:

    R = 197 (U / λ) 4 Ом.

    Под U понимается периметр в метрах, аналогично – длина волны λ. Наконец, R – сопротивление излучению, не путайте с активным, показываемым тестером. Параметр используется при расчете усилителя для согласования нагрузки. Следовательно, для ферритовых антенн, нужно значение помножить на квадрат числа витков.

    Свойства магнитных антенн

    Посмотрим, как сделать магнитную антенну самостоятельно. Вначале определите длину окружности и емкость подстроечного конденсатора. Особенности магнитной антенны таковы: конструкция требует согласования в обязательном порядке. Отличительным признаком является невероятное число вариантов проведения этой операции, вырисовывается отдельная тема разговора.

    Длина периметра магнитной антенны колеблется в пределах 0,123 – 0,246 λ. Если требуется перекрыть диапазон, то нужно правильно подобрать конденсатор. В свободном пространстве, магнитной антенны диаграмма направленности в виде тора, наблюдаем, расположив виток параллельно земле. Поляризация будет линейная горизонтальная. Это годный вариант для приема телевещания. Недостаток: угол возвышения лепестка зависит от высоты подвеса. Считается, что для расстояния до Земли λ цифра составит 14 градусов. Непостоянство считаем отрицательным качеством. Для радио магнитные антенны применяются часто.

    Усиление составляет 1,76 дБи, на 0,39 меньше полуволнового вибратора. Размер последнего для частоты составит десятки метров – куда денешь громадину. Выводы делайте сами. Магнитная антенна невелика (периметр составляет 2 метра для длины волны 20 метров, меньше метра поперечником). Для сравнения на частоте 34 МГц, с которой хорошо знакомы дальнобойщики, благодаря рациям, длина волны составляет 8,8 метра. Известно: хороший полуволновый вибратор вместит редкий Камаз. Кстати, ранее приводили описание конструкции рамочной антенны, образуемой резиновой прокладкой заднего стекла легкового автомобиля ВАЗ. При малых габаритах работало устройство достаточно хорошо.

    Кстати, конструкция считается прагматичнее, нежели типичные штыревые антенны авто, где настройка ведется изменением индуктивности. Потерь получается меньше. Диаграмма направленности охватывает высокие углы места, касаясь вертикали. В случае со штыревой антенной возможности нет.

    Как правильно выбрать длину окружности. С увеличением растет усиление. Должна удовлетворить условию, приведенному выше, быть по возможности больше. Иногда нужно перекрыть диапазон частот. Рост периметра увеличивает полосу пропускания устройства. При ширине типичного канала 10 кГц теряет смысл. Будут автоматически отсекаться соседние несущие станций вещания. Необязательно больше значит лучше. Ради усиления затевался сыр-бор. Антенна выбирается периметром максимальная, предоставляя требуемую избирательность.

    Теперь главный вопрос: определить емкость. Чтобы параллельно индуктивности петли образовали резонанс по известной школьной формуле. Определение параметров контура согласно выражению:

    L = 2U (ln(U/d) – 1,07) нГн;

    U и d – длина витка, диаметр. Подвох. U = П d, следовательно, вместо отношения можно брать натуральный логарифм числа Пи. Ошибка ли автора, сказать не беремся. Быть может, учитывается факт, что настроечный конденсатор отнимает часть длины, усилитель… Емкость находим по индуктивности из выражения резонанса контура:

    f = 1/ 2П √LC; откуда

    С = 1/ 4П 2 L f 2 .

    С = 25330 / f 2 L,

    где f - частота резонанса в МГц, а L – индуктивность в мкГн.

    Антенна приемника

    Что касается способа снятия сигнала, то это делаем со стороны подстроечного конденсатора по обоим бокам, либо с противоположной стороны круговой петли. В последнем случае рекомендуется ввести управление конденсатором при помощи серводвигателя на расстоянии, полагаем, большинству читателей это покажется сильно надуманным, на свете не так много радиолюбителей, уверенных в нужности изготовленной собственноручно магнитной антенны.

    Какие бывают магнитные антенны

    Не всегда магнитные антенны круглые (идеальная форма). Встречаются восьмиугольные, квадратные. Читатели догадались: биквадрат WiFi относится к последней категории, причем рамка сдвоенная. Бывает, больше контуров, увеличивает усиление в одной плоскости диаграммы направленности. Учитывая факт, что КПД антенны вычисляется формулой:

    КПД = 1 / (1 + Rп/R),

    Видим необходимость снижения сопротивления потерь Rп до минимума. В противном случае результативность устройства резко падает. На практике мало значит, сделать антенны из золота, серебра, чтобы ловить НТВ, нереально. В названном аспекте пойдут алюминий, медь, предпочтительна последняя. Для магнитных антенн подходит конденсатор с воздушным зазором, большими пластинами. Старайтесь качественно выполнить пайку выводов.

    Пример. Длина периметра составляет одну десятую λ, следовательно, сопротивление излучения составит 0,02. Теперь читатели видят, как сильно придётся постараться, чтобы довести КПД до 50%. Сопротивление потерь в этом случае не превышает 0,02 Ом. Чтобы достичь такого результата, берите толстую медную жилу. С увеличением сечения проводника падает удельное сопротивление.

    У контура высокая добротность (низкие потери), получается, напряжение резонанса много выше, нежели при отклонении частоты. Следовательно, полоса пропускания магнитной антенны не отличается большой шириной, потребуется устройство подстраивать. Делается при помощи конденсатора. Надеемся, что ответили на вопрос, как сделать магнитную антенну. Отыграйте подачу: удивите домашних уверенным приемом сигнала в любую погоду.

    Опыты с магнитными рамочными антеннами

    Александр Грачёв UA6AGW

    В прошлом году мне в руки попал 6-ти метровый отрезок коаксиального кабеля. Еготочное название: «Кабель коаксиальный 1″гибкий LCFS 114-50 JA, RFS (15239211)». Он имеет очень небольшой вес, вместо внешней оплётки сплошную гофрированную трубу из безкислородной меди диаметром около 25 мм, центральный проводник – медная трубка
    диаметром около 9 мм (см. фото). Это и подвигло меня взяться за постройку рамочной антенны. Об этом я и хочу рассказать.

    Первая антенна была построена по схеме DF9IV. При диаметре около 2 м и такой же длине петли питания, выполненной из коаксиального кабеля, она очень хорошо работала на прием, но откровенно плохо на передачу, КСВ достигал 5-6.
    Рабочая полоса по приему (на уровне –6 дБ) порядка 10 кГц. При этом она отлично подавляла электрические помехи, при определенной ориентации в пространстве подавление мешающей станции легко получалось более 20 дБ.

    После некоторых размышлений я пришел к выводу, что причиной высокого КСВ является использование возбуждающим элементом внутреннего проводника с его относительно небольшим диаметром. Было принято решение внутренний проводник не использовать вовсе, оставив его в виде не замкнутого витка.

    Настроечный конденсатор был припаян к внешнему экрану. Приемные характеристики изменились незначительно, менее выраженным стал минимум в диаграмме, стало заметно влияние окружающих предметов. Но на передачу мало что изменилось. Далее после прочтения очередной раз статьи Григорова, было решено снять внешнюю оплетку с кабеля рамки, а медь покрыть в два слоя лаком «ХВ» (более подходящего не нашлось, впрочем, он неплохо защищает медь от
    окисления). И тут, наконец, появились первые положительные результаты. КСВ снизился до 1,5, было проведено около 20 местных связей. Антенна находилась на высоте 1,5 м и могла вращаться в вертикальной плоскости.

    Для сравнения использовался диполь общей длиной 42,5 м, выполненный из полевого провода с симметричной линией питания из телефонной «лапши» длиной около 20 м (этакая антенна «нищего радиолюбителя»), расположенный на крыше 5-ти этажного дома на высоте около 3-х метров. Он работал на 40 и 80 метрах, запитанный через симметричное согласующее устройство – КСВ на обоих диапазонах = 1,0. К сожалению, антенны находились в разных QTH и не было
    возможности провести прямое сравнение. Но опыт эксплуатации диполя в течение года позволял судить об эффективности рамки в первом приближении.

    Теперь собственно о результатах: 1) КСВ около 1,5. 2) Все корреспонденты отмечали снижение (от 1 до 2-х балов) уровня моего сигнала, по сравнению с тем, с которым они меня обычно слышат на диполь.

    Начавшиеся к этому времени дожди (как говорится: «через день-каждый день»), сделали невозможными дальнейшие антенные эксперименты. Главной причиной невозможности дальнейших испытаний стали постоянные пробои настроечного
    конденсатора из-за возросшей влажности воздуха.

    Я испробовал, пожалуй, все доступные мне варианты, применял подключение только статорных пластин, соединяя два КПЕ последовательно, применял конденсаторы из коаксиального кабеля, высоковольтные конденсаторы
    – все это заканчивалось одним – пробоем. Не попробовал я только вакуумные конденсаторы, остановила их непомерно высокая стоимость.

    И вот здесь пришла идея использовать ёмкость по отношению к внешнему экрану незадействованного внутреннего проводника. Попытка рассчитать необходимую длину кабеля по известной погонной ёмкости кабеля, не привела к достоверным результатам, поэтому был использован метод постепенного приближения.

    Очень жаль было резать такой замечательный кабель, но «охота – пуще неволи». Схема соединений на рисунке. Для питания использовалась петля из коаксиального кабеля длиной 2 м, по схеме DF9IV, сам питающий 50-омный кабель был длиной 15 м. Можно было предполагать, что общая ёмкость получится в соответствии с формулой последовательно включенных конденсаторов,но настроечный конденсатор является как бы продолжением собственной ёмкости кабеля.
    Для настройки использован конденсатор типа «бабочка» от УКВ аппаратуры.

    Пробои полностью прекратились, антенна сохранила все основные параметры классической магнитной рамочной антенны, но стала однодиапазонной.

    Основные результаты следующие: 1) КСВ порядка 1,5 (зависит от длины и формы питающей петли). 2) Магнитная антенна заметно проигрывает диполю (описан выше) при сопоставимой высоте подвеса. Опыты проводились в диапазоне 80 м.

    Заняться дальнейшими опытами с магнитными антеннами меня подтолкнули статья К. Ротхаммеля во втором томе его книги, посвященная магнитным рамкам, и статья Владимира Тимофеевича Полякова о рамочно-лучевой или настоящей ЕН антенне, а для понимания процессов, происходящих в антеннах и вокруг них, оказалась очень полезной статья о ближнем поле антенн.

    После прочтения статьи о рамочно-лучевой антенне у меня родилось несколько многообещающих проектов, но в настоящее время испытан только один, о нём и пойдёт речь. Схема антенны изображена на рисунке, внешний вид – на фото:

    Все ниже перечисленные опыты проводились в диапазоне 40м. В первых опытах антенна была на высоте 1,5 м от земли. Испробованы различные способы подключения «дипольной» (ёмкостной) части антенны к рамке, но изображенный на рисунке мне показался оптимальным. Здесь предпринята попытка магнитную рамку, излучающую преимущественно магнитную составляющую, дооснастить элементами, излучающими в основном электрическую составляющую.

    Можно на эту же антенну посмотреть иначе: катушка, включенная в середину диполя, как бы удлиняет его до необходимых размеров, и вместе с тем лучи, включенные параллельно настроечному конденсатору, обладают собственной емкостью (при указанных размерах порядка 30 — 40 пФ) и входят в общую ёмкость настроечного конденсатора.

    Контур, образованный внутренним проводником и конденсатором, кроме того, что повышает уровень сигнала на приеме приблизительно вдвое, по видимому, сдвигает фазу тока собственно рамки, и обеспечивает необходимое фазовое согласование (попытка отключить его приводит к увеличению КСВ до 10 и более). Возможно, мои теоретические рассуждения не совсем верны, но как показали дальнейшие опыты, антенна в данной конфигурации работает.

    Ещё при самых первых опытах был замечен интересный эффект – если при неподвижной дипольной части повернуть
    рамку на 90 градусов – уровень сигнала по приему падает приблизительно на 10 — 15дБ, а на 180 градусов – прием падает едва ли не до нуля. Хотя логично было бы предположить, что при повороте на 90 градусов диаграммы направленности «дипольной» части и рамки совпадут, но видимо не всё так просто.

    Был изготовлен промежуточный вариант антенны, способной поворачиваться вокруг своей оси, с целью выяснить диаграмму направленности, она оказалась такой же, как и у классической рамки. Питание антенны осуществлялось той же петлей связи, что и в первых опытах. В настоящее время антенна поднята на высоту 3-х метров, лучи идут параллельно земле.

    О результатах:

    1) КСВ = 1.0 на частоте 7050 кГц, 1.5 на 7000кГц, 1,1 на 7100кГц.
    2) Антенна не требует перестройки по диапазону. С помощью конденсаторов П-контура трансивера возможна некоторая подстройка антенны в случае необходимости.
    3) Антенна весьма компактна.

    На расстоянии до 1000 км рамка и диполь имеют приблизительно одинаковую эффективность, а на расстоянии более 1000 км рамка работает заметно лучше волнового диполя при одинаковой высоте подвеса, при этом рамка вчетверо
    меньше диполя. Диаграмма направленности близка к круговой, минимумы мало заметны. Проведено около ста связей с 1;2;3;4;5;6;7;9 районами бывшего СССР.

    Отмечен интересный эффект – оценка силы сигнала в большинстве случаев оставалась приблизительно одинаковой и при расстоянии до корреспондента 300 км и 3000км, на диполе такого не наблюдалось. Интересна реакция операторов,
    когда я сообщал, на чем работаю – изумление, что на этом можно работать! Все опыты проведены на самодельном SDR трансивере с выходной мощность 100 Вт.

    Материал взят из журнала CQ-QRP#27

    Loading...Loading...