На изгиб на них постоянно. Решение типовых задач по сопромату

Изгибом называется вид деформации, при котором искривляется продольная ось бруса. Прямые брусья, работающие на изгиб, называются балками. Прямым изгибом называется изгиб, при котором внешние силы, действующие на балку, лежат в одной плоскости (силовой плоскости), проходящей через продольную ось балки и главную центральную ось инерции поперечного сечения.

Изгиб называется чистым , если в любом поперечном сечении балки возникает только один изгибающий момент.

Изгиб, при котором в поперечном сечении балки одновременно действуют изгибающий момент и поперечная сила, называется поперечным . Линия пересечения силовой плоскости и плоскости поперечного сечения называется силовой линией .

Внутренние силовые факторы при изгибе балки.

При плоском поперечном изгибе в сечениях балки возникают два внутренних силовых фактора: поперечная сила Q и изгибающий момент М. Для их определения используют метод сечений (см. лекцию 1). Поперечная сила Q в сечении балки равна алгебраической сумме проекций на плоскость сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для поперечных сил Q:

Изгибающий момент М в сечении балки равен алгебраической сумме моментов относительно центра тяжести этого сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для изгибающих моментов M:

Дифференциальные зависимости Журавского.

Между интенсивностью q распределенной нагрузки, выражениями для поперечной силы Q и изгибающего момента М установлены дифференциальные зависимости:

На основе этих зависимостей можно выделить следующие общие закономерности эпюр поперечных сил Q и изгибающих моментов М:

Особенности эпюр внутренних силовых факторов при изгибе.

1. На участке балки, где нет распределенной нагрузки, эпюра Q представлена прямой линией , параллельной базе эпюре, а эпюра М - наклонной прямой (рис. а).

2. В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть скачок , равный значению этой силы, а на эпюре М -точка перелома (рис. а).

3. В сечении, где приложен сосредоточенный момент, значение Q не изменяется, а эпюра М имеет скачок , равный значению этого момента, (рис. 26, б).

4. На участке балки с распределенной нагрузкой интенсивности q эпюра Q изменяется по линейному закону, а эпюра М - по параболическому, причем выпуклость параболы направлена навстречу направлению распределенной нагрузки (рис. в, г).

5. Если в пределах характерного участка эпюра Q пересекает базу эпюры, то в сечении, где Q = 0, изгибающий момент имеет экстремальное значение M max или M min (рис. г).

Нормальные напряжения при изгибе.

Определяются по формуле:

Моментом сопротивления сечения изгибу называется величина:

Опасным сечением при изгибе называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение.

Касательные напряжения при прямом изгибе.

Определяются по формуле Журавского для касательных напряжений при прямом изгибе балки:

где S отс - статический момент поперечной площади отсеченного слоя продольных волокон относительно нейтральной линии.

Расчеты на прочность при изгибе.

1. При проверочном расчете определяется максимальное расчетное напряжение, которое сравнивается с допускаемым напряжением:

2. При проектном расчете подбор сечения бруса производится из условия:

3. При определении допускаемой нагрузки допускаемый изгибающий момент определяется из условия:

Перемещения при изгибе.

Под действием нагрузки при изгибе ось балки искривляется. При этом наблюдается растяжение волокон на выпуклой и сжатие - на вогнутой частях балки. Кроме того, происходит вертикальное перемещение центров тяжести поперечных сечений и их поворот относительно нейтральной оси. Для характеристики деформации при изгибе используют следующие понятия:

Прогиб балки Y - перемещение центра тяжести поперечного сечения балки в направлении, перпендикулярном к ее оси.

Прогиб считают положительным, если перемещение центра тяжести происходит вверх. Величина прогиба меняется по длине балки, т.е. y = y (z)

Угол поворота сечения - угол θ, на который каждое сечение поворачивается по отношению к своему первоначальному положению. Угол поворота считают положительным при повороте сечения против хода часовой стрелки. Величина угла поворота меняется по длине балки, являясь функцией θ = θ (z).

Самыми распространёнными способами определения перемещений является метод Мора и правило Верещагина .

Метод Мора.

Порядок определения перемещений по методу Мора:

1. Строится «вспомогательная система» и нагружается единичной нагрузкой в точке, где требуется определить перемещение. Если определяется линейное перемещение, то в его направлении прикладывается единичная сила, при определении угловых перемещений – единичный момент.

2. Для каждого участка системы записываются выражения изгибающих моментов М f от приложенной нагрузки и М 1 - от единичной нагрузки.

3. По всем участкам системы вычисляют и суммируют интегралы Мора, получая в результате искомое перемещение:

4. Если вычисленное перемещение имеет положительный знак, то это значит, что его направление совпадает с направлением единичной силы. Отрицательный знак указывает на то, что действительное перемещение противоположно направлению единичной силы.

Правило Верещагина.

Для случая, когда эпюра изгибающих моментов от заданной нагрузки имеет произвольное, а от единичной нагрузки – прямолинейное очертание, удобно использовать графоаналитический способ, или правило Верещагина.

где A f – площадь эпюры изгибающего момента М f от заданной нагрузки; y c – ордината эпюры от единичной нагрузки под центром тяжести эпюры М f ; EI x – жесткость сечения участка балки. Вычисления по этой формуле производятся по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов. Величина (A f *y c) считается положительной, если обе эпюры располагаются по одну сторону от балки, отрицательной, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента). Сложная эпюра М f должна быть разбита на простые фигуры(применяется так называемое "расслоение эпюры"), для каждой из которых легко определить ординату центра тяжести. При этом площадь каждой фигуры умножается на ординату под ее центром тяжести.

Изгибом называется деформация стержня, сопровождающаяся изменением кривизны его оси. Стержень, работающий на изгиб, называется балкой .

В зависимости от способов приложения нагрузки и способов закрепления стержня могут возникать различные виды изгиба.

Если под действием нагрузки в поперечном сечении стержня возникает только изгибающий момент, то изгиб называют чистым .

Если в поперечных сечениях наряду с изгибающими моментами возникают и поперечные силы, то изгиб называют поперечным .


Если внешние силы лежат в плоскости, проходящей через одну из главных центральных осей поперечного сечения стержня, изгиб называется простым или плоским . В этом случае нагрузка и деформируемая ось лежат в одной плоскости (рис. 1).

Рис. 1

Чтобы балка могла воспринимать нагрузку в плоскости, она должна быть закреплена с помощью опор: шарнирно-подвижной, шарнирно-неподвижной, заделкой.

Балка должна быть геометрически неизменяемой, при этом наименьшее количество связей равно 3. Пример геометрически изменяемой системы приведен на рис.2а. Пример геометрически неизменяемых систем – рис. 2б, в.

а) б) в)

В опорах возникают реакции, которые определяются из условий равновесия статики. Реакции в опорах являются внешними нагрузками.

Внутренние усилия при изгибе

Стержень, нагруженный силами перпендикулярными продольной оси балки, испытывает плоский изгиб (рис. 3). В поперечных сечениях возникают два внутренних усилия: поперечная сила Q y и изгибающий момент М z .


Внутренние усилия определяются методом сечений. На расстоянии x от точки А плоскостью перпендикулярной оси X стержень рассекается на два участка. Отбрасывается одна из частей балки. Взаимодействие частей балки заменяется внутренними усилиями: изгибающим моментом M z и поперечной силой Q y (рис. 4).

Внутренние усилия M z и Q y в сечение определяются из условий равновесия.

Составляется уравнение равновесия для части С :

y = R A – P ­1 – Q y = 0.

ТогдаQ y = R A P ­1 .

Вывод. Поперечная сила в любом сечении балки равна алгебраической сумме всех внешних сил, лежащих по одну сторону от проведённого сечения. Поперечная сила считается положительной, если вращает стержень относительно точки сечения по часовой стрелке.

M 0 = R A x P 1 ∙ (x - a ) – M z = 0

Тогда M z = R A x P 1 ∙ (x a )


1. Определение реакций R A , R B ;

M A = P a R B l = 0

R B =

M B = R A ∙ e – P ∙ a = 0

2. Построение эпюр на первом участке 0 ≤ x 1 a

Q y = R A = ; M z = R A ∙ x 1

x 1 = 0 M z (0) = 0

x 1 = a M z (a) =

3. Построение эпюр на втором участке 0 ≤ x 2 b

Q y = - R B = - ; M z = R B x 2 ; x 2 = 0 M z (0) = 0 x 2 = b M z (b ) =

При построении M z положительные координаты будут откладываться в сторону растянутых волокон.

Проверка эпюр

1. На эпюре Q y разрывы могут быть только в местах приложения внешних сил и величина скачка должна соответствовать их величине.

+ = = P

2. На эпюре M z разрывы возникают в местах приложения сосредоточенных моментов и величина скачка равна их величине.

Дифференциальные зависимости между M , Q и q

Между изгибающим моментом, поперечной силой и интенсивностью распределённой нагрузки установлены зависимости:

q = , Q y =

где q – интенсивность распределённой нагрузки,

Проверка прочности балок при изгибе

Для оценки прочности стержня при изгибе и подбора сечения балки используются условия прочности по нормальным напряжениям.

Изгибающий момент представляет собой равнодействующий момент нормальных внутренних сил, распределённых по сечению.

s = ×y ,

где s – нормальное напряжение в любой точке поперечного сечения,

y – расстояние от центра тяжести сечения до точки,

M z – изгибающий момент, действующий в сечении,

J z – осевой момент инерции стержня.

Для обеспечения прочности рассчитываются максимальные напряжения, которые возникают в точках сечения, наиболее удалённых от центра тяжести y = y max

s max = ×y max ,

= W z и s max = .

Тогда условие прочности по нормальным напряжениям имеет вид:

s max = ≤ [s],

где [s] – допускаемое напряжение при растяжениях.

Прямой изгиб – это вид деформации, при котором в поперечных сечениях стержня возникают два внутренних силовых фактора: изгибающий момент и поперечная сила.

Чистый изгиб – это частный случай прямого изгиба, при котором в поперечных сечениях стержня возникает только изгибающий момент, а поперечная сила равна нулю.

Пример чистого изгиба – участок CD на стержне AB . Изгибающий момент – это величина Pa пары внешних сил, вызывающая изгиб. Из равновесия части стержня слева от поперечного сечения mn следует, что внутренние усилия, распределенные по этому сечению, статически эквивалентны моменту M , равному и противоположно направленному изгибающему моменту Pa .

Чтобы найти распределение этих внутренних усилий по поперечному сечению, необходимо рассмотреть деформацию стержня.

В простейшем случае стержень имеет продольную плоскость симметрии и подвергается действию внешних изгибающих пар сил, находящихся в этой плоскости. Тогда изгиб будет происходить в той же плоскости.

Ось стержня nn 1 – это линия, проходящая через центры тяжести его поперечных сечений.

Пусть поперечное сечение стержня – прямоугольник. Нанесем на его грани две вертикальные линии mm и pp . При изгибе эти линии остаются прямолинейными и поворачиваются так, что остаются перпендикулярными продольным волокнам стержня.

Дальнейшая теория изгиба основана на допущении, что не только линии mm и pp , но все плоское поперечное сечение стержня остается после изгиба плоским и нормальным к продольным волокнам стержня. Следовательно, при изгибе поперечные сечения mm и pp поворачиваются относительно друг друга вокруг осей, перпендикулярных плоскости изгиба (плоскости чертежа). При этом продольные волокна на выпуклой стороне испытывают растяжение, а волокна на вогнутой стороне – сжатие.

Нейтральная поверхность – это поверхность, не испытывающая деформации при изгибе. (Сейчас она расположена перпендикулярно чертежу, деформированная ось стержня nn 1 принадлежит этой поверхности).

Нейтральная ось сечения – это пересечение нейтральной поверхности с любым с любым поперечным сечением (сейчас тоже расположена перпендикулярно чертежу).

Пусть произвольное волокно находится на расстоянии y от нейтральной поверхности. ρ – радиус кривизны изогнутой оси. Точка O – центр кривизны. Проведем линию n 1 s 1 параллельно mm . ss 1 – абсолютное удлинение волокна.

Относительное удлинение ε x волокна

Из этого следует, что деформации продольных волокон пропорциональны расстоянию y от нейтральной поверхности и обратно пропорциональны радиусу кривизны ρ .

Продольное удлинение волокон выпуклой стороны стержня сопровождается боковым сужением , а продольное укорочение вогнутой стороны – боковым расширением , как в случае простого растяжения и сжатия. Из-за этого вид всех поперечных сечений меняется, вертикальные стороны прямоугольника становятся наклонными. Деформация в боковом направлении z :



μ – коэффициент Пуассона.

Вследствие такого искажения все прямые линии поперечного сечения, параллельные оси z , искривляются так, чтоб остаться нормальными к боковым сторонам сечения. Радиус кривизны этой кривой R будет больше, чем ρ в таком же отношении, в каком ε x по абсолютной величине больше чем ε z , и мы получим

Этим деформациям продольных волокон отвечают напряжения

Напряжение в любом волокне пропорционально его расстоянию от нейтральной оси n 1 n 2 . Положение нейтральной оси и радиус кривизны ρ – две неизвестные в уравнении для σ x – можно определить из условия, что усилия, распределенные по любому поперечному сечению, образуют пару сил, которая уравновешивает внешний момент M .

Все вышесказанное также справедливо, если стержень не имеет продольную плоскость симметрии, в которой действует изгибающий момент, лишь бы только изгибающий момент действовал в осевой плоскости, которая заключает в себе одну из двух главных осей поперечного сечения. Эти плоскости называются главными плоскостями изгиба .

Когда имеется плоскость симметрии и изгибающий момент действует в этой плоскости, прогиб происходит именно в ней. Моменты внутренних усилий относительно оси z уравновешивают внешний момент M . Моменты усилий относительно оси y взаимно уничтожаются.

Прямой поперечный изгиб возникает в случае, когда все нагрузки приложены перпендикулярно оси стержня, лежат в одной плоскости и, кроме того, плоскость их действия совпадает с одной из главных центральных осей инерции сечения. Прямой поперечный изгиб относится к простому виду сопротивления и является плоским напряженным состоянием , т.е. два главных напряжения отличны от нуля. При таком виде деформации возникают внутренние усилия: поперечная сила и изгибающий момент. Частным случаем прямого поперечного изгиба является чистый изгиб , при таком сопротивлении имеются грузовые участки, в пределах которых поперечное усилие обращается в ноль, а изгибающий момент отличен от нуля. В поперечных сечениях стержней при прямом поперечном изгибе возникают нормальные и касательные напряжения. Напряжения являются функцией от внутреннего усилия, в данном случае нормальные – функцией от изгибающего момента, а касательные - от поперечной силы. При прямом поперечном изгибе вводятся несколько гипотез:

1) Поперечные сечения балки, плоские до деформации, остаются плоскими и ортогональными к нейтральному слою после деформации (гипотеза плоских сечений или гипотеза Я. Бернулли). Эта гипотеза выполняется при чистом изгибе и нарушается при возникновении поперечной силы, касательных напряжений, и появлением угловой деформации.

2) Взаимное давление между продольными слоями отсутствует (гипотеза о ненадавливании волокон). Из этой гипотезы следует, что продольные волокна испытывают одноосное растяжение или сжатие, следовательно, при чистом изгибе справедлив закон Гука .

Стержень, испытывающий изгиб, называют балкой . При изгибе одна часть волокон растягивается, другая часть – сжимается. Слой волокон, находящийся между растянутыми и сжатыми волокнами, называют нейтральным слоем , он проходит через центр тяжести сечений. Линию пересечения его с поперечным сечением балки называют нейтральной осью . На основе введенных гипотез при чистом изгибе получена формула для определения нормальных напряжений, которая применяется и при прямом поперечном изгибе. Нормальное напряжение можно найти с помощью линейной зависимости (1), в которой отношение изгибающего момента к осевому моменту инерции (
) в конкретном сечении является величиной постоянной, а расстояние (y ) вдоль оси ординат от центра тяжести сечения до точки, в которой определяют напряжение, меняется от 0 до
.

. (1)

Для определения касательного напряжения при изгибе в 1856г. русским инженером – строителем мостов Д.И. Журавским была получена зависимость

. (2)

Касательное напряжение в конкретном сечении не зависит от отношения поперечной силы к осевому моменту инерции (
), т.к. эта величина в пределах одного сечения не меняется, а зависит от отношения статического момента площади отсеченной части к ширине сечения на уровне отсеченной части (
).

При прямом поперечном изгибе возникают перемещения: прогибы (v ) и углы поворотов (Θ ) . Для их определения используют уравнения метода начальных параметров (3), которые получены путем интегрирования дифференциального уравнения изогнутой оси балки (
).

Здесь v 0 , Θ 0 , М 0 , Q 0 – начальные параметры, x расстояние от начала координат до сечения, в котором определяется перемещение, a – расстояние от начала координат до места приложения или начала действия нагрузки.

Расчет на прочность и жесткость производят с помощью условий прочности и жесткости. С помощью этих условий можно решать поверочные задачи (выполнять проверку выполнения условия), определять размер поперечного сечения или подбирать допустимое значение параметра нагрузки. Условий прочности различают несколько, некоторые из них приведены ниже. Условие прочности по нормальным напряжениям имеет вид:

, (4)

здесь
момент сопротивления сечения относительно оси z, R – расчетное сопротивление по нормальным напряжениям.

Условие прочности по касательным напряжениям выглядит как:

, (5)

здесь обозначения те же, что и в формуле Журавского, а R s – расчетное сопротивление срезу или расчетное сопротивление по касательным напряжениям.

Условие прочности по третьей гипотезе прочности или гипотезе наибольших касательных напряжений можно записать в следующем виде:

. (6)

Условия жесткости можно записать для прогибов (v ) и углов поворота (Θ ) :

где значения перемещений в квадратных скобках являются допустимыми.

Пример выполнения индивидуального задания № 4 (срок 2-8 неделя)

При прямом чистом изгибе в поперечном сечении стержня возникает только один силовой фактор — изгибающий момент М х (рис. 1). Так как Q y =dM x /dz=0, то M x =const и чистый прямой изгиб может быть реализован при загружении стержня парами сил, приложенными в торцевых сечениях стержня. Поскольку изгибающий момент M х по определению равен сумме моментов внутренних сил относительно оси Ох с нормальными напряжениями его связывает выкающее из этого определения уравнение статики

Сформулируем предпосылки теории чистого прямого изгиба призматического стержня. Для этого проанализируем деформации модели стержня из низкомодульного материала, на боковой поверхности которого нанесена сетка продольных и поперечных рисок (рис. 2). Поскольку поперечные риски при изгибе стержня парами сил, приложенными в торцевых сечениях, остаются прямыми и перпендикулярными к искривленным продольным рискам, это позволяет сделать вывод о выполнении гипотезы плоских сечений, которая, как показывает решение этой задачи методами теории упругости, перестает быть гипотезой, становясь точным фактом — законом плоских сечений. Замеряя изменение расстояний между продольными рисками, приходим к выводу о справедливости гипотезы о ненадавливании продольных волокон .

Ортогональность продольных и поперечных рисок до и после деформирования (как отражение действия закона плоских сечений) указывает также на отсутствие сдвигов, касательных напряжений в поперечных и продольных сечениях стержня.

Рис.1. Связь внутреннего усилия и напряжения

Рис.2. Модель чистого изгиба

Таким образом, чистый прямой изгиб призматического стержня сводится к одноосному растяжению или сжатию продольных волокон напряжениями (индекс г в дальнейшем опускаем). При этом часть волокон находится в зоне растяжения (на рис. 2 это—нижние волокна), а другая часть—в зоне сжатия (верхние волокна). Эти зоны разделены нейтральным слоем (п—п), не меняющим своей длины, напряжения в котором равны нулю. Учитывая сформулированные выше предпосылки и полагая, что материал стержня линейно-упругий, т. е. закон Гука в этом случае имеет вид: , выведем формулы для кривизны нейтрального слоя (—радиус кривизны) и нормальных напряжений . Предварительно отметим, что постоянство поперечного сечения призматического стержня и изгибающего момента (M х =сonst), обеспечивает постоянство радиуса кривизны нейтрального слоя по длине стержня (рис. 3, а ), нейтральный слой (п—п) описывается дугой окружности.

Рассмотрим призматический стержень в условиях прямого чистого изгиба (рис. 3, а) с поперечным сечением, симметричным относительно вертикальной оси Оу. Это условие не отразится на конечном результате (чтобы прямой изгиб был возможен, необходимо совпадение оси Оу с главной осью инерции поперечного сечения, которая и является осью симметрии). Ось Ox поместим на нейтральном слое, положение которого заранее неизвестно.


а ) расчетная схема, б ) деформации и напряжения

Рис.3. Фрагмент чистого изгиба бруса

Рассмотрим вырезанный из стержня элемент длиной dz , который в масштабе с искаженными в интересах наглядности пропорциями изображен на рис. 3, б . Поскольку интерес представляют деформации элемента, определяемые относительным смещением его точек, одно из торцевых сечений элемента можно считать неподвижным. Ввиду малости считаем, что точки поперечного сечения при повороте на этот угол перемещаются не по дугам, а по соответствующим касательным.

Вычислим относительную деформацию продольного волокна АВ, отстоящего от нейтрального слоя на у:

Из подобия треугольников С00 1 и 0 1 ВВ 1 следует, что

Продольная деформация оказалась линейной функцией расстояния от нейтрального слоя, что является прямым следствием закона плоских сечений

Эта формула не пригодна для практического использования, так как содержит две неизвестные: кривизну нейтрального слоя и положение нейтральной оси Ох , от которой отсчитывается координата у. Для определения этих неизвестных воспользуемся уравнениями равновесия статики. Первое выражает требование равенства нулю продольной силы

Подставляя в это уравнение выражение (2)

и учитывая, что , получаем, что

Интеграл в левой части этого уравнения представляет собой статический момент поперечного сечения стержня относительно нейтральной оси Ох, который может быть равным нулю только относительно центральной оси. Поэтому нейтральная ось Ох проходит через центр тяжести поперечного сечения.

Вторым уравнением равновесия статики является, связывающее нормальные напряжения с изгибающим моментом (который легко может быть выражен через внешние силы и поэтому считается заданной величиной). Подставляя в уравнение связки выражение для. напряжений, получим:

и учитывая, что где J x —главный центральный момент инерции относительно оси Ох, для кривизны нейтрального слоя получаем формулу

Рис.4. Распределение нормальных напряжений

которая была впервые получена Ш. Кулоном в 1773 году. Для согласования знаков изгибающего момента М х и нормальных напряжений в правой части формулы (5) ставится знак минус, так как при M х >0 нормальные напряжения при y >0 оказываются сжимающими. Однако в практических расчетах удобнее, не придерживаясь формального правила знаков, определять напряжения по модулю, а знак ставить по смыслу. Нормальные напряжения при чистом изгибе призматического стержня являются линейной функцией координаты у и достигают наибольших значений в волокнах, наиболее удаленных от нейтральной оси (рис. 4), т. е.

Здесь введена геометрическая характеристика , имеющая размерность м 3 и получившая название момента сопротивления при изгибе. Поскольку при заданном M х напряжения max ? тем меньше, чем больше W x , момент сопротивления является геометрической характеристикой прочности поперечного сечения изгибе. Приведем примеры вычисления моментов сопротивления для простейших форм поперечных сечений. Для прямоугольного поперечного сечения (рис. 5, а ) имеем J х =bh 3 /12,y max = h/2 и W x = J x /y max = bh 2 /6. Аналогично для круга (рис. 5,a J x =d 4 /64, y max =d/2 ) получаем W x =d 3 /32, для кругового кольцевого сечения (рис. 5, в), у которого

Loading...Loading...