Презентация - магнитное поле и его изображение. Получение картины магнитного поля

Темы кодификатора ЕГЭ : взаимодействие магнитов, магнитное поле проводника с током.

Магнитные свойства вещества известны людям давно. Магниты получили своё название от античного города Магнесия: в его окрестностях был распространён минерал (названный впоследствии магнитным железняком или магнетитом), куски которого притягивали железные предметы.

Взаимодействие магнитов

На двух сторонах каждого магнита расположены северный полюс и южный полюс . Два магнита притягиваются друг к другу разноимёнными полюсами и отталкиваются одноимёнными. Магниты могут действовать друг на друга даже сквозь вакуум! Всё это напоминает взаимодействие электрических зарядов, однако взаимодействие магнитов не является электрическим . Об этом свидетельствуют следующие опытные факты.

Магнитная сила ослабевает при нагревании магнита. Сила же взаимодействия точечных зарядов не зависит от их температуры.

Магнитная сила ослабевает, если трясти магнит. Ничего подобного с электрически заряженными телами не происходит.

Положительные электрические заряды можно отделить от отрицательных (например, при электризации тел). А вот разделить полюса магнита не получается: если разрезать магнит на две части, то в месте разреза также возникают полюса, и магнит распадается на два магнита с разноимёнными полюсами на концах (ориентированных точно так же, как и полюса исходного магнита).

Таким образом, магниты всегда двухполюсные, они существуют только в виде диполей . Изолированных магнитных полюсов (так называемых магнитных монополей - аналогов электрического заряда)в при роде не существует (во всяком случае, экспериментально они пока не обнаружены). Это, пожалуй, самая впечатляющая асимметрия между электричеством и магнетизмом.

Как и электрически заряженные тела, магниты действуют на электрические заряды. Однако магнит действует только на движущийся заряд; если заряд покоится относительно магнита, то действия магнитной силы на заряд не наблюдается. Напротив, наэлектризованное тело действует на любой заряд,вне зависимости от того, покоится он или движется.

По современным представлениям теории близкодействия, взаимодействие магнитов осуществляется посредством магнитного поля .А именно, магнит создаёт в окружающем пространстве магнитное поле, которое действует на другой магнит и вызывает видимое притяжение или отталкивание этих магнитов.

Примером магнита служит магнитная стрелка компаса. С помощью магнитной стрелки можно судить о наличии магнитного поля в данной области пространства, а также о направлении поля.

Наша планета Земля является гигантским магнитом. Неподалёку от северного географического полюса Земли расположен южный магнитный полюс. Поэтому северный конец стрелки компаса, поворачиваясь к южному магнитному полюсу Земли, указывает на географический север. Отсюда, собственно, и возникло название «северный полюс» магнита.

Линии магнитного поля

Электрическое поле, напомним, исследуется с помощью маленьких пробных зарядов, по действию на которые можно судить о величине и направлении поля. Аналогом пробного заряда в случае магнитного поля является маленькая магнитная стрелка.

Например, можно получить некоторое геометрическое представление о магнитном поле, если разместить в разных точках пространства очень маленькие стрелки компаса. Опыт показывает, что стрелки выстроятся вдоль определённых линий -так называемых линий магнитного поля . Дадим определение этого понятия в виде следующих трёх пунктов.

1. Линии магнитного поля, или магнитные силовые линии - это направленные линии в пространстве, обладающие следующим свойством: маленькая стрелка компаса, помещённая в каждой точке такой линии, ориентируется по касательной к этой линии .

2. Направлением линии магнитного поля считается направление северных концов стрелок компаса, расположенных в точках данной линии .

3. Чем гуще идут линии, тем сильнее магнитное поле в данной области пространства .

Роль стрелок компаса с успехом могут выполнять железные опилки: в магнитном поле маленькие опилки намагничиваются и ведут себя в точности как магнитные стрелки.

Так, насыпав железных опилок вокруг постоянного магнита, мы увидим примерно следующую картину линий магнитного поля (рис. 1 ).

Рис. 1. Поле постоянного магнита

Северный полюс магнита обозначается синим цветом и буквой ; южный полюс - красным цветом и буквой . Обратите внимание, что линии поля выходят из северного полюса магнита и входят в южный полюс: ведь именно к южному полюсу магнита будет направлен северный конец стрелки компаса.

Опыт Эрстеда

Несмотря на то, что электрические и магнитные явления были известны людям ещё с античности, никакой взаимосвязи между ними долгое время не наблюдалось. В течение нескольких столетий исследования электричества и магнетизма шли параллельно и независимо друг от друга.

Тот замечательный факт, что электрические и магнитные явления на самом деле связаны друг с другом, был впервые обнаружен в 1820 году - в знаменитом опыте Эрстеда.

Схема опыта Эрстеда показана на рис. 2 (изображение с сайта rt.mipt.ru). Над магнитной стрелкой ( и - северный и южный полюсы стрелки) расположен металлический проводник, подключённый к источнику тока. Если замкнуть цепь, то стрелка поворачивается перпендикулярно проводнику!
Этот простой опыт прямо указал на взаимосвязь электричества и магнетизма. Эксперименты последовавшие за опытом Эрстеда, твёрдо установили следующую закономерность: магнитное поле порождается электрическими токами и действует на токи .

Рис. 2. Опыт Эрстеда

Картина линий магнитного поля, порождённого проводником с током, зависит от формы проводника.

Магнитное поле прямого провода с током

Линии магнитного поля прямолинейного провода с током являются концентрическими окружностями. Центры этих окружностей лежат на проводе, а их плоскости перпендикулярны проводу (рис. 3 ).

Рис. 3. Поле прямого провода с током

Для определения направления линий магнитного поля прямого тока существуют два альтернативных правила.

Правило часовой стрелки . Линии поля идут против часовой стрелки, если смотреть так, чтобы ток тёк на нас .

Правило винта (или правило буравчика , или правило штопора - это уж кому что ближе;-)). Линии поля идут туда, куда надо вращать винт (с обычной правой резьбой), чтобы он двигался по резьбе в направлении тока .

Пользуйтесь тем правилом, которое вам больше по душе. Лучше привыкнуть к правилу часовой стрелки - вы сами впоследствии убедитесь, что оно более универсально и им проще пользоваться (а потом с благодарностью вспомните его на первом курсе, когда будете изучать аналитическую геометрию).

На рис. 3 появилось и кое-что новое: это вектор , который называется индукцией магнитного поля , или магнитной индукцией . Вектор магнитной индукции является аналогом вектора напряжённости электрического поля: он служит силовой характеристикой магнитного поля, определяя силу, с которой магнитное поле действует на движущиеся заряды.

О силах в магнитном поле мы поговорим позже, а пока отметим лишь, что величина и направление магнитного поля определяется вектором магнитной индукции . В каждой точке пространства вектор направлен туда же,куда и северный конец стрелки компаса, помещённой в данную точку, а именно по касательной к линии поля в направлении этой линии. Измеряется магнитная индукция в теслах (Тл).

Как и в случае электрического поля, для индукции магнитного поля справедлив принцип суперпозиции . Он заключается в том, что индукции магнитных полей , создаваемых в данной точке различными токами, складываются векторно и дают результирующий вектор магнитной индукции: .

Магнитное поле витка с током

Рассмотрим круговой виток, по которому циркулирует постоянный ток . Источник,создающий ток, мы на рисунке не показываем.

Картина линий поля нашего витка будет иметь приблизительно следующий вид (рис. 4 ).

Рис. 4. Поле витка с током

Нам будет важно уметь определять, в какое полупространство (относительно плоскости витка) направлено магнитное поле. Снова имеем два альтернативных правила.

Правило часовой стрелки . Линии поля идут туда, глядя откуда ток кажется циркулирующим против часовой стрелки .

Правило винта . Линии поля идут туда, куда будет перемещаться винт (с обычной правой резьбой), если вращать его в направлении тока .

Как видите, ток и поле меняются ролями - по сравнению с формулировками этих правил для случая прямого тока.

Магнитное поле катушки с током

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 5 - изображение с сайта en.wikipedia.org). В катушке может быть несколько десятков, сотен или даже тысяч витков. Катушка называется ещё соленоидом .

Рис. 5. Катушка (соленоид)

Магнитное поле одного витка, как мы знаем, выглядит не очень-то просто. Поля? отдельных витков катушки накладываются друг на друга, и, казалось бы, в результате должна получиться совсем уж запутанная картина. Однако это не так: поле длинной катушки имеет неожиданно простую структуру (рис. 6 ).

Рис. 6. поле катушки с током

На этом рисунке ток в катушке идёт против часовой стрелки, если смотреть слева (так будет, если на рис. 5 правый конец катушки подключить к «плюсу» источника тока, а левый конец - к «минусу»). Мы видим, что магнитное поле катушки обладает двумя характерными свойствами.

1. Внутри катушки вдали от её краёв магнитное поле является однородным : в каждой точке вектор магнитной индукции одинаков по величине и направлению. Линии поля - параллельные прямые; они искривляются лишь вблизи краёв катушки, когда выходят наружу.

2. Вне катушки поле близко к нулю. Чем больше витков в катушке - тем слабее поле снаружи неё.

Заметим, что бесконечно длинная катушка вообще не выпускает поле наружу: вне катушки магнитное поле отсутствует. Внутри такой катушки поле всюду является однородным.

Ничего не напоминает? Катушка является «магнитным» аналогом конденсатора. Вы же помните, что конденсатор создаёт внутри себя однородное электрическое поле, линии которого искривляются лишь вблизи краёв пластин, а вне конденсатора поле близко к нулю; конденсатор с бесконечными обкладками вообще не выпускает поле наружу, а всюду внутри него поле однородно.

А теперь - главное наблюдение. Сопоставьте, пожалуйста, картину линий магнитного поля вне катушки (рис. 6 ) с линиями поля магнита на рис. 1 . Одно и то же, не правда ли? И вот мы подходим к вопросу, который, вероятно, у вас уже давно возник: если магнитное поле порождается токами и действует на токи, то какова причина возникновения магнитного поля вблизи постоянного магнита? Ведь этот магнит вроде бы не является проводником с током!

Гипотеза Ампера. Элементарные токи

Поначалу думали, что взаимодействие магнитов объясняется особыми магнитными зарядами, сосредоточенными на полюсах. Но, в отличие от электричества, никто не мог изолировать магнитный заряд; ведь, как мы уже говорили, не удавалось получить по отдельности северный и южный полюс магнита - полюса всегда присутствуют в магните парами.

Сомнения насчёт магнитных зарядов усугубил опыт Эрстеда, когда выяснилось, что магнитное поле порождается электрическим током. Более того, оказалось, что для всякого магнита можно подобрать проводник с током соответствующей конфигурации, такой, что поле этого проводника совпадает с полем магнита.

Ампер выдвинул смелую гипотезу. Нет никаких магнитных зарядов. Действие магнита объясняется замкнутыми электрическими токами внутри него .

Что это за токи? Эти элементарные токи циркулируют внутри атомов и молекул; они связаны с движением электронов по атомным орбитам. Магнитное поле любого тела складывается из магнитных полей этих элементарных токов.

Элементарные токи могут быть беспорядочным образом расположены друг относительно друга. Тогда их поля взаимно погашаются, и тело не проявляет магнитных свойств.

Но если элементарные токи расположены согласованно,то их поля,складываясь,усиливают друг друга. Тело становится магнитом (рис. 7 ; магнитое поле будет направлено на нас; также на нас будет направлен и северный полюс магнита).

Рис. 7. Элементарные токи магнита

Гипотеза Ампера об элементарных токах прояснила свойства магнитов.Нагревание и тряска магнита разрушают порядок расположения его элементарных токов, и магнитные свойства ослабевают. Неразделимость полюсов магнита стала очевидной: в месте разреза магнита мы получаем те же элементарные токи на торцах. Способность тела намагничиваться в магнитном поле объясняется согласованным выстраиванием элементарных токов, «поворачивающихся» должным образом (о повороте кругового тока в магнитном поле читайте в следующем листке).

Гипотеза Ампера оказалась справедливой - это показало дальнейшее развитие физики. Представления об элементарных токах стали неотъемлемой частью теории атома, разработанной уже в ХХ веке - почти через сто лет после гениальной догадки Ампера.

Для исследования структуры магнитного поля используют метод спектров . Мелкие железные опилки, попадая в магнитное по-ле, намагничиваются и, взаимодействуя меж-ду собой, образуют цепочки, расположение которых позволяет судить о структуре маг-нитного поля.

В качестве примера применения метода спектров рассмотрим опыт с магнитным полем прямого проводника. Через тонкую пластинку из диэлектрика пропустим длин-ный прямой проводник, включенный в элек-трическую цепь. На пластинку будем сыпать мелкие железные опилки, слегка постукивая по пластинке. Опилки соберутся вокруг про-водника в виде концентрических кругов раз-личного диаметра (рис. 6.10). При повто-рении опыта с другими проводниками при других значениях силы тока получим похо-жие картины, которые и называются маг-нитными спектрами.

Спектры можно изобразить на бумаге в виде линий магнитной индукции .

Для прямого проводника такое изобра-жение показано на рис. 6.11. В изображе-ниях магнитных спектров линии магнитной индукции показывают направление магнит-ной индукции в каждой точке. В каждой точке линии индукции касательная совпа-дает с вектором магнитной индукции.

Линии, касательные к которым в каждой точке показывают направление магнитной ин-дукции, называются линиями магнитной ин-дукции .

Плотность линий магнитной индукции зависит от модуля магнитной индукции. Она больше там, где модуль больше, и наоборот. Направление линий магнитной индукции прямого проводника определяется по пра-вилу правого винта.

Спектры магнитных полей проводников другой формы имеют много общего.

Так, спектр магнитного поля кольца с током похож на два совмещенных спектра прямых проводников (рис. 6.12). Только плотность линий индукции в центре кольца больше (рис. 6.13).

Магнитный спектр катушки с большим количеством витков (соленоида) показан на рис. 6.14. На рисунке видно, что линии магнитной индукции такой катушки внут-ри параллельные и имеют одинаковую плотность. Это свидетельствует, что внутри длинной катушки магнитное поле однород-ное — во всех точках магнитная индукция одинакова (рис. 6.15). Линии магнитной индукции расходятся лишь за пределами катушки, где магнитное поле неоднород-ное.

Если сравнить спектры магнитных полей проводников с током различной формы, то можно заметить, что линии индукции всегда замкнутые или при дальнейшем продолже-нии могут замкнуться. Это свидетельствует об отсутствии магнитных зарядов. Такое поле называют вихревым. Вихревое поле не имеет потенциала. Материал с сайта

На этой странице материал по темам:

  • Спектров магнитных полей гдз решебник

  • Какие физические процессы происходят при образовании магнитного спектра

  • Открытия в области магнитных полей

  • Доклад на тему магнитное поле и его графическое изображение

  • Спектры магнитных полей примеры

Вопросы по этому материалу:

При построении картины магнитного поля используются те же правила что и при построении картины электрического поля в электростатике.

Линии индукции магнитного поля (или напряжённости) есть силовые линии магнитного поля. Линия же, где магнитный потенциал постоянен, называется эквипотенциальной.

Если в магнитное поле внести ферромагнитное тело, то силовые линии будут входить в него под углом 90  (т.е. поле искажается). Если же вносится не ферромагнитное тело, то искажения поля не происходит.

Аналогия электростатического (электрического) и магнитного полей

Существует два типа соответствий.

1) Одинаковое распределение линейных зарядов в электростатическом поле и линейных токов в магнитном поле.

В этом случае картины полей подобны, но силовые линии в электростатическом поле – это эквипотенциальные в магнитном поле и наоборот, то есть картина поля повёрнута на угол , меняется смысл линий.

2) Одинаковая форма граничных эквипотенциальных поверхностей в обоих полях. В этом случае картины полей полностью подобны.

Физическая природа полей различна, электростатическое поле создаётся зарядами, магнитное поле создаётся током, то есть в магнитном поле нет понятия магнитного заряда (
, величина, условно введенная).

Индуктивность

Для контуров (катушек), у которых магнитная проницаемость
и не зависит от напряженности магнитного поля, потокосцепление пропорционально току

, где

- коэффициент пропорциональности, называемый индуктивностью;

- электрический ток.

Потокосцепление равно:

, где

Ф – магнитный поток;

w – число витков.

Из выше приведённых формул следует:

Индуктивность зависит от геометрических размеров контура, числа витков, свойств среды, но не зависит от величины тока, протекающего по катушке.

Методика определения индуктивности :

    Условно считаем известным ток в катушке.

    Через известный ток выражаем магнитный поток.

    Магнитный поток подставляем в формулу индуктивности, где неизвестные токи сокращаются.

Методика расчета индуктивности аналогична методике расчета емкости

Пример: Определить индуктивность катушки, равномерно намотанной на сердечник прямоугольного сечения, внутренний радиус которого R 1 , наружный R 2 , высота h, число витков

По закону полного тока определяется Н:

Поток через полоску

Полный поток:

Потокосцепление равно:

Эдс самоиндукции и взаимоиндукции

ЭДС самоиндукции пропорциональна скорости изменения тока в этой катушке

- ЭДС самоиндукции.

Явление наведения ЭДС в каком-либо контуре при изменении тока в другом контуре называется взаимоиндукцией, а наведённая ЭДС – ЭДС взаимоиндукции.

- ЭДС взаимоиндукции,

где, М- взаимная индуктивность.

Мы не можем увидеть магнитное поле, однако для лучшего понимания магнитных явлений важно научиться его изображать. В этом помогут магнитные стрелки. Каждая такая стрелка — это маленький постоянный магнит, который легко поворачивается в горизонтальной плоскости (рис. 2.1). О том, как графически изображают магнитное поле и какая физическая величина его характеризует, вы узнаете из этого параграфа.

Рис. 2.2. В магнитном поле магнитные стрелки ориентируются определенным образом: северный полюс стрелки указывает направление вектора индукции магнитного поля в данной точке

Изучаем силовую характеристику магнитного поля

Если заряженная частица движется в магнитном поле, то поле будет действовать на частицу с некоторой силой. Значение этой силы зависит от заряда частицы, направления и значения скорости ее движения, а также от того, насколько сильным является поле.

Силовой характеристикой магнитного поля является магнитная индукция.

Магнитная индукция (индукция магнитного поля) — это векторная физическая величина, характеризующая силовое действие магнитного поля.

Магнитную индукцию обозначают символом B.

Единица магнитной индукции в СИ — тесла; названа в честь сербского физика Николы Теслы (1856-1943):

За направление вектора магнитной индукции в данной точке магнитного поля принято направление, на которое указывает северный полюс магнитной стрелки, установленной в этой точке (рис. 2.2).

Обратите внимание! Направление силы, с которой магнитное поле действует на движущиеся заряженные частицы или на проводник с током, или на магнитную стрелку, не совпадает с направлением вектора магнитной индукции.

Магнитные линии:

Рис. 2.3. Линии магнитного поля полосового магнита

Вне магнита выходят из северного полюса магнита и входят в южный;

Всегда замкнуты (магнитное поле — это вихревое поле);

Наиболее густо расположены у полюсов магнита;

Никогда не пересекаются

Изображаем магнитное поле

На рис. 2.2 видим, как ориентируются магнитные стрелки в магнитном поле: их оси как будто образуют линии, а вектор магнитной индукции в каждой точке направлен вдоль касательной к линии, проходящей через эту точку.

С помощью магнитных линий графически изображают магнитные поля:

1) за направление линии магнитной индукции в данной точке принято направление вектора магнитной индукции;

Рис. 2.4. Цепочки железных опилок воспроизводят картину линий магнитной индукции магнитного поля подковообразного магнита

2) чем больше модуль магнитной индукции, тем ближе друг к другу чертят магнитные линии.

Рассмотрев графическое изображение магнитного поля полосового магнита, можно сделать некоторые выводы (см. на рис. 2.3).

Заметим, что данные выводы справедливы для магнитных линий любого магнита.

Какое направление имеют магнитные линии внутри полосового магнита?


Картину магнитных линий можно воспроизвести с помощью железных опилок.

Возьмем подковообразный магнит, положим на него пластинку из оргстекла и через ситечко будем насыпать на пластинку железные опилки. В магнитном поле каждый кусочек железа намагнитится и превратится в маленькую «магнитную стрелку». Импровизированные «стрелки» сориентируются вдоль магнитных линий магнитного поля магнита (рис. 2.4).

Изобразите картину магнитных линий магнитного поля подковообразного магнита.

Узнаём об однородном магнитном поле

Магнитное поле в некоторой части пространства называют однородным, если в каждой его точке векторы магнитной индукции одинаковы как по модулю, так и по направлению (рис. 2.5).

На участках, где магнитное поле однородно, линии магнитной индукции параллельны и расположены на одинаковом расстоянии друг от друга (рис. 2.5, 2.6). Магнитные линии однородного магнитного поля, направленные к нам, принято изображать точками (рис. 2.7, а) — мы как будто видим «острия стрел», летящих к нам. Если магнитные линии направлены от нас, то их изображают крестиками — мы как будто видим «оперения стрел», летящих от нас (рис. 2.7, б).

В большинстве случаев мы имеем дело с неоднородным магнитным полем, — полем, в разных точках которого векторы магнитной индукции имеют разные значения и направления. Магнитные линии такого поля искривлены, а их плотность разная.

Рис. 2.6. Магнитное поле внутри полосового магнита (а) и между двумя магнитами, обращенными друг к другу разноименными полюсами (б), можно считать однородным

Изучаем магнитное поле Земли

Для изучения земного магнетизма Вильям Гильберт изготовил постоянный магнит в виде шара (модель Земли). Расположив на шаре компас, он заметил, что стрелка компаса ведет себя так же, как на поверхности Земли.

Эксперименты позволили ученому предположить, что Земля — это огромный магнит, а на севере нашей планеты расположен ее южный магнитный полюс. Дальнейшие исследования подтвердили гипотезу В. Гильберта.

На рис. 2.8 изображена картина линий магнитной индукции магнитного поля Земли.

рис. 2.7. Изображение линий магнитной индукции однородного магнитного поля, которые перпендикулярны плоскости рисунка и направлены к нам (а); направлены от нас (б)

Представьте, что вы идете к Северному полюсу, двигаясь точно в том направлении, на которое указывает стрелка компаса. Достигнете ли вы места назначения?

Линии магнитной индукции магнитного поля Земли не параллельны ее поверхности. Если закрепить магнитную стрелку в карданном подвесе, то есть так, чтобы она могла свободно вращаться как вокруг горизонтальной, так

Рис. 2.8. Схема расположения магнитных линий магнитного поля планеты Земля

и вокруг вертикальной осей, стрелка установится под углом к поверхности Земли (рис. 2.9).

Как будет расположена магнитная стрелка в устройстве на рис. 2.9 вблизи северного магнитного полюса Земли? вблизи южного магнитного полюса Земли?

Магнитное поле Земли издавна помогало ориентироваться путешественникам, морякам, военным и не только им. Доказано, что рыбы, морские млекопитающие и птицы во время своих миграций ориентируются по магнитному полю Земли. Так же ориентируются, ища путь домой, и некоторые животные, например кошки.

Узнаём о магнитных бурях

Исследования показали, что в любой местности магнитное поле Земли периодически, каждые сутки, изменяется. Кроме того, наблюдаются небольшие ежегодные изменения магнитного поля Земли. Случаются, однако, и резкие его изменения. Сильные возмущения магнитного поля Земли, которые охватывают всю планету и продолжаются от одного до нескольких дней, называют магнитными бурями. Здоровые люди их практически не ощущают, а вот у тех, кто имеет сердечно-сосудистые заболевания и заболевания нервной системы, магнитные бури вызывают ухудшение самочувствия.

Магнитное поле Земли — своеобразный «щит», который защищает нашу планету от летящих из космоса, в основном от Солнца («солнечный ветер»), заряженных частиц. Вблизи магнитных полюсов потоки частиц подлетают довольно близко к атмосфере Земли. При возрастании солнечной активности космические частицы попадают в верхние слои атмосферы и ионизируют молекулы газа — на Земле наблюдаются полярные сияния (рис. 2.10).

Подводим итоги

Магнитная индукция В — это векторная физическая величина, характеризующая силовое действие магнитного поля. Направление вектора магнитной индукции совпадает с направлением, на которое указывает северный полюс магнитной стрелки. Единица магнитной индукции в СИ — тесла (Тл).

Условные направленные линии, в каждой точке которых касательная совпадает с линией, вдоль которой направлен вектор магнитной индукции, называют линиями магнитной индукции или магнитными линиями.

Линии магнитной индукции всегда замкнуты, вне магнита они выходят из северного полюса магнита и входят в южный, гуще расположены в тех областях магнитного поля, где модуль магнитной индукции больше.

Планета Земля имеет магнитное поле. Вблизи северного географического полюса Земли расположен ее южный магнитный полюс, вблизи южного географического полюса — северный магнитный полюс.

Контрольные вопросы

1. Дайте определение магнитной индукции. 2. Как направлен вектор магнитной индукции? 3. Какова единица магнитной индукции в СИ? В честь кого она названа? 4. Приведите определение линий магнитной индукции. 5. Какое направление принято за направление магнитных линий? 6. От чего зависит густота магнитных линий? 7. Какое магнитное поле называют однородным? 8. Докажите, что Земля имеет магнитное поле. 9. Как расположены магнитные полюсы Земли относительно географических? 10. Что такое магнитные бури? Как они влияют на человека?


Упражнение № 2

1. На рис. 1 изображены линии магнитной индукции на некотором участке магнитного поля. Для каждого случая а-в определите: 1) какое это поле — однородное или неоднородное; 2) направление вектора магнитной индукции в точках А и В поля; 3) в какой точке — А или В — магнитная индукция поля больше.

2. Почему стальная оконная решетка может со временем намагнититься?

3. На рис. 2 изображены линии магнитного поля, созданного двумя одинаковыми постоянными магнитами, обращенными друг к другу одноименными полюсами.

1) Существует ли магнитное поле в точке А?

2) Каково направление вектора магнитной индукции в точке В? в точке С?

3) В какой точке — А, В или С — магнитная индукция поля наибольшая?

4) Каково направление векторов магнитной индукции внутри магнитов?

4. Раньше во время экспедиций на Северный полюс возникали трудности в определении направления движения, ведь вблизи полюса обычные компасы почти не работали. Как вы думаете, почему?

5. Воспользуйтесь дополнительными источниками информации и выясните, какое значение имеет магнитное поле для жизни на нашей планете. Что произошло бы, если бы магнитное поле Земли вдруг исчезло?

6. Существуют участки земной поверхности, где магнитная индукция магнитного поля Земли значительно больше, чем в соседних областях. Воспользуйтесь дополнительными источниками информации и узнайте о магнитных аномалиях подробнее.

7. Объясните, почему любое незаряженное тело всегда притягивается к телу, имеющему электрический заряд.

Это материал учебника

Библиографическое описание: Насекин К. Г., Маюров С. Г. Получение картины магнитного поля // Юный ученый. — 2015. — №1. — С. 75-78..04.2019).



Введение. Магнетизм

Природные магниты, попросту говоря, кусочки магнитного железняка - магнетита (химический состав: 31 % железа и 69 % кислорода) не везде назывались магнитами. В разных странах магнит называли по-разному, но большая часть всех этих названий переводится как «любящий». Так поэтичным языком древних описано свойство кусков магнита - притягивать железо.

«Любящий камень» - такое поэтическое название дали китайцы естественному магниту. Сила у естественных магнитов незначительна, и потому греческое название магнита - переводится как «геркулесов камень».

Не следует думать, что магнит действует только на железо. Есть ряд других тел, которые тоже испытывают на себе действие сильного магнита, хотя и не в такой степени, как железо. Металлы: никель, кобальт, марганец, платина, золото, серебро, алюминий - в слабой степени притягиваются магнитом. Еще замечательное свойство так называемых диамагнитных тел, например цинка, свинца, серы, висмута: эти тела отталкиваются от сильного магнита!

Жидкости и газы также испытывают на себе притяжение или отталкивание магнита, правда, в весьма слабой степени; магнит должен быть очень силен, чтобы проявить свое влияние на эти вещества.

Основная часть

Линии магнитных сил

У человека нет органа чувств, воспринимающего магнитное поле, поэтому о существовании магнитных сил, которые окружают магнит, он может лишь догадываться. Однако нетрудно косвенным образом обнаружить картины распределения этих сил. Лучше всего сделать это с помощью мелких железных опилок.

Для этого нужно взять магнит, сверху накрыть его стеклянной пластиной. На пластину положить лист бумаги. Далее насыпать опилки тонким ровным слоем на лист бумаги, встряхивая опилки легкими ударами. Магнитные силы свободно проходят сквозь бумагу и стекло; следовательно, железные опилки под действием магнита намагнитятся; когда мы встряхиваем их, они на мгновение отделяются от пластинки и могут под действием магнитных сил легко повернуться.

В результате опилки располагаются рядами, наглядно обнаруживая распределение невидимых магнитных линий. Магнитные силы создают сложную систему изогнутых линий. Можно увидеть, как, они лучисто расходятся от каждого полюса магнита. Чем ближе к полюсу, тем линии опилок гуще и четче; напротив, с удалением от полюса они разрежаются и утрачивают свою отчетливость, наглядно доказывая ослабление магнитных сил с расстоянием.

Актуальность работы

Работа посвящена совершенствованию получения картин магнитного поля, которые отчетливо показывают магнитные линии. Используя известные способы получения плоских картин, необходимо разработать способ получения объемных картин магнитного поля.

Получение изображения с помощью магнита и железных опилок

Чтобы получить такой рисунок, нужно взять: магнит, небольшое стекло, лист бумаги, железные опилки. Вначале мы положили магнит на верстак, далее накрыли его стеклом. На стекло положили лист бумаги, после чего сыпали железные опилки. Чтобы получился красивый рисунок нужно:

1) Не сыпать железные опилки с небольшой высоты от магнита. Из-за этого опилки слепляются в воздухе и падают на лист в куче.

2) Железные опилки лучше сыпать около полюсов, чтобы было четко видно магнитные линии.

Действие магнитного поля на экран дисплея

Магнитное поле магнита действует и на экран дисплея. Если взять магнит и поднести к экрану дисплея, то происходит много разных явлений:

1. Искажение изображения на экране дисплея.

2. Изменение цветовой палитры экрана дисплея.

Если магнит поднести прямо к стеклу дисплея, то возникает своеобразная и красивая картина на нем. Когда магнит отдаляется от экрана, картина становится менее четкой. На фотографиях, сделанных в этот момент, можно увидеть некоторую закономерность. Если на экран дисплея положить два кольцеобразных магнита, то образуется рисунок, отличающийся от рисунка, образованного одним магнита. На границе этих рисунков можно заметить линии, как-то связанные с магнитным полем. Если количество магнитов меняется или изменяется расположение полюсов магнита, то и рисунок будет другим. Если на экран дисплея положить кольцеобразный магнит с большой магнитной силой, то экран дисплея станет темным, а внутри кольца экран светится различными красками.

В книге написано, что магнитное поле действует на электроны. При этом взаимодействии электроны не попадают в нужное место и возникают искажения. Опыты проводились на старом мониторе.

Получение объемных картин магнитного поля

В ходе работы были получены и сфотографированы картины магнитного поля различных магнитов с помощью железных опилок. При анализе результатов было замечено, что картины магнитного поля либо плоские, либо опилки поднимаются на небольшую высоту, и не дают полной информации о магнитном поле. Ведь, чтобы получить картины магнитного поля даже одного магнита нужно проделать несколько опытов. Чтобы получить картину магнитного поля одного магнита, нужен один опыт, другого магнита - второй опыт. Возник вопрос: как получить картины магнитного поля в объеме? Что нужно сделать, чтобы картина магнитного поля получилась в объеме? Возникает проблема, мешает сила тяжести, действующая на железные опилки. Для решения этой проблемы нужно уменьшить вес опилок. Уменьшить вес тела в обычных условиях можно только с помощью жидкости. В этом случае подходит жидкость «глицерин». Преимущества этой жидкости:

1. Имеет большую плотность, чем вода = 1260 кг/м 3

2. Глицерин прозрачен.

3. Глицерин безвреден для здоровья человека.

4. У глицерина хорошая вязкость.

Если взять воду, то выталкивающая сила будет меньше. Почему? У воды меньшая плотность, чем у глицерина. У воды маленькая вязкость.

Описание оборудования

Было взято два сосуда в форме прямоугольного параллелепипеда из оргстекла, размеры которых 85 x 85 x 55 мм. Один сосуд негерметизированный, для случая, если нужно добавить опилок или глицерина, но он закрывается с помощью бронзовых болтиков и становится герметичным. Чтобы герметизировать сосуд, поверхность краев сосуда смазывалась эпоксидной смолой, и крышка плотно прижималась к сосуду. Другой сосуд для демонстрации картин магнитного поля, был изготовлен, но в нем были оставлены два металлических стержня из железа. Перед герметизацией сосуда, в него нужно залить глицерин и засыпать железные опилки. Чтобы делать опыты нужно тщательно перемешать глицерин и опилки, вращая в руке сосуд.

1. Нужно взять сосуд без стержней и резкими движениями перемешать опилки в глицерине и поставить его на магнит с большой магнитной силой. Тогда железные опилки построят объемный рисунок магнитных линий не только на дне сосуда, но и на большом расстоянии от дна.

2. Нужно взять сосуд со стержнями и резкими движениями перемешать и поставить на магнит. Тогда железные опилки построят объемный рисунок возле стержней и на дне сосуда.

Чтобы железные опилки построили объемную картину магнитного поля, нужно несколько минут. Потом можно снять сосуд и поставить магнит в другом месте и картина снова изобразится. Но лучше оставить сосуд на сутки, так как глицерин слегка мутный, поэтому картина проявится лучше.

С помощью эпоксидной смолы, железных опилок в маленькой пластмассовой коробочке была попытка получения картины магнитного поля. Опыт удался, но его нужно повторить.

Мои впечатления: увидев эти явления, я был в изумлении от такого свойства магнита. Для меня это очень интересно и увлекательно. В зависимости от вида магнита, картины магнитного поля получаются разными. Картины магнитного поля всегда получаются красивыми, они могут меняться.

Магниты в воздухе

Когда проводились опыты получения картин магнитного поля, происходило следующее: при перемещении магнита под стеклом, железные опилки двигались вместе с магнитом и меняли угол наклона, высоту. Возник вопрос: что будет, если кусочки магнитов поместить в изменяющееся магнитное поле? Если подключить проволочную катушку с железным сердечником к источнику тока, возникнет магнитное поле. Если железные опилки поместить рядом с проволочной катушкой, то можно получить картину магнитного поля. Если подключить ее к источнику постоянного тока (батарее, аккумулятору), тогда железные опилки создадут неподвижную картину магнитного поля. А если к источнику переменного тока, то можно услышать слабое гудение, значит, опилки вибрируют. Это можно использовать для опытов. Рассмотрим ход опыта:

1. Взять шарики из пенопласта и поместить в них кусочки разбитого магнита.

3. После этого поместить пенопластовые шарики с кусочками магнитами в коробочку.

4. Поставить коробочку с шариками на катушку.

5. Катушку из медного провода подключить к источнику переменного тока.

В результате действия магнитного поля на осколки магнитов в шариках из действия опыта, в магнитном поле создается хаотичное движение молекул.

Магниты дома

В моей семье сувениры на магнитах можно увидеть на холодильнике. Эти магниты, так скажем декоративные. Они у нас появляются от родственников, знакомых, которые где-нибудь отдыхали, или сами привозим с отдыха, как традиция.

Но самое важное применение магнитов в холодильнике скрыто от наших глаз. В холодильнике магниты в виде полос используются в уплотнителе дверей. С помощью этого идет притяжение дверцы к корпусу и происходит уплотнение, влага не попадает в холодильник.

Еще у нас есть набор инструментов, в котором есть намагниченные отвертки. Такие отвертки нужны для того, чтобы не потерять какой-нибудь шуруп. Дома есть шторы, для придания нужной формы на них вешаются магнитные клипсы. Еще есть простой магнит, на него мы вешаем ключи от дома, чтобы они не потерялись. Раньше дома использовался музыкальный центр, у которого было две колонки, в этих колонках есть магниты. В бытовой технике часто используются магниты.

Есть такие сувениры, принцип действия которых основывается на использовании магнитного поля магнитов. У меня есть специальные магниты, из которых можно составлять различную цепочку. В кабинете физики есть сувенир «горизонтальная юла». Кончик юлы упирается в стекло, она висит над подставкой и ее можно раскручивать. Есть игра дартс. Современный дартс основан на действии магнита, у дротика на кончике магнит.

Результаты работы

1. Получены картины магнитного поля магнитов разной формы;

2. Получены картины магнитного поля магнитов с разной магнитной силой;

3. Получены картины искажений изображений экрана на дисплее;

4. Получены объемные картины магнитных полей магнитов разных форм и разной магнитной силой;

5. Составлена коллекция фотоизображений картин магнитных полей на цифровых носителях;

6. Сделана модель движущихся магнитов в переменном магнитном поле;

7. Сделана попытка получить «вечную» картину магнитного поля.

8. Работа может быть продолжена с целью получения более сложных картин магнитных полей.

Выводы

1. Картины магнитных полей бывают разнообразными.

2. Их вид зависит:

а) - от формы магнита;

б) - от магнитной силы;

в) - от наличия полюсов.

3. Магнитное поле действует на изображение на экране старого дисплея или телевизора и возникают различные явления

а) - появление пятен на экране дисплея;

б) - искажение изображения на экране дисплея;

в) - изменение цветовой палитры экрана дисплея;

г) в расположении пятен на экране дисплея угадывается, какая-то картина.

4. Объемные картины магнитного поля дают больше информации о расположении магнитных линий.

5. Переменное магнитное поле заставляет магниты двигаться.

Литература:

1. Карцев В. П. Приключения великих уравнений, издательство «Знание» М.-1978

2. Перельман Я. И. Занимательная физика, издательство «Наука» М.-1972

3. А. С. Енохович. Справочник по физике и технике, издательство «Просвещение» М.- 1983

4. А. Шилейко, Т. Шилейко Электроны…электроны, издательство «Детская литература» М.- 1983

5. Л. В. Тарасов Физика в природе М.: Просвещение, 1998 г.

Loading...Loading...