ตัวรับส่งสัญญาณอย่างง่ายสำหรับวงจรเครื่องตรวจจับโลหะ หลังคาเดิมและหลังคาของนักออกแบบ: Metalloiskatel

ฉันสามารถพูดได้อย่างไม่ต้องสงสัยเลยว่านี่คือเครื่องตรวจจับโลหะที่ง่ายที่สุดที่ฉันเคยเห็นมา มันใช้ชิป TDA0161 เพียงตัวเดียว คุณไม่จำเป็นต้องเขียนโปรแกรมอะไรเลย เพียงแค่ประกอบมันเท่านั้น ข้อแตกต่างที่สำคัญอีกประการหนึ่งคือ มันไม่ส่งเสียงใด ๆ ในระหว่างการทำงาน ซึ่งแตกต่างจากเครื่องตรวจจับโลหะที่ใช้ชิป NE555 ซึ่งในตอนแรกจะส่งเสียงบี๊บอย่างไม่เป็นที่พอใจ และคุณต้องเดาโลหะที่พบตามโทนเสียงของมัน

ในวงจรนี้ ออดจะเริ่มส่งเสียงบี๊บเมื่อตรวจพบโลหะเท่านั้น ชิป TDA0161 เป็นรุ่นอุตสาหกรรมเฉพาะสำหรับเซ็นเซอร์เหนี่ยวนำ และเครื่องตรวจจับโลหะสำหรับการผลิตส่วนใหญ่จะสร้างขึ้นโดยให้สัญญาณเมื่อโลหะเข้าใกล้เซ็นเซอร์เหนี่ยวนำ
คุณสามารถซื้อไมโครวงจรดังกล่าวได้ที่ -
ไม่แพงและเข้าถึงได้ทุกคน

นี่คือแผนภาพของเครื่องตรวจจับโลหะอย่างง่าย

ลักษณะเครื่องตรวจจับโลหะ

  • แรงดันไฟฟ้าของแหล่งจ่ายไฟวงจรขนาดเล็ก: จาก 3.5 ถึง 15V
  • ความถี่เครื่องกำเนิด: 8-10 kHz
  • ปริมาณการใช้กระแสไฟ: 8-12 mA ในโหมดสัญญาณเตือน ในสถานะการค้นหาประมาณ 1 mA
  • อุณหภูมิในการทำงาน: -55 ถึง +100 องศาเซลเซียส
เครื่องตรวจจับโลหะไม่เพียงแต่ประหยัดมากเท่านั้นแต่ยังไม่โอ้อวดอีกด้วย
แบตเตอรี่โทรศัพท์มือถือเก่าใช้งานได้ดีกับแหล่งจ่ายไฟ
ม้วน: 140-150 รอบ เส้นผ่านศูนย์กลางของขด 5-6 ซม. สามารถแปลงเป็นขดเส้นผ่านศูนย์กลางใหญ่ขึ้นได้


ความไวจะขึ้นอยู่กับขนาดของคอยล์ค้นหาโดยตรง
ในโครงการฉันใช้ทั้งสัญญาณแสงและเสียง คุณสามารถเลือกหนึ่งรายการได้หากต้องการ Buzzer พร้อมเครื่องกำเนิดไฟฟ้าภายใน
ด้วยการออกแบบที่เรียบง่ายนี้ คุณจึงสามารถสร้างเครื่องตรวจจับโลหะแบบพกพาหรือเครื่องตรวจจับโลหะขนาดใหญ่ได้ ขึ้นอยู่กับสิ่งที่คุณต้องการเพิ่มเติม

หลังการประกอบ เครื่องตรวจจับโลหะจะทำงานทันทีและไม่จำเป็นต้องทำการปรับเปลี่ยนใดๆ ยกเว้นการตั้งค่าเกณฑ์การตอบสนองด้วยตัวต้านทานแบบปรับได้ นี่เป็นขั้นตอนมาตรฐานสำหรับเครื่องตรวจจับโลหะ
ดังนั้นเพื่อน ๆ รวบรวมสิ่งที่คุณต้องการและอย่างที่พวกเขาพูดพวกเขาจะมีประโยชน์รอบบ้าน เช่น การค้นหาสายไฟในผนัง แม้แต่ตะปูในท่อนไม้...

ไม่จำเป็นต้องอธิบายให้ใครฟังว่าเครื่องตรวจจับโลหะคืออะไร อุปกรณ์นี้มีราคาแพงและบางรุ่นมีราคาค่อนข้างสูง

อย่างไรก็ตามคุณสามารถสร้างเครื่องตรวจจับโลหะด้วยมือของคุณเองที่บ้านได้ ยิ่งกว่านั้นคุณไม่เพียงสามารถประหยัดเงินได้หลายพันรูเบิลในการซื้อ แต่ยังเพิ่มคุณค่าให้ตัวเองด้วยการค้นหาสมบัติอีกด้วย เรามาพูดถึงอุปกรณ์กันก่อนแล้วลองคิดดูว่ามีอะไรอยู่ในนั้นและอย่างไร

คำแนะนำทีละขั้นตอนในการประกอบเครื่องตรวจจับโลหะอย่างง่าย

ในคำแนะนำโดยละเอียดนี้ เราจะแสดงวิธีการประกอบเครื่องตรวจจับโลหะอย่างง่ายด้วยมือของคุณเองจากวัสดุที่มีอยู่ เราต้องการ: กล่องซีดีพลาสติกทั่วไป วิทยุ AM หรือ AM/FM แบบพกพา เครื่องคิดเลข เทปหน้าสัมผัสชนิด VELCRO (ตีนตุ๊กแก) มาเริ่มกันเลย!

ขั้นตอนที่ 1. ถอดแยกชิ้นส่วนตัวกล่องซีดี. ถอดแยกชิ้นส่วนตัวกล่องซีดีพลาสติกอย่างระมัดระวัง โดยถอดส่วนแทรกที่ยึดแผ่นดิสก์ออก

ขั้นตอนที่ 1. การถอดเม็ดพลาสติกออกจากกล่องด้านข้าง

ขั้นตอนที่ 2. ตัด Velcro 2 แถบ. วัดพื้นที่ตรงกลางด้านหลังวิทยุของคุณ จากนั้นตัดตีนตุ๊กแกที่มีขนาดเท่ากันจำนวน 2 ชิ้น


ขั้นตอนที่ 2.1 วัดบริเวณกึ่งกลางด้านหลังวิทยุโดยประมาณ (เน้นด้วยสีแดง)
ขั้นตอนที่ 2.2 ตัดแถบตีนตุ๊กแก 2 แถบที่มีขนาดเหมาะสมโดยวัดในขั้นตอนที่ 2.1

ขั้นตอนที่ 3 รักษาความปลอดภัยวิทยุใช้ด้านเหนียวติดตีนตุ๊กแกชิ้นหนึ่งไว้ที่ด้านหลังของวิทยุ และอีกชิ้นหนึ่งติดกับด้านในกล่องซีดี จากนั้นติดวิทยุเข้ากับตัวกล่องซีดีพลาสติกโดยใช้ตีนตุ๊กแกกับตีนตุ๊กแก




ขั้นตอนที่ 4 ยึดเครื่องคิดเลขไว้. ทำซ้ำขั้นตอนที่ 2 และ 3 ด้วยเครื่องคิดเลข แต่ติด Velcro กับอีกด้านหนึ่งของกล่องซีดี จากนั้นยึดเครื่องคิดเลขไว้ที่ด้านนี้ของกล่องโดยใช้วิธี Velcro-to-Velcro มาตรฐาน


ขั้นตอนที่ 5 การตั้งค่าย่านความถี่วิทยุ. เปิดวิทยุและตรวจสอบให้แน่ใจว่าได้ปรับไปที่ย่านความถี่ AM แล้ว ตอนนี้ปรับไปที่ฝั่ง AM ของวง แต่ไม่ใช่สถานีวิทยุเอง เพิ่มเสียง. คุณควรได้ยินเฉพาะเสียงคงที่เท่านั้น


เบาะแส:

หากมีสถานีวิทยุที่อยู่ปลายสุดของย่านความถี่ AM ให้พยายามเข้าใกล้สถานีวิทยุนั้นให้มากที่สุด ในกรณีนี้คุณควรได้ยินเพียงสัญญาณรบกวนเท่านั้น!

ขั้นตอนที่ 6 ม้วนกล่องซีดี.เปิดเครื่องคิดเลข เริ่มพับด้านข้างของกล่องเครื่องคิดเลขไปทางวิทยุจนกระทั่งได้ยินเสียงบี๊บดังๆ เสียงบี๊บนี้บอกเราว่าวิทยุได้จับคลื่นแม่เหล็กไฟฟ้าจากวงจรของเครื่องคิดเลข


ขั้นตอนที่ 6. พับด้านข้างของกล่องซีดีเข้าหากันจนกระทั่งได้ยินเสียงสัญญาณดังที่มีลักษณะเฉพาะ

ขั้นตอนที่ 7 นำอุปกรณ์ที่ประกอบเข้ากับวัตถุที่เป็นโลหะเปิดฝากล่องพลาสติกอีกครั้งจนกระทั่งเสียงที่เราได้ยินในขั้นตอนที่ 6 แทบจะไม่ได้ยิน จากนั้นให้เริ่มเคลื่อนย้ายกล่องโดยให้วิทยุและเครื่องคิดเลขอยู่ใกล้กับวัตถุที่เป็นโลหะ แล้วคุณจะได้ยินเสียงดังอีกครั้ง สิ่งนี้บ่งบอกถึงการทำงานที่ถูกต้องของเครื่องตรวจจับโลหะที่ง่ายที่สุดของเรา


คำแนะนำในการประกอบเครื่องตรวจจับโลหะที่มีความละเอียดอ่อนโดยใช้วงจรออสซิลเลเตอร์แบบวงจรคู่

หลักการทำงาน:

ในโครงการนี้ เราจะสร้างเครื่องตรวจจับโลหะโดยใช้วงจรออสซิลเลเตอร์คู่ ออสซิลเลเตอร์ตัวหนึ่งได้รับการแก้ไขและอีกตัวจะแตกต่างกันไปขึ้นอยู่กับระยะห่างของวัตถุที่เป็นโลหะ ความถี่บีตระหว่างความถี่ออสซิลเลเตอร์ทั้งสองนี้อยู่ในช่วงเสียง เมื่อเครื่องตรวจจับผ่านวัตถุที่เป็นโลหะ คุณจะได้ยินเสียงการเปลี่ยนแปลงของความถี่จังหวะนี้ โลหะประเภทต่างๆ จะทำให้เกิดการเปลี่ยนแปลงเชิงบวกหรือเชิงลบ เพิ่มหรือลดความถี่เสียง

เราต้องการวัสดุและอุปกรณ์ไฟฟ้า:

PCB หลายชั้นทองแดง หน้าเดียว 114.3มม. x 155.6มม 1 ชิ้น
ตัวต้านทาน 0.125 วัตต์ 1 ชิ้น
ตัวเก็บประจุ 0.1μF 5 ชิ้น.
ตัวเก็บประจุ 0.01μF 5 ชิ้น.
ตัวเก็บประจุแบบอิเล็กโทรไลต์ 220μF 2 ชิ้น
ขดลวดชนิด PEL (เส้นผ่านศูนย์กลาง 26 AWG หรือ 0.4 มม.) 1 ยูนิต
แจ็คเสียง, 1/8', โมโน, ตัวยึดแผง, อุปกรณ์เสริม 1 ชิ้น
หูฟัง ปลั๊ก 1/8 ฟุต โมโนหรือสเตอริโอ 1 ชิ้น
แบตเตอรี่ 9 โวลต์ 1 ชิ้น
ขั้วต่อสำหรับผูกแบตเตอรี่ 9V 1 ชิ้น
โพเทนชิออมิเตอร์, 5 kOhm, ออดิโอเทเปอร์, อุปกรณ์เสริม 1 ชิ้น
สวิตช์ขั้วเดียว 1 ชิ้น
ทรานซิสเตอร์, NPN, 2N3904 6 ชิ้น
ลวดสำหรับเชื่อมต่อเซ็นเซอร์ (22 AWG หรือหน้าตัด - 0.3250 มม. 2) 1 ยูนิต
ลำโพงแบบมีสาย 4' 1 ชิ้น
ลำโพงขนาดเล็ก 8 โอห์ม 1 ชิ้น
น็อตล็อค ทองเหลือง 1/2′ 1 ชิ้น
ข้อต่อท่อพีวีซีแบบเกลียว (รู 1/2′) 1 ชิ้น
เดือยไม้ 1/4' 1 ชิ้น
เดือยไม้ 3/4' 1 ชิ้น
เดือยไม้ 1/2' 1 ชิ้น
อีพอกซีเรซิน 1 ชิ้น
ไม้อัด 1/4' 1 ชิ้น
กาวติดไม้ 1 ชิ้น

เราจะต้องมีเครื่องมือ:

มาเริ่มกันเลย!

ขั้นตอนที่ 1: ทำ PCB. หากต้องการทำสิ่งนี้ ให้ดาวน์โหลดการออกแบบบอร์ด จากนั้นพิมพ์ออกมาและแกะสลักลงบนกระดานทองแดงโดยใช้วิธีถ่ายโอนผงหมึกไปยังบอร์ด ด้วยวิธีการถ่ายโอนผงหมึก คุณจะพิมพ์ภาพสะท้อนของการออกแบบบอร์ดโดยใช้เครื่องพิมพ์เลเซอร์ทั่วไป จากนั้นจึงถ่ายโอนการออกแบบลงบนแผ่นทองแดงโดยใช้เตารีด ในระหว่างขั้นตอนการกัดกรด ผงหมึกจะทำหน้าที่ เป็นหน้ากากโดยคงร่องรอยของทองแดงเอาไว้ในขณะนั้น เหมือนส่วนที่เหลือทองแดงละลายเข้าไป อาบน้ำเคมี.


ขั้นตอนที่ 2: เติมบอร์ดด้วยทรานซิสเตอร์และตัวเก็บประจุด้วยไฟฟ้า . เริ่มต้นด้วยการบัดกรีทรานซิสเตอร์ NPN 6 ตัว ให้ความสนใจกับการวางแนวของตัวสะสม ตัวส่งและขาฐานของทรานซิสเตอร์ ขาฐาน (B) จะอยู่ตรงกลางเกือบตลอดเวลา ต่อไปเราจะเพิ่มตัวเก็บประจุด้วยไฟฟ้า220μF สองตัว




ขั้นตอนที่ 2.2 เพิ่มตัวเก็บประจุด้วยไฟฟ้า 2 ตัว

ขั้นตอนที่ 3: เติมบอร์ดด้วยตัวเก็บประจุและตัวต้านทานโพลีเอสเตอร์ ตอนนี้คุณต้องเพิ่มตัวเก็บประจุโพลีเอสเตอร์ 5 ตัวที่มีความจุ0.1μFในตำแหน่งที่แสดงด้านล่าง จากนั้นเพิ่มตัวเก็บประจุ 5 ตัวที่มีความจุ0.01μF ตัวเก็บประจุเหล่านี้ไม่มีโพลาไรซ์และสามารถบัดกรีเข้ากับบอร์ดโดยให้ขาไปในทิศทางใดก็ได้ จากนั้นเพิ่มตัวต้านทาน 10 kOhm 6 ตัว (น้ำตาล ดำ ส้ม ทอง)



ขั้นตอนที่ 3.2. เพิ่มตัวเก็บประจุ 5 ตัวที่มีความจุ0.01μF
ขั้นตอนที่ 3.3. เพิ่มตัวต้านทาน 6 10 kOhm

ขั้นตอนที่ 4: เรายังคงเติมส่วนประกอบของแผงไฟฟ้าต่อไป ตอนนี้คุณต้องเพิ่มตัวต้านทาน 2.2 mOhm หนึ่งตัว (แดง แดง เขียว ทอง) และตัวต้านทาน 39 kOhm สองตัว (ส้ม ขาว ส้ม ทอง) จากนั้นบัดกรีตัวต้านทาน 1 kOhm สุดท้าย (น้ำตาล ดำ แดง ทอง) ถัดไป เพิ่มคู่สายไฟสำหรับจ่ายไฟ (แดง/ดำ) เอาต์พุตเสียง (เขียว/เขียว) คอยล์อ้างอิง (ดำ/ดำ) และคอยล์ตัวตรวจจับ (เหลือง/เหลือง)


ขั้นตอนที่ 4.1 เพิ่มตัวต้านทาน 3 ตัว (2 mOhm หนึ่งตัวและ 39 kOhm สองตัว)
ขั้นตอนที่ 4.2 เพิ่มตัวต้านทาน 1 1 kOhm (ขวาสุด)
ขั้นตอนที่ 4.3 การเพิ่มสายไฟ

ขั้นตอนที่ 5: เราหมุนเทิร์นลงบนรีล ขั้นตอนต่อไปคือการเปิดขดลวด 2 ม้วนซึ่งเป็นส่วนหนึ่งของวงจรเครื่องกำเนิดไฟฟ้า LC อันแรกคือคอยล์อ้างอิง ฉันใช้ลวดขนาดเส้นผ่านศูนย์กลาง 0.4 มม. สำหรับสิ่งนี้ ตัดเดือยชิ้นหนึ่ง (เส้นผ่านศูนย์กลางประมาณ 13 มม. และยาว 50 มม.)

เจาะรูสามรูในเดือยเพื่อให้สายไฟทะลุได้: รูหนึ่งตามยาวผ่านตรงกลางเดือย และอีกสองรูตั้งฉากที่ปลายแต่ละด้าน

ค่อยๆ พันลวดรอบเดือยเป็นชั้นเดียวให้มากที่สุดเท่าที่จะเป็นไปได้ เหลือไม้เปล่าไว้ 3-4 มม. ที่ปลายแต่ละด้าน ต้านทานการล่อลวงให้ "บิด" สายไฟ - นี่เป็นวิธีพันสายไฟที่ใช้งานง่ายที่สุด แต่นี่เป็นวิธีที่ผิด คุณต้องหมุนเดือยและดึงลวดไปด้านหลัง ด้วยวิธีนี้เขาจะพันลวดรอบตัวเอง

ดึงปลายลวดแต่ละด้านผ่านรูตั้งฉากในเดือย จากนั้นดึงปลายด้านหนึ่งผ่านรูตามยาว ยึดสายไฟด้วยเทปเมื่อเสร็จแล้ว สุดท้าย ให้ใช้กระดาษทรายลอกสารเคลือบที่ปลายเปิดทั้งสองข้างของคอยล์ออก




ขั้นตอนที่ 6: เราทำคอยล์รับ (ค้นหา) จำเป็นต้องตัดที่ยึดแกนม้วนจากไม้อัดขนาด 6-7 มม. ใช้ลวดขนาดเส้นผ่านศูนย์กลาง 0.4 มม. เดียวกัน หมุน 10 รอบรอบช่อง รอกของฉันมีเส้นผ่านศูนย์กลาง 152 มม. ใช้หมุดไม้ขนาด 6-7 มม. ติดที่จับเข้ากับที่ยึด อย่าใช้สลักเกลียวโลหะ (หรือสิ่งที่คล้ายกัน) ในการดำเนินการนี้ - ไม่เช่นนั้นเครื่องตรวจจับโลหะจะตรวจจับสมบัติสำหรับคุณอยู่ตลอดเวลา อีกครั้งโดยใช้กระดาษทรายลอกสารเคลือบที่ปลายลวดออก


ขั้นตอนที่ 6.1 ตัดที่ยึดแกนม้วนสายออก
ขั้นตอนที่ 6.2 เราหมุน 10 รอบรอบร่องด้วยลวดขนาดเส้นผ่านศูนย์กลาง 0.4 มม

ขั้นตอนที่ 7: การตั้งค่าคอยล์อ้างอิง ตอนนี้เราต้องปรับความถี่ของคอยล์อ้างอิงในวงจรของเราเป็น 100 kHz สำหรับสิ่งนี้ฉันใช้ออสซิลโลสโคป คุณยังสามารถใช้มัลติมิเตอร์กับเครื่องวัดความถี่เพื่อวัตถุประสงค์เหล่านี้ได้ เริ่มต้นด้วยการต่อขดลวดเข้ากับวงจร จากนั้นให้เปิดเครื่อง เชื่อมต่อโพรบจากออสซิลโลสโคปหรือมัลติมิเตอร์เข้ากับปลายทั้งสองด้านของคอยล์แล้ววัดความถี่ มันควรจะน้อยกว่า 100 kHz หากจำเป็น คุณสามารถทำให้ขดลวดสั้นลงได้ - ซึ่งจะลดการเหนี่ยวนำและเพิ่มความถี่ จากนั้นมิติใหม่และใหม่ เมื่อฉันได้ความถี่ต่ำกว่า 100kHz คอยล์ของฉันก็ยาว 31 มม.




เครื่องตรวจจับโลหะบนหม้อแปลงที่มีแผ่นรูปตัว W


วงจรเครื่องตรวจจับโลหะที่ง่ายที่สุด เราจะต้องมี: หม้อแปลงที่มีแผ่นรูปตัว W, แบตเตอรี่ 4.5 V, ตัวต้านทาน, ทรานซิสเตอร์, ตัวเก็บประจุ, หูฟัง เหลือเพียงแผ่นรูปตัว W ในหม้อแปลงไฟฟ้า หมุน 1,000 รอบของการพันครั้งแรก และหลังจาก 500 รอบแรก ให้ทำการต๊าปด้วยลวด PEL-0.1 พันขดลวดที่สอง 200 รอบด้วยลวด PEL-0.2

ติดหม้อแปลงที่ปลายก้าน ปิดผนึกไว้กับน้ำ เปิดเครื่องแล้วนำมาใกล้กับพื้น เนื่องจากวงจรแม่เหล็กไม่ได้ปิด เมื่อเข้าใกล้โลหะ พารามิเตอร์ของวงจรของเราก็จะเปลี่ยนไป และเสียงของสัญญาณในหูฟังก็จะเปลี่ยนไป


วงจรอย่างง่ายที่ใช้องค์ประกอบทั่วไป คุณต้องมีทรานซิสเตอร์ซีรีส์ K315B หรือ K3102 ตัวต้านทาน ตัวเก็บประจุ หูฟัง และแบตเตอรี่ ค่าต่างๆ จะแสดงอยู่ในแผนภาพ

วิดีโอ: วิธีสร้างเครื่องตรวจจับโลหะด้วยมือของคุณเองอย่างถูกต้อง

ทรานซิสเตอร์ตัวแรกประกอบด้วยออสซิลเลเตอร์หลักที่มีความถี่ 100 Hz และทรานซิสเตอร์ตัวที่สองมีออสซิลเลเตอร์การค้นหาที่มีความถี่เท่ากัน ในฐานะคอยล์ค้นหา ฉันเอาถังพลาสติกเก่าที่มีเส้นผ่านศูนย์กลาง 250 มม. ตัดมันออกแล้วพันลวดทองแดงที่มีหน้าตัด 0.4 มม. 2 จำนวน 50 รอบ ฉันวางวงจรที่ประกอบแล้วไว้ในกล่องเล็กๆ ปิดผนึกและยึดทุกอย่างไว้กับแกนด้วยเทป

วงจรที่มีเครื่องกำเนิดไฟฟ้าสองตัวที่มีความถี่เท่ากัน ไม่มีสัญญาณในโหมดสแตนด์บาย หากวัตถุที่เป็นโลหะปรากฏขึ้นในสนามของคอยล์ ความถี่ของเครื่องกำเนิดไฟฟ้าตัวใดตัวหนึ่งจะเปลี่ยนไปและเสียงจะปรากฏขึ้นในหูฟัง อุปกรณ์ค่อนข้างอเนกประสงค์และมีความไวที่ดี


วงจรอย่างง่ายที่ใช้องค์ประกอบอย่างง่าย คุณต้องมีวงจรไมโคร ตัวเก็บประจุ ตัวต้านทาน หูฟัง และแหล่งพลังงาน ขอแนะนำให้ประกอบคอยล์ L2 ก่อนดังที่แสดงในรูปภาพ:


ออสซิลเลเตอร์หลักที่มีคอยล์ L1 ประกอบอยู่บนองค์ประกอบหนึ่งของไมโครวงจร และใช้คอยล์ L2 ในวงจรเครื่องกำเนิดการค้นหา เมื่อวัตถุที่เป็นโลหะเข้าสู่โซนความไว ความถี่ของวงจรค้นหาจะเปลี่ยนไปและเสียงในหูฟังจะเปลี่ยนไป การใช้ที่จับของตัวเก็บประจุ C6 คุณสามารถปรับแต่งเสียงรบกวนส่วนเกินได้ ใช้แบตเตอรี่ขนาด 9 โวลต์เป็นแบตเตอรี่

สรุปได้เลยว่าใครที่คุ้นเคยกับพื้นฐานวิศวกรรมไฟฟ้าและมีความอดทนพอที่จะทำงานให้เสร็จก็สามารถประกอบเครื่องได้

หลักการทำงาน

ดังนั้นเครื่องตรวจจับโลหะจึงเป็นอุปกรณ์อิเล็กทรอนิกส์ที่มีเซ็นเซอร์หลักและอุปกรณ์รอง บทบาทของเซ็นเซอร์หลักมักจะทำโดยขดลวดที่มีลวดพันกัน การทำงานของเครื่องตรวจจับโลหะนั้นขึ้นอยู่กับหลักการเปลี่ยนสนามแม่เหล็กไฟฟ้าของเซ็นเซอร์ด้วยวัตถุโลหะใด ๆ

สนามแม่เหล็กไฟฟ้าที่สร้างขึ้นโดยเซนเซอร์เครื่องตรวจจับโลหะทำให้เกิดกระแสเอ็ดดี้ในวัตถุดังกล่าว กระแสเหล่านี้ทำให้เกิดสนามแม่เหล็กไฟฟ้าของตัวเอง ซึ่งจะเปลี่ยนสนามที่สร้างโดยอุปกรณ์ของเรา อุปกรณ์รองของเครื่องตรวจจับโลหะจะบันทึกสัญญาณเหล่านี้และแจ้งให้เราทราบว่าพบวัตถุที่เป็นโลหะ

เครื่องตรวจจับโลหะที่ง่ายที่สุดจะเปลี่ยนเสียงสัญญาณเตือนเมื่อตรวจพบวัตถุที่ต้องการ ตัวอย่างที่ทันสมัยและมีราคาแพงกว่านั้นมาพร้อมกับไมโครโปรเซสเซอร์และจอแสดงผลคริสตัลเหลว บริษัทที่ก้าวหน้าที่สุดติดตั้งเซ็นเซอร์สองตัวให้กับโมเดลของตน ซึ่งช่วยให้ค้นหาได้อย่างมีประสิทธิภาพมากขึ้น

เครื่องตรวจจับโลหะสามารถแบ่งออกเป็นหลายประเภท:

  • อุปกรณ์สาธารณะ
  • อุปกรณ์ระดับกลาง
  • อุปกรณ์สำหรับมืออาชีพ

หมวดหมู่แรกประกอบด้วยรุ่นที่ถูกที่สุดพร้อมชุดฟังก์ชั่นขั้นต่ำ แต่ราคาก็น่าดึงดูดมาก แบรนด์ยอดนิยมในรัสเซีย: IMPERIAL - 500A, FISHER 1212-X, CLASSIC I SL อุปกรณ์ในส่วนนี้ใช้วงจร "ตัวรับ-ตัวส่งสัญญาณ" ที่ทำงานที่ความถี่ต่ำพิเศษ และต้องมีการเคลื่อนไหวของเซ็นเซอร์ค้นหาอย่างต่อเนื่อง

ประเภทที่สองเป็นหน่วยที่มีราคาแพงกว่า มีเซ็นเซอร์ที่เปลี่ยนได้หลายตัวและปุ่มควบคุมหลายตัว พวกเขาสามารถทำงานในโหมดต่างๆ รุ่นที่พบบ่อยที่สุด: FISHER 1225-X, FISHER 1235-X, GOLDEN SABER II, CLASSIC III SL


รูปถ่าย: มุมมองทั่วไปของเครื่องตรวจจับโลหะทั่วไป

อุปกรณ์อื่นๆ ทั้งหมดควรจัดอยู่ในประเภทมืออาชีพ มีการติดตั้งไมโครโปรเซสเซอร์และสามารถทำงานในโหมดไดนามิกและแบบคงที่ ช่วยให้คุณกำหนดองค์ประกอบของโลหะ (วัตถุ) และความลึกของการเกิดขึ้น การตั้งค่าอาจเป็นแบบอัตโนมัติหรือจะปรับด้วยตนเองก็ได้

ในการประกอบเครื่องตรวจจับโลหะแบบโฮมเมด คุณต้องเตรียมอุปกรณ์หลายอย่างล่วงหน้า: เซ็นเซอร์ (ขดลวดที่มีลวดพันแผล), แท่งยึด, ชุดควบคุมอิเล็กทรอนิกส์ ความไวของอุปกรณ์ของเราขึ้นอยู่กับคุณภาพและขนาด แถบยึดถูกเลือกตามความสูงของบุคคลเพื่อให้สะดวกในการทำงาน องค์ประกอบโครงสร้างทั้งหมดได้รับการแก้ไขแล้ว

เครื่องตรวจจับโลหะที่ดีที่สุด

เหตุใด Volksturm จึงได้รับเลือกให้เป็นเครื่องตรวจจับโลหะที่ดีที่สุด สิ่งสำคัญคือโครงการนี้เรียบง่ายและใช้งานได้จริง ในบรรดาวงจรเครื่องตรวจจับโลหะที่ผมสร้างขึ้นเอง วงจรนี้เป็นวงจรที่ทุกอย่างเรียบง่าย ละเอียดถี่ถ้วน และเชื่อถือได้! ยิ่งไปกว่านั้น แม้จะเรียบง่าย แต่เครื่องตรวจจับโลหะก็มีรูปแบบการเลือกปฏิบัติที่ดี โดยพิจารณาว่ามีเหล็กหรือโลหะที่ไม่ใช่เหล็กอยู่ในพื้นดินหรือไม่ การประกอบเครื่องตรวจจับโลหะประกอบด้วยการบัดกรีบอร์ดโดยปราศจากข้อผิดพลาด และการตั้งค่าคอยล์ให้เป็นเรโซแนนซ์และเป็นศูนย์ที่เอาต์พุตของสเตจอินพุตบน LF353 ไม่มีอะไรซับซ้อนมากที่นี่ สิ่งที่คุณต้องมีคือความปรารถนาและสมอง ลองดูที่เชิงสร้างสรรค์ การออกแบบเครื่องตรวจจับโลหะและไดอะแกรม Volksturm ที่ปรับปรุงใหม่พร้อมคำอธิบาย

เนื่องจากมีคำถามเกิดขึ้นระหว่างกระบวนการประกอบ เพื่อช่วยคุณประหยัดเวลาและไม่บังคับให้คุณพลิกดูหน้าฟอรั่มหลายร้อยหน้า ต่อไปนี้เป็นคำตอบสำหรับคำถามยอดนิยม 10 ข้อ บทความนี้อยู่ระหว่างการเขียน ดังนั้นจะมีการเพิ่มบางประเด็นในภายหลัง

1. หลักการทำงานและการตรวจจับเป้าหมายของเครื่องตรวจจับโลหะนี้
2. จะตรวจสอบได้อย่างไรว่าบอร์ดเครื่องตรวจจับโลหะทำงานหรือไม่?
3. ฉันควรเลือกเสียงสะท้อนใด
4. ตัวเก็บประจุตัวไหนดีกว่ากัน?
5. จะปรับเสียงสะท้อนได้อย่างไร?
6. จะรีเซ็ตคอยส์ให้เป็นศูนย์ได้อย่างไร?
7. ลวดไหนดีกว่าสำหรับคอยล์?
8. เปลี่ยนอะไหล่อะไรได้บ้าง และด้วยอะไร?
9. อะไรเป็นตัวกำหนดความลึกของการค้นหาเป้าหมาย?
10. แหล่งจ่ายไฟของเครื่องตรวจจับโลหะ Volksturm?

เครื่องตรวจจับโลหะ Volksturm ทำงานอย่างไร

ฉันจะพยายามอธิบายหลักการทำงานโดยย่อ: การส่งผ่านการรับและการเหนี่ยวนำสมดุล ในเซ็นเซอร์ค้นหาของเครื่องตรวจจับโลหะมีการติดตั้งคอยล์ 2 ตัว - ส่งและรับ การมีอยู่ของโลหะจะเปลี่ยนการเชื่อมต่อแบบเหนี่ยวนำระหว่างโลหะทั้งสอง (รวมถึงเฟส) ซึ่งส่งผลต่อสัญญาณที่ได้รับซึ่งจะถูกประมวลผลโดยหน่วยแสดงผล ระหว่างวงจรไมโครตัวแรกและตัวที่สองจะมีสวิตช์ควบคุมโดยพัลส์ของเครื่องกำเนิดไฟฟ้าที่เปลี่ยนเฟสโดยสัมพันธ์กับช่องสัญญาณส่งสัญญาณ (เช่น เมื่อเครื่องส่งสัญญาณทำงานเครื่องรับจะถูกปิด และในทางกลับกันหากเครื่องรับเปิดอยู่เครื่องส่งสัญญาณ กำลังพักผ่อน และเครื่องรับจะจับสัญญาณที่สะท้อนอย่างสงบในช่วงหยุดชั่วคราวนี้) คุณเปิดเครื่องตรวจจับโลหะแล้วมันก็ส่งเสียงบี๊บ เยี่ยมเลย ถ้ามันส่งเสียงบี๊บ แสดงว่ามีหลายโหนดกำลังทำงานอยู่ ลองหาคำตอบว่าทำไมมันถึงส่งเสียงบี๊บ เครื่องกำเนิดบน u6B จะสร้างสัญญาณเสียงอย่างต่อเนื่อง ถัดไปไปที่เครื่องขยายเสียงที่มีทรานซิสเตอร์สองตัว แต่เครื่องขยายเสียงจะไม่เปิด (จะไม่ปล่อยให้เสียงผ่านไป) จนกว่าแรงดันไฟฟ้าที่เอาต์พุต u2B (พินที่ 7) จะยอมให้ทำเช่นนั้น แรงดันไฟฟ้านี้ถูกกำหนดโดยการเปลี่ยนโหมดโดยใช้ตัวต้านทานแบบแทรชเดียวกันนี้ พวกเขาจำเป็นต้องตั้งค่าแรงดันไฟฟ้าเพื่อให้เครื่องขยายเสียงเกือบเปิดและส่งสัญญาณจากเครื่องกำเนิดไฟฟ้า และอินพุตสองสามมิลลิโวลต์จากคอยล์เครื่องตรวจจับโลหะเมื่อผ่านขั้นตอนการขยายสัญญาณจะเกินเกณฑ์นี้และในที่สุดจะเปิดออกและลำโพงจะส่งเสียงบี๊บ ทีนี้ลองติดตามเส้นทางของสัญญาณหรือสัญญาณตอบสนองแทน ในระยะแรก (1-у1а) จะมีสองสามมิลลิโวลต์สูงถึง 50 ในระยะที่สอง (7-у1B) ค่าเบี่ยงเบนนี้จะเพิ่มขึ้นในระยะที่สาม (1-у2А) จะมีสองสามอย่างอยู่แล้ว โวลต์ แต่ไม่มีการตอบสนองทุกที่ที่เอาต์พุต

วิธีตรวจสอบว่าบอร์ดตรวจจับโลหะทำงานหรือไม่

โดยทั่วไป เครื่องขยายเสียงและสวิตช์ (CD 4066) จะถูกตรวจสอบด้วยนิ้วที่หน้าสัมผัสอินพุต RX ที่ความต้านทานเซ็นเซอร์สูงสุดและพื้นหลังสูงสุดบนลำโพง หากมีการเปลี่ยนแปลงพื้นหลังเมื่อคุณกดนิ้วของคุณสักครู่คีย์และ opamps จะทำงานจากนั้นเราจะเชื่อมต่อคอยล์ RX กับตัวเก็บประจุวงจรแบบขนานตัวเก็บประจุบนคอยล์ TX เป็นอนุกรมใส่คอยล์หนึ่งอัน ด้านบนของอีกอันและเริ่มลดเหลือ 0 ตามการอ่านค่าขั้นต่ำของกระแสสลับที่ขาแรกของเครื่องขยายเสียง U1A ต่อไป เราจะนำบางสิ่งที่มีขนาดใหญ่มารีดและตรวจสอบว่ามีปฏิกิริยาต่อโลหะในไดนามิกหรือไม่ ลองตรวจสอบแรงดันไฟฟ้าที่ y2B (พินที่ 7) ควรเปลี่ยนด้วยตัวควบคุมแทรช + สองสามโวลต์ ถ้าไม่เช่นนั้น ปัญหาจะอยู่ในระยะ op-amp นี้ ในการเริ่มตรวจสอบบอร์ด ให้ปิดคอยล์แล้วเปิดเครื่อง

1. ควรมีเสียงเมื่อตั้งค่าตัวควบคุมความรู้สึกไว้ที่ความต้านทานสูงสุดใช้นิ้วสัมผัส RX - หากมีปฏิกิริยาเกิดขึ้น op-amps ทั้งหมดจะทำงานหากไม่เป็นเช่นนั้นให้ตรวจสอบด้วยนิ้วของคุณโดยเริ่มจาก u2 แล้วเปลี่ยน (ตรวจสอบ การเดินสาย) ของ op-amp ที่ไม่ทำงาน

2. ตรวจสอบการทำงานของเครื่องกำเนิดไฟฟ้าด้วยโปรแกรมมิเตอร์ความถี่ บัดกรีปลั๊กหูฟังเข้ากับพิน 12 ของ CD4013 (561TM2) จากนั้นจึงถอด p23 ออกอย่างระมัดระวัง (เพื่อไม่ให้การ์ดเสียงไหม้) ใช้ In-lane บนการ์ดเสียง เราดูความถี่ในการสร้างและความเสถียรที่ 8192 Hz หากมีการเคลื่อนตัวอย่างรุนแรง จำเป็นต้องปลดตัวเก็บประจุ c9 ออก แม้ว่าจะไม่ได้ระบุอย่างชัดเจนและ/หรือมีความถี่ระเบิดหลายครั้งในบริเวณใกล้เคียง เราก็เปลี่ยนควอตซ์

3. ตรวจสอบเครื่องขยายเสียงและเครื่องกำเนิดไฟฟ้า หากทุกอย่างเรียบร้อย แต่ยังใช้งานไม่ได้ ให้เปลี่ยนกุญแจ (CD 4066)

จะเลือกคอยล์เรโซแนนซ์ตัวไหน?

เมื่อเชื่อมต่อคอยล์เข้ากับเรโซแนนซ์แบบอนุกรม กระแสในคอยล์และการสิ้นเปลืองโดยรวมของวงจรจะเพิ่มขึ้น ระยะการตรวจจับเป้าหมายเพิ่มขึ้น แต่นี่เป็นเพียงบนโต๊ะเท่านั้น บนพื้นดินจริง ยิ่งสัมผัสพื้นดินได้แรงมากเท่าไร กระแสปั๊มในคอยล์ก็จะยิ่งมากขึ้นเท่านั้น จะดีกว่าถ้าเปิดเสียงสะท้อนแบบขนาน และเพิ่มความรู้สึกของระยะอินพุต และแบตเตอรี่จะมีอายุการใช้งานยาวนานกว่ามาก แม้ว่าเครื่องตรวจจับโลหะราคาแพงทุกยี่ห้อจะใช้เสียงสะท้อนตามลำดับ แต่ใน Sturm เครื่องตรวจจับโลหะแบบขนานก็เป็นสิ่งจำเป็น ในอุปกรณ์นำเข้าที่มีราคาแพง จะมีวงจรดีจูนที่ดีจากกราวด์ ดังนั้นในอุปกรณ์เหล่านี้จึงเป็นไปได้ที่จะยอมให้ทำตามลำดับได้

ตัวเก็บประจุตัวใดที่ติดตั้งในวงจรได้ดีที่สุด? เครื่องตรวจจับโลหะ

ประเภทของตัวเก็บประจุที่เชื่อมต่อกับคอยล์นั้นไม่เกี่ยวอะไรกับมัน แต่ถ้าคุณทดลองเปลี่ยนสองตัวและเห็นว่าหนึ่งในนั้นการสั่นพ้องจะดีกว่า ดังนั้นหนึ่งใน 0.1 μF ที่คาดคะเนไว้จะมี 0.098 μF จริง ๆ และอีก 0.11 . นี่คือความแตกต่างระหว่างพวกเขาในแง่ของเสียงสะท้อน ฉันใช้โซเวียต K73-17 และหมอนนำเข้าสีเขียว

วิธีปรับคอยล์เรโซแนนซ์ เครื่องตรวจจับโลหะ

ขดลวดเป็นตัวเลือกที่ดีที่สุดทำจากปูนปลาสเตอร์ลอยติดกาวด้วยอีพอกซีเรซินจากปลายจนถึงขนาดที่คุณต้องการ ยิ่งไปกว่านั้น ส่วนกลางของมันยังประกอบด้วยที่จับของเครื่องขูดนี้ซึ่งถูกแปรรูปจนถึงหูที่กว้างข้างเดียว ในทางกลับกันบนแท่งมีส้อมที่มีหูยึดสองอัน วิธีนี้ช่วยให้เราแก้ปัญหาการเสียรูปของคอยล์เมื่อขันน็อตพลาสติกให้แน่น ร่องสำหรับขดลวดทำด้วยหัวเผาธรรมดาจากนั้นจึงตั้งค่าและเติมศูนย์ จากปลายเย็นของ TX ให้ทิ้งลวดไว้ 50 ซม. ซึ่งไม่ควรเติมในตอนแรก แต่ทำเป็นขดเล็ก ๆ จากนั้น (เส้นผ่านศูนย์กลาง 3 ซม.) แล้ววางไว้ใน RX โดยเคลื่อนย้ายและทำให้เสียรูปภายในขอบเขตเล็ก ๆ คุณ สามารถบรรลุค่าศูนย์ที่แน่นอนได้ แต่ทำเช่นนี้ ดีกว่าไปข้างนอกโดยวางคอยล์ไว้ใกล้พื้น (เช่นเมื่อค้นหา) โดยปิด GEB ถ้ามี จากนั้นจึงเติมเรซินในที่สุด จากนั้นการแยกออกจากพื้นดินจะทำงานได้ดีมากหรือน้อย (ยกเว้นดินที่มีแร่ธาตุสูง) ม้วนดังกล่าวกลายเป็นน้ำหนักเบาทนทานอาจมีการเปลี่ยนรูปจากความร้อนเล็กน้อยและเมื่อผ่านการประมวลผลและทาสีแล้วจะมีความน่าสนใจมาก และข้อสังเกตอีกประการหนึ่ง: หากเครื่องตรวจจับโลหะประกอบกับกราวด์ detuning (GEB) และมีแถบเลื่อนตัวต้านทานอยู่ตรงกลาง ให้ตั้งค่าศูนย์ด้วยวงแหวนขนาดเล็กมาก ช่วงการปรับ GEB คือ + - 80-100 mV หากคุณตั้งค่าศูนย์ด้วยวัตถุขนาดใหญ่ - เหรียญ 10-50 kopeck ช่วงการปรับเพิ่มขึ้นเป็น +- 500-600 mV อย่าไล่ตามแรงดันไฟฟ้าเมื่อตั้งค่าเสียงสะท้อน - ด้วยแหล่งจ่ายไฟ 12V ฉันจะมีประมาณ 40V ด้วยเสียงสะท้อนแบบอนุกรม เพื่อให้การเลือกปฏิบัติปรากฏขึ้นเราเชื่อมต่อตัวเก็บประจุในขดลวดแบบขนาน (การเชื่อมต่อแบบอนุกรมจำเป็นเท่านั้นในขั้นตอนของการเลือกตัวเก็บประจุสำหรับการสั่นพ้อง) - สำหรับโลหะเหล็กจะมีเสียงที่ดึงออกมาสำหรับโลหะที่ไม่ใช่เหล็ก - สั้น ๆ หนึ่ง.

หรือง่ายกว่านั้นอีก เราเชื่อมต่อคอยส์ทีละตัวเข้ากับเอาต์พุต TX ที่ส่งสัญญาณ เราปรับอันหนึ่งให้เป็นเสียงสะท้อน และหลังจากปรับแล้ว เราก็ปรับอีกอันหนึ่ง ทีละขั้นตอน: เชื่อมต่อแล้วจิ้มมัลติมิเตอร์ขนานกับคอยล์ด้วยมัลติมิเตอร์ที่ขีด จำกัด โวลต์สลับและบัดกรีตัวเก็บประจุ 0.07-0.08 uF ขนานกับคอยล์ดูที่การอ่าน สมมติว่า 4 V - อ่อนแอมาก ไม่สอดคล้องกับความถี่ เราจิ้มตัวเก็บประจุขนาดเล็กตัวที่สองขนานกับตัวเก็บประจุตัวแรก - 0.01 ไมโครฟารัด (0.07+0.01=0.08) มาดูกัน - โวลต์มิเตอร์แสดงเป็น 7 V แล้ว เยี่ยมมาก มาเพิ่มความจุอีก เชื่อมต่อกับ 0.02 µF - ดูที่โวลต์มิเตอร์และมี 20 V เยี่ยมมาก เรามาต่อกัน - เราจะเพิ่มอีกสองสามพัน ความจุสูงสุด ใช่. เริ่มตกแล้ว เรามาถอยกลับกันดีกว่า และเพื่อให้บรรลุการอ่านค่าโวลต์มิเตอร์สูงสุดบนคอยล์เครื่องตรวจจับโลหะ จากนั้นทำแบบเดียวกันกับคอยล์อีกอัน (ตัวรับ) ปรับให้สูงสุดแล้วเชื่อมต่อกลับเข้าที่ช่องรับสัญญาณ

วิธีทำให้ขดลวดเครื่องตรวจจับโลหะเป็นศูนย์

ในการปรับค่าศูนย์ เราจะเชื่อมต่อเครื่องทดสอบเข้ากับขาแรกของ LF353 และค่อยๆ เริ่มบีบอัดและยืดขดลวด หลังจากเติมอีพอกซีแล้วศูนย์จะหนีอย่างแน่นอน ดังนั้นจึงไม่จำเป็นต้องเติมขดลวดทั้งหมด แต่ต้องออกจากสถานที่สำหรับการปรับและหลังจากการอบแห้งให้นำไปเป็นศูนย์แล้วเติมให้เต็ม นำเกลียวมาหนึ่งเส้นแล้วมัดครึ่งหนึ่งของแกนม้วนโดยหมุนไปตรงกลาง (ถึงส่วนกลางซึ่งเป็นทางแยกของแกนทั้งสอง) สอดท่อนไม้เข้าไปในห่วงของเกลียวแล้วบิด (ดึงเกลียว ) - แกนม้วนจะหดตัว จับศูนย์ จุ่มเส้นใหญ่ลงในกาว หลังจากการแห้งเกือบสมบูรณ์ ให้ปรับศูนย์อีกครั้งโดยหมุนแกนอีกเล็กน้อยแล้วเติมเส้นใหญ่ให้เต็ม หรือง่ายกว่านั้น: ตัวส่งสัญญาณถูกยึดไว้ในพลาสติก และตัวรับจะอยู่เหนืออันแรกประมาณ 1 ซม. เหมือนแหวนแต่งงาน ที่พินแรกของ U1A จะมีเสียงดัง 8 kHz - คุณสามารถตรวจสอบได้ด้วยโวลต์มิเตอร์แบบ AC แต่ควรใช้หูฟังที่มีความต้านทานสูงเท่านั้น ดังนั้นจะต้องเคลื่อนย้ายหรือเปลี่ยนขดลวดรับของเครื่องตรวจจับโลหะจากขดลวดส่งสัญญาณจนกระทั่งเสียงแหลมที่เอาต์พุตของ op-amp ลดลงเหลือน้อยที่สุด (หรือการอ่านโวลต์มิเตอร์ลดลงเหลือหลายมิลลิโวลต์) เพียงเท่านี้คอยล์ปิดเราก็ซ่อม

สายไหนดีกว่าสำหรับคอยล์ค้นหา?

ลวดสำหรับพันขดลวดไม่สำคัญ จะทำอะไรก็ได้ตั้งแต่ 0.3 ถึง 0.8 คุณยังต้องเลือกความจุเล็กน้อยเพื่อปรับวงจรให้เป็นเสียงสะท้อนและที่ความถี่ 8.192 kHz แน่นอนว่าลวดที่บางกว่านั้นค่อนข้างเหมาะสม เพียงแต่ว่ายิ่งมีความหนามากเท่าใด ปัจจัยด้านคุณภาพก็จะยิ่งดีขึ้นเท่านั้น และด้วยเหตุนี้ สัญชาตญาณจึงเกิดขึ้นด้วย แต่ถ้าหมุนไป 1 มม. จะถือค่อนข้างหนัก บนกระดาษแผ่นหนึ่งให้วาดรูปสี่เหลี่ยมผืนผ้า 15 x 23 ซม. จากมุมซ้ายบนและล่างให้เว้นระยะ 2.5 ซม. แล้วต่อเข้าด้วยกันด้วยเส้น เราทำเช่นเดียวกันกับมุมขวาบนและมุมล่าง แต่เว้นไว้ 3 ซม. เราวางจุดไว้ตรงกลางของส่วนล่างและจุดซ้ายและขวาที่ระยะ 1 ซม. เราใช้ไม้อัดทา ร่างนี้และตอกตะปูเข้าไปในทุกจุดที่ระบุ เราใช้ลวด PEV 0.3 และหมุนลวด 80 รอบ แต่จริงๆ แล้ว มันไม่สำคัญว่าจะกี่รอบก็ตาม อย่างไรก็ตาม เราจะตั้งค่าความถี่ 8 kHz ให้เป็นเสียงสะท้อนด้วยตัวเก็บประจุ กลิ้งไปเท่าไหร่ ก็กลิ้งไปเท่าไหร่เท่านั้น ฉันพัน 80 รอบและตัวเก็บประจุ 0.1 ไมโครฟารัดถ้าคุณหมุนมันพูด 50 คุณจะต้องใส่ความจุประมาณ 0.13 ไมโครฟารัด ต่อไป โดยไม่ต้องถอดออกจากเทมเพลต เราจะพันคอยล์ด้วยด้ายหนา เช่นเดียวกับวิธีพันมัดสายไฟ หลังจากนั้นเราก็เคลือบคอยล์ด้วยวานิช เมื่อแห้ง ให้นำแกนม้วนออกจากแม่แบบ จากนั้นพันขดลวดด้วยฉนวน - เทปฟูมหรือเทปพันสายไฟ ถัดไป - พันขดลวดรับด้วยฟอยล์คุณสามารถนำเทปจากตัวเก็บประจุไฟฟ้า ขดลวด TX ไม่จำเป็นต้องได้รับการป้องกัน อย่าลืมเว้นช่องว่าง 10 มม. ไว้ที่หน้าจอ ตรงกลางวงล้อ ถัดมาเป็นม้วนฟอยล์ด้วยลวดกระป๋อง ลวดนี้พร้อมกับการสัมผัสครั้งแรกของขดลวดจะเป็นกราวด์ของเรา และสุดท้ายให้พันขดลวดด้วยเทปพันสายไฟ ความเหนี่ยวนำของขดลวดประมาณ 3.5mH ความจุจะอยู่ที่ประมาณ 0.1 ไมโครฟารัด ส่วนการเติมคอยล์ด้วยอีพ๊อกซี่ผมไม่ได้เติมเลย ฉันเพิ่งพันมันให้แน่นด้วยเทปไฟฟ้า ไม่มีอะไร ฉันใช้เวลาสองฤดูกาลกับเครื่องตรวจจับโลหะนี้โดยไม่เปลี่ยนการตั้งค่า ให้ความสนใจกับฉนวนกันความชื้นของวงจรและคอยล์ค้นหาเพราะคุณจะต้องตัดหญ้าบนหญ้าเปียก ทุกอย่างจะต้องปิดผนึก มิฉะนั้นความชื้นจะเข้าไปและการตั้งค่าจะลอยไป ความไวจะแย่ลง

ชิ้นส่วนใดบ้างที่สามารถเปลี่ยนได้และด้วยอะไร?

ทรานซิสเตอร์:
BC546 - 3 ชิ้นหรือ KT315
BC556 - 1 ชิ้นหรือ KT361
ผู้ประกอบการ:

LF353 - 1 ชิ้น หรือแลกกับ TL072 ทั่วไป
LM358N - 2 ชิ้น
ชิปดิจิตอล:
CD4011 - 1 ชิ้น
CD4066 - 1 ชิ้น
CD4013 - 1 ชิ้น
ตัวต้านทานมีค่าคงที่กำลังไฟ 0.125-0.25 วัตต์:
5.6K - 1 ชิ้น
430K - 1 ชิ้น
22K - 3 ชิ้น
10K - 1 ชิ้น
390K - 1 ชิ้น
1K - 2 ชิ้น
1.5K - 1 ชิ้น
100K - 8 ชิ้น
220K - 1 ชิ้น
130K - 2 ชิ้น
56K - 1 ชิ้น
8.2K ​​​​- 1 ชิ้น
ตัวต้านทานแบบปรับค่าได้:
100K - 1 ชิ้น
330K - 1 ชิ้น
ตัวเก็บประจุแบบไม่มีขั้ว:
1nF - 1 ชิ้น
22nF - 3 ชิ้น (22000pF = 22nF = 0.022uF)
220nF - 1 ชิ้น
1uF - 2 ชิ้น
47nF - 1 ชิ้น
10nF - 1 ชิ้น
ตัวเก็บประจุด้วยไฟฟ้า:
220uF ที่ 16V - 2 ชิ้น

ลำโพงมีขนาดเล็ก
เครื่องสะท้อนเสียงควอตซ์ที่ 32768 Hz
ไฟ LED สว่างเป็นพิเศษสองดวงที่มีสีต่างกัน

หากคุณไม่สามารถนำเข้าวงจรไมโครได้นี่คืออะนาล็อกในประเทศ: CD 4066 - K561KT3, CD4013 - 561TM2, CD4011 - 561LA7, LM358N - KR1040UD1 ไมโครวงจร LF353 ไม่มีอะนาล็อกโดยตรง แต่สามารถติดตั้ง LM358N หรือดีกว่า TL072, TL062 ได้ตามใจชอบ ไม่จำเป็นเลยที่จะต้องติดตั้งแอมพลิฟายเออร์สำหรับการปฏิบัติงาน - LF353 ฉันเพียงแค่เพิ่มเกนเป็น U1A โดยการเปลี่ยนตัวต้านทานในวงจรป้อนกลับเชิงลบที่ 390 kOhm ด้วย 1 mOhm - ความไวเพิ่มขึ้นอย่างมีนัยสำคัญถึง 50 เปอร์เซ็นต์แม้ว่าหลังจากเปลี่ยนแล้ว ศูนย์หายไปฉันต้องติดมันเข้ากับขดลวดในสถานที่บางแห่งด้วยเทปแผ่นอลูมิเนียม โซเวียตสาม kopecks สามารถสัมผัสได้ในอากาศที่ระยะ 25 เซนติเมตรและด้วยแหล่งจ่ายไฟ 6 โวลต์ปริมาณการใช้กระแสไฟฟ้าโดยไม่มีข้อบ่งชี้คือ 10 mA และอย่าลืมเกี่ยวกับซ็อกเก็ต - ความสะดวกและความง่ายในการติดตั้งจะเพิ่มขึ้นอย่างมาก ทรานซิสเตอร์ KT814, Kt815 - ในส่วนส่งสัญญาณของเครื่องตรวจจับโลหะ KT315 ใน ULF ขอแนะนำให้เลือกทรานซิสเตอร์ 816 และ 817 ที่มีค่าเกนเท่ากัน สามารถเปลี่ยนได้ด้วยโครงสร้างและกำลังที่สอดคล้องกัน เครื่องกำเนิดเครื่องตรวจจับโลหะมีนาฬิกาควอทซ์พิเศษที่ความถี่ 32768 Hz นี่คือมาตรฐานสำหรับตัวสะท้อนเสียงของควอตซ์ทั้งหมดที่พบในนาฬิกาอิเล็กทรอนิกส์และระบบเครื่องกลไฟฟ้า รวมถึงข้อมือและโต๊ะจีนราคาถูก เอกสารสำคัญที่มีแผงวงจรพิมพ์สำหรับรุ่นและสำหรับ (รุ่นที่มีการปรับจูนด้วยตนเองจากพื้น)

อะไรเป็นตัวกำหนดความลึกของการค้นหาเป้าหมาย?

ยิ่งเส้นผ่านศูนย์กลางของคอยล์เครื่องตรวจจับโลหะมีขนาดใหญ่เท่าใด สัญชาตญาณก็จะยิ่งลึกมากขึ้นเท่านั้น โดยทั่วไป ความลึกของการตรวจจับเป้าหมายด้วยคอยล์ที่กำหนดจะขึ้นอยู่กับขนาดของเป้าหมายเป็นหลัก แต่เมื่อเส้นผ่านศูนย์กลางของคอยล์เพิ่มขึ้น ความแม่นยำในการตรวจจับวัตถุก็ลดลง และบางครั้งก็สูญเสียเป้าหมายขนาดเล็กไปด้วย สำหรับวัตถุที่มีขนาดเท่าเหรียญ ผลกระทบนี้จะสังเกตได้เมื่อขนาดคอยล์เพิ่มขึ้นเกิน 40 ซม. โดยรวมแล้ว: คอยล์ค้นหาขนาดใหญ่มีความลึกในการตรวจจับมากกว่าและการจับที่มากกว่า แต่ตรวจจับเป้าหมายได้แม่นยำน้อยกว่าชิ้นเล็ก ขดลวดขนาดใหญ่เหมาะสำหรับการค้นหาเป้าหมายที่ลึกและใหญ่ เช่น สมบัติและวัตถุขนาดใหญ่

ตามรูปร่างขดลวดจะแบ่งออกเป็นทรงกลมและรูปไข่ (สี่เหลี่ยม) คอยล์เครื่องตรวจจับโลหะทรงรีมีความสามารถในการเลือกสรรที่ดีกว่าเมื่อเปรียบเทียบกับขดลวดเครื่องตรวจจับโลหะแบบกลม เนื่องจากความกว้างของสนามแม่เหล็กนั้นเล็กกว่าและมีวัตถุแปลกปลอมตกลงไปในสนามกระทำน้อยลง แต่แบบกลมมีความลึกในการตรวจจับมากกว่าและมีความไวต่อเป้าหมายที่ดีกว่า โดยเฉพาะในดินที่มีแร่ธาตุน้อย ขดลวดกลมมักใช้เมื่อค้นหาด้วยเครื่องตรวจจับโลหะ

ขดที่มีเส้นผ่านศูนย์กลางน้อยกว่า 15 ซม. เรียกว่าเล็ก ขดที่มีเส้นผ่านศูนย์กลาง 15-30 ซม. เรียกว่าปานกลาง และขดที่ยาวเกิน 30 ซม. เรียกว่าใหญ่ ขดลวดขนาดใหญ่จะสร้างสนามแม่เหล็กไฟฟ้าที่ใหญ่กว่า จึงมีความลึกในการตรวจจับมากกว่าขดลวดขนาดเล็ก คอยล์ขนาดใหญ่จะสร้างสนามแม่เหล็กไฟฟ้าขนาดใหญ่ จึงมีความลึกในการตรวจจับและความครอบคลุมในการค้นหามากขึ้น คอยล์ดังกล่าวใช้ในการดูพื้นที่ขนาดใหญ่ แต่เมื่อใช้งาน อาจเกิดปัญหาในพื้นที่ที่มีขยะเกลื่อนกลาดมาก เนื่องจากอาจติดเป้าหมายหลายตัวในสนามออกฤทธิ์ของคอยล์ขนาดใหญ่ในคราวเดียว และเครื่องตรวจจับโลหะจะตอบสนองต่อเป้าหมายที่ใหญ่กว่า

สนามแม่เหล็กไฟฟ้าของคอยล์ค้นหาขนาดเล็กก็มีขนาดเล็กเช่นกัน ดังนั้นด้วยคอยล์เช่นนี้ วิธีที่ดีที่สุดคือการค้นหาในพื้นที่ที่เกลื่อนไปด้วยวัตถุโลหะขนาดเล็กทุกประเภท คอยล์ขนาดเล็กเหมาะสำหรับการตรวจจับวัตถุขนาดเล็ก แต่มีพื้นที่ครอบคลุมน้อยและมีความลึกในการตรวจจับค่อนข้างตื้น

สำหรับการค้นหาแบบสากล คอยล์ขนาดกลางเหมาะอย่างยิ่ง ขนาดคอยล์การค้นหานี้รวมความลึกและความไวในการค้นหาที่เพียงพอกับเป้าหมายที่มีขนาดต่างกัน ฉันสร้างคอยล์แต่ละอันโดยมีเส้นผ่านศูนย์กลางประมาณ 16 ซม. และวางคอยล์ทั้งสองนี้ไว้ในขาตั้งทรงกลมจากใต้จอภาพขนาด 15 นิ้วรุ่นเก่า ในเวอร์ชันนี้ ความลึกในการค้นหาของเครื่องตรวจจับโลหะนี้จะเป็นดังนี้: แผ่นอะลูมิเนียม 50x70 มม. - 60 ซม., น็อต M5-5 ซม., เหรียญ - 30 ซม., ถัง - ประมาณหนึ่งเมตร ค่าเหล่านี้ได้รับในอากาศ ในพื้นดินจะน้อยลง 30%

แหล่งจ่ายไฟของเครื่องตรวจจับโลหะ

วงจรเครื่องตรวจจับโลหะแยกกันดึง 15-20 mA โดยเชื่อมต่อคอยล์ + 30-40 mA รวมสูงสุด 60 mA แน่นอนว่าค่านี้อาจแตกต่างกันไปขึ้นอยู่กับประเภทของลำโพงและไฟ LED ที่ใช้ กรณีที่ง่ายที่สุดคือใช้พลังงานจากแบตเตอรี่ลิเธียมไอออน 3 (หรือสองก้อน) ที่เชื่อมต่อแบบอนุกรมจากโทรศัพท์มือถือ 3.7V และเมื่อชาร์จแบตเตอรี่ที่คายประจุแล้ว เมื่อเราเชื่อมต่อแหล่งจ่ายไฟ 12-13V ใดๆ กระแสไฟชาร์จจะเริ่มต้นจาก 0.8A และลดลงเหลือ 50mA ต่อชั่วโมง จากนั้นคุณไม่จำเป็นต้องเพิ่มอะไรเลย แม้ว่าตัวต้านทานแบบจำกัดจะไม่ทำให้เสียหายอย่างแน่นอน โดยทั่วไป ตัวเลือกที่ง่ายที่สุดคือเม็ดมะยม 9V แต่โปรดจำไว้ว่าเครื่องตรวจจับโลหะจะกินมันภายใน 2 ชั่วโมง แต่สำหรับการปรับแต่ง ตัวเลือกด้านพลังงานนี้ก็เหมาะสมแล้ว ไม่ว่าในกรณีใด เม็ดมะยมจะไม่สร้างกระแสไฟฟ้าขนาดใหญ่ที่อาจเผาบางสิ่งบนกระดานได้

เครื่องตรวจจับโลหะแบบโฮมเมด

และตอนนี้คำอธิบายเกี่ยวกับกระบวนการประกอบเครื่องตรวจจับโลหะจากผู้เยี่ยมชมรายหนึ่ง เนื่องจากเครื่องมือเดียวที่ฉันมีคือมัลติมิเตอร์ ฉันจึงดาวน์โหลดห้องปฏิบัติการเสมือนของ O.L. Zapisnykh จากอินเทอร์เน็ต ฉันประกอบอะแดปเตอร์ เครื่องกำเนิดไฟฟ้าอย่างง่าย และใช้งานออสซิลโลสโคปโดยไม่ได้ใช้งาน ดูเหมือนว่าจะแสดงภาพบางอย่าง จากนั้นฉันก็เริ่มมองหาส่วนประกอบวิทยุ เนื่องจากป้ายตราส่วนใหญ่จะวางอยู่ในรูปแบบ "lay" ฉันจึงดาวน์โหลด "Sprint-Layout50" ฉันค้นพบว่าเทคโนโลยีเหล็กเลเซอร์สำหรับการผลิตแผงวงจรพิมพ์คืออะไร และจะแกะสลักอย่างไร สลักกระดานแล้ว มาถึงตอนนี้ก็พบไมโครวงจรทั้งหมดแล้ว อะไรก็ตามที่ฉันหาไม่ได้ในโรงเก็บของ ฉันก็ต้องซื้อ ฉันเริ่มบัดกรีจัมเปอร์ ตัวต้านทาน ช่องเสียบไมโครวงจร และควอตซ์จากนาฬิกาปลุกจีนลงบนบอร์ด ตรวจสอบความต้านทานของพาวเวอร์บัสเป็นระยะๆ เพื่อให้แน่ใจว่าไม่มีน้ำมูก ฉันตัดสินใจเริ่มต้นด้วยการประกอบชิ้นส่วนดิจิทัลของอุปกรณ์ เนื่องจากเป็นวิธีที่ง่ายที่สุด นั่นก็คือ เครื่องกำเนิดไฟฟ้า ตัวแบ่ง และตัวสับเปลี่ยน รวบรวม. ฉันติดตั้งชิปตัวสร้าง (K561LA7) และตัวแบ่ง (K561TM2) ชิปหูฟังใช้แล้ว ขาดจากแผงวงจรบางส่วนที่พบในโรงเก็บของ ฉันจ่ายไฟ 12V ในขณะที่ตรวจสอบการใช้กระแสไฟโดยใช้แอมป์มิเตอร์ และ 561TM2 ก็อุ่นขึ้น แทนที่ 561TM2 ขุมพลังที่ใช้ - ไม่มีอารมณ์ ฉันวัดแรงดันไฟฟ้าที่ขาของเครื่องกำเนิดไฟฟ้า - 12V ที่ขา 1 และ 2 ฉันกำลังเปลี่ยน 561LA7 ฉันเปิดมัน - ที่เอาต์พุตของตัวแบ่งบนขาที่ 13 มีการสร้าง (ฉันสังเกตมันบนออสซิลโลสโคปเสมือน)! ภาพไม่ค่อยดีนัก แต่ถ้าไม่มีออสซิลโลสโคปปกติก็จะทำได้ แต่ไม่มีอะไรที่ขา 1, 2 และ 12 ซึ่งหมายความว่าเจเนอเรเตอร์กำลังทำงาน คุณต้องเปลี่ยน TM2 ฉันติดตั้งชิปตัวแบ่งตัวที่สาม - มีความสวยงามในทุกเอาต์พุต! ฉันได้ข้อสรุปว่าคุณต้องถอดวงจรไมโครออกอย่างระมัดระวังที่สุด! เป็นอันเสร็จสิ้นขั้นตอนแรกของการก่อสร้าง

ตอนนี้เราได้ติดตั้งแผงเครื่องตรวจจับโลหะแล้ว ตัวควบคุมความไว "SENS" ไม่ทำงานฉันต้องทิ้งตัวเก็บประจุ C3 ออกหลังจากนั้นการปรับความไวก็ทำงานได้ตามที่ควร ฉันไม่ชอบเสียงที่ปรากฏในตำแหน่งซ้ายสุดของตัวควบคุม "THRESH" - เกณฑ์ฉันกำจัดมันโดยแทนที่ตัวต้านทาน R9 ด้วยสายโซ่ของตัวต้านทาน 5.6 kOhm ที่เชื่อมต่อแบบอนุกรม + ตัวเก็บประจุ 47.0 μF (ขั้วลบของ ตัวเก็บประจุที่ด้านทรานซิสเตอร์) แม้ว่าจะไม่มีวงจรไมโคร LF353 แต่ฉันได้ติดตั้ง LM358 แทน เมื่อใช้มัน ทำให้สามารถตรวจจับ kopeck สามตัวของโซเวียตในอากาศได้ในระยะ 15 เซนติเมตร

ฉันเปิดคอยล์ค้นหาสำหรับการส่งสัญญาณเป็นวงจรออสซิลเลเตอร์แบบอนุกรม และสำหรับการรับสัญญาณเป็นวงจรออสซิลเลเตอร์แบบขนาน ฉันตั้งค่าคอยล์ส่งสัญญาณก่อน เชื่อมต่อโครงสร้างเซ็นเซอร์ที่ประกอบเข้ากับเครื่องตรวจจับโลหะ ออสซิลโลสโคปขนานกับคอยล์ และเลือกตัวเก็บประจุตามแอมพลิจูดสูงสุด หลังจากนั้น ฉันเชื่อมต่อออสซิลโลสโคปกับคอยล์รับ และเลือกตัวเก็บประจุสำหรับ RX ตามแอมพลิจูดสูงสุด การตั้งค่าวงจรให้สั่นพ้องจะใช้เวลาหลายนาทีหากคุณมีออสซิลโลสโคป ขดลวด TX และ RX ของฉันแต่ละอันมีลวด 100 รอบที่มีเส้นผ่านศูนย์กลาง 0.4 เราเริ่มผสมบนโต๊ะโดยไม่มีตัว เพียงเพื่อให้มีสองห่วงพร้อมสายไฟ และเพื่อให้แน่ใจว่าการทำงานและความเป็นไปได้ของการผสมโดยทั่วไปเราจะแยกคอยล์ออกจากกันครึ่งเมตร แล้วมันจะเป็นศูนย์อย่างแน่นอน จากนั้นให้พันขดลวดซ้อนกันประมาณ 1 ซม. (เช่น แหวนแต่งงาน) ให้ขยับและดันออกจากกัน จุดศูนย์นั้นค่อนข้างแม่นยำและไม่ใช่เรื่องง่ายที่จะจับได้ทันที แต่มันอยู่ที่นั่น

เมื่อฉันเพิ่มเกนในเส้นทาง RX ของ MD มันเริ่มทำงานไม่เสถียรที่ความไวสูงสุด สิ่งนี้แสดงให้เห็นในความจริงที่ว่าหลังจากผ่านเป้าหมายและตรวจจับมันแล้ว สัญญาณก็ดังขึ้น แต่มันก็ดำเนินต่อไปแม้ว่าจะมี ไม่มีเป้าหมายอยู่ด้านหน้าคอยล์ค้นหา สิ่งนี้แสดงออกมาในรูปแบบของสัญญาณเสียงที่ไม่สม่ำเสมอและผันผวน เมื่อใช้ออสซิลโลสโคป สาเหตุของสิ่งนี้ถูกค้นพบ: เมื่อลำโพงทำงานและแรงดันไฟฟ้าลดลงเล็กน้อย "ศูนย์" จะหายไปและวงจร MD จะเข้าสู่โหมดการสั่นด้วยตนเองซึ่งสามารถออกได้โดยการทำให้สัญญาณเสียงหยาบเท่านั้น เกณฑ์ สิ่งนี้ไม่เหมาะกับฉัน ดังนั้นฉันจึงติดตั้ง KR142EN5A + LED สีขาวสว่างเป็นพิเศษสำหรับแหล่งจ่ายไฟเพื่อเพิ่มแรงดันไฟฟ้าที่เอาต์พุตของตัวกันโคลงในตัว ฉันไม่มีตัวกันโคลงสำหรับแรงดันไฟฟ้าที่สูงกว่า LED นี้สามารถใช้เพื่อส่องสว่างคอยล์ค้นหาได้ ฉันเชื่อมต่อลำโพงกับโคลง หลังจากนั้น MD ก็เชื่อฟังมากทันที ทุกอย่างเริ่มทำงานตามที่ควร ฉันคิดว่า Volksturm เป็นเครื่องตรวจจับโลหะแบบโฮมเมดที่ดีที่สุดอย่างแท้จริง!

เมื่อเร็ว ๆ นี้ มีการเสนอแผนการปรับเปลี่ยนนี้ ซึ่งจะเปลี่ยน Volksturm S ให้เป็น Volksturm SS + GEB ตอนนี้อุปกรณ์จะมีตัวแยกแยะที่ดีรวมถึงการเลือกโลหะและการแยกกราวด์ อุปกรณ์ถูกบัดกรีบนบอร์ดแยกต่างหากและเชื่อมต่อแทนตัวเก็บประจุ C5 และ C4 รูปแบบการแก้ไขยังอยู่ในที่เก็บถาวรด้วย ขอขอบคุณเป็นพิเศษสำหรับข้อมูลเกี่ยวกับการประกอบและการตั้งค่าเครื่องตรวจจับโลหะให้กับทุกคนที่เข้าร่วมในการอภิปรายและปรับปรุงวงจรให้ทันสมัย ​​Elektrodych, fez, xxx, slavake, ew2bw, redkii และเพื่อนนักวิทยุสมัครเล่นคนอื่นๆ ช่วยเป็นพิเศษในการเตรียมวัสดุ

การออกแบบเครื่องตรวจจับโลหะแบบลึกนั้นคล้ายกับเครื่องตรวจจับทั่วไป ยกเว้นรายละเอียดทางเทคนิคบางประการ นอกจากนี้ยังมีความไวที่เพิ่มขึ้นต่อวัตถุโลหะที่แตกต่างกัน ซึ่งทำให้สามารถตรวจจับวัตถุเหล่านั้นที่ระดับความลึกที่มากกว่าเมื่อเทียบกับเครื่องตรวจจับโลหะทั่วไป นอกจากนี้ยังมีฟังก์ชั่นการค้นหาแบบเลือกสรรนั่นคือความสามารถในการค้นหาวัตถุที่มีขนาดที่แน่นอนโดยไม่ตอบสนองต่อวัตถุที่ไม่ตรงกับพารามิเตอร์

แผนผังของเครื่องตรวจจับโลหะแบบลึก

มันค่อนข้างง่าย แม้จะดูซับซ้อนก็ตาม เครื่องตรวจจับโลหะประกอบด้วยสองส่วน ได้แก่ การรับและส่งสัญญาณ อุปกรณ์หลักคือเครื่องกำเนิดเครื่องส่งสัญญาณความถี่สูง เสาอากาศแบบวงสองอัน โดยอันหนึ่งทำหน้าที่เป็นเครื่องส่งสัญญาณ และอันที่สองทำหน้าที่เป็นเครื่องรับ ต้องอยู่ในตำแหน่งที่มุม 90 องศาซึ่งกันและกันอย่างเคร่งครัดเพื่อป้องกันไม่ให้เสาอากาศรับรับสัญญาณของเครื่องกำเนิด เมื่อพบวัตถุที่เป็นโลหะ สนามแม่เหล็กที่สร้างขึ้นโดยเครื่องกำเนิดไฟฟ้าจะบิดเบี้ยวและต่อมาถูกรับโดยเสาอากาศรับสัญญาณ ในกรณีนี้ มวลของวัตถุที่เป็นโลหะถูกใช้เป็นแหล่งรังสี โดยส่งพลังงานที่ผลิตไปยังเสาอากาศรับสัญญาณ

วงจรรับสัญญาณเครื่องตรวจจับโลหะ

อุปกรณ์ส่งสัญญาณประกอบด้วยไทริสเตอร์ที่มีกำลัง 0.25 ถึง 1 W และเครื่องกำเนิดเสียงที่มีความถี่ 200 Hz เมื่อพบวัตถุที่เป็นโลหะ ผู้ปฏิบัติงานจะได้ยินเสียงที่ความถี่ 200 เฮิรตซ์ ซึ่งความแรงของเสียงนั้นขึ้นอยู่กับขนาดของวัตถุที่พบและระยะห่างจากวัตถุนั้น

เครื่องรับตัวตรวจจับซึ่งมีวงจรออสซิลเลชันตอบสนองต่อความถี่ 120 kHz และประกอบด้วยไดโอดสองตัว แอมพลิฟายเออร์สามารถเป็นเครื่องกำเนิดความถี่ต่ำใด ๆ ก็ตามที่สามารถพบได้ในวิทยุเก่า เครื่องขยายเสียงที่มีทรานซิสเตอร์จำนวน 5-6 ชิ้นก็เพียงพอแล้ว ทรานซิสเตอร์ยังใช้เป็นเครื่องขยายกระแสสำหรับเครื่องมือชี้ ซึ่งช่วยให้สามารถวัดระดับของสัญญาณที่ได้รับได้ นั่นคืออุปกรณ์ประกอบด้วยตัวบ่งชี้สองประเภท - ภาพและเสียง ความถี่ในการทำงานจะถูกปรับเพื่อไม่ให้รบกวนการทำงานของเครื่องรับสัญญาณ

วงจรส่งสัญญาณ

ชิ้นส่วนและเครื่องมือที่จำเป็นสำหรับการประกอบ

ในการประกอบเครื่องตรวจจับโลหะ คุณต้องเตรียมชุดชิ้นส่วนและเครื่องมือที่จำเป็นก่อน

ในกรณีของเครื่องตรวจจับโลหะแบบพัลส์โดยประมาณ ส่วนรายการจะมีลักษณะเช่นนี้:

  1. ตัวเก็บประจุด้วยไฟฟ้าที่มีแรงดันไฟฟ้าอย่างน้อย 16 V ในความจุต่อไปนี้: ตัวเก็บประจุ 2 ตัวที่มีความจุ 10 μF หนึ่งตัวที่มีความจุ 2200 μF, 2 ชิ้น - 1 μF
  2. ตัวเก็บประจุแบบเซรามิก: 1 ชิ้นที่มีความจุ 1 nf
  3. ตัวเก็บประจุแบบฟิล์มที่มีค่าแรงดันไฟฟ้าต่ำสุด เช่น 63 V - 2 ตัว ตัวละ 100 nf
  4. ตัวต้านทาน 0.125 W: 1 k - หนึ่ง, 1.6 k - หนึ่ง, 47 k - หนึ่ง, 62 k - สอง, 100 k - หนึ่ง, 120 k - หนึ่ง, 470 k - หนึ่ง, 2 โอห์ม - หนึ่ง, 100 โอห์ม - หนึ่ง 470 โอห์ม - หนึ่ง, 150 โอห์ม - หนึ่ง
  5. ตัวต้านทาน 0.25 W: 10 โอห์ม - หนึ่งตัว
  6. ตัวต้านทาน 0.5 W: 390 โอห์ม - หนึ่ง
  7. ตัวต้านทาน 1 วัตต์: 220 โอห์ม - หนึ่งตัว
  8. ตัวต้านทานแบบปรับค่าได้: 10 k – หนึ่ง, 100 k – หนึ่ง,
  9. ทรานซิสเตอร์: BC 557 – หนึ่ง, BC 547 – หนึ่ง, IRF 740 – หนึ่ง,
  10. ไดโอด: 1N4148 - สอง, 1N4007 - หนึ่ง
  11. ไมโครวงจร: K157 UD2, NE555.
  12. แผงสำหรับแต่ละของพวกเขา

ชิ้นส่วนเครื่องตรวจจับโลหะ

จากเครื่องมือเมื่อปฏิบัติงานคุณจะต้อง:

  • หัวแร้ง ดีบุก หัวแร้งพิเศษ อุปกรณ์บัดกรีอื่นๆ
  • ชุดไขควง คีมตัดลวด คีม และเครื่องมือประปาอื่นๆ
  • วัสดุสำหรับการผลิตแผงวงจรพิมพ์

ขั้นตอนการประกอบเครื่องตรวจจับโลหะ

กระบวนการประกอบเครื่องตรวจจับโลหะแบบลึกด้วยมือของคุณเองมีขั้นตอนต่อไปนี้:

ในขั้นตอนแรกจำเป็นต้องประกอบชิ้นส่วนอิเล็กทรอนิกส์ ได้แก่ ชุดควบคุม

กระบวนการทีละขั้นตอนมีลักษณะดังนี้:

  • ตัด PCB ตามขนาดที่ต้องการ
  • การเตรียมการออกแบบ PCB และถ่ายโอนไปยังบอร์ดโดยตรง
  • การเตรียมสารละลายแกะสลัก ประกอบด้วยเกลือแกง อิเล็กโทรไลต์ และไฮโดรเจนเปอร์ออกไซด์
  • การแกะสลักกระดานและเจาะรูทางเทคโนโลยี
  • การบัดกรีบอร์ดโดยใช้หัวแร้ง
  • ถัดมาเป็นขั้นตอนที่สำคัญที่สุดในการประกอบชุดควบคุม นี่คือการเลือก การค้นหา และการบัดกรีชิ้นส่วนลงบนบอร์ดโดยตรง
  • การพันขดลวดทดสอบ มีหลายทางเลือกสำหรับการม้วนมัน ตัวเลือกที่ง่ายที่สุดคือใช้ลวด PEV ขนาด 0.5 แล้วหมุน 25 ครั้งบนโครงที่เหมาะสมซึ่งมีเส้นผ่านศูนย์กลางประมาณ 19-20 ซม.

ตัวเลือกที่ดีที่สุดคือการบัดกรีทุกอย่างโดยตรง และหลังจากการตั้งค่าเสร็จสิ้น ให้เลือกตัวเชื่อมต่อและอะแดปเตอร์ที่จำเป็น ไม่ควรบิดเพราะจะส่งผลเสียต่อความไวของอุปกรณ์

ตัวเลือกที่ดีประการที่สองคือการสร้างวงแหวนจากลวดคู่บิด คุณจะต้องใช้สายไฟประมาณ 2.5 - 2.7 ม.

เพื่อให้ได้ความไวสูงสุด ให้ทำดังต่อไปนี้:

  1. หมุนลวด 25 รอบ
  2. ทำการทดสอบโดยการตัดลวดชิ้นเล็กๆ และสังเกตความไวที่เพิ่มขึ้น
  3. ต้องทำจนกว่าความไวจะเริ่มลดลง
  4. นับจำนวนรอบ หมุนคอยล์รุ่นสุดท้าย เพิ่ม 1-2 รอบ ดังนั้นจึงได้ค่าความไวสูงสุด

เมื่องานหลักเสร็จสิ้น ชุดควบคุม คอยล์ และชิ้นส่วนอื่นๆ จะถูกยึดเข้าที่บนแกน สามารถเปิดและตรวจสอบเครื่องตรวจจับโลหะได้

ปัญหาที่อาจเกิดขึ้นระหว่างการประกอบ

  • อุปกรณ์ที่ประกอบไม่ทำปฏิกิริยากับวัตถุที่เป็นโลหะ สาเหตุอาจเกิดจากการพังของไดโอดหรือทรานซิสเตอร์ จำเป็นต้องเปลี่ยนชิ้นส่วนที่ชำรุด
  • ความร้อนที่มากเกินไปของทรานซิสเตอร์ คุณควรติดตั้งตัวต้านทานที่มีความต้านทานต่ำกว่าโดยลดค่าลงจนกว่าความร้อนจะหยุดลง

การประกอบเครื่องตรวจจับโลหะประเภทนี้ไม่ยากเกินไป โดยต้องปฏิบัติตามกฎและคำแนะนำทั้งหมดอย่างเคร่งครัด

นักวิทยุสมัครเล่นหลายคนใฝ่ฝันที่จะทำเครื่องตรวจจับโลหะด้วยมือของตัวเอง สามารถใช้ตรวจจับวัตถุที่เป็นโลหะในพื้นดินที่ระดับความลึกต่างๆ บนอินเทอร์เน็ต คุณจะพบรูปถ่ายของวงจรเครื่องตรวจจับโลหะจำนวนมากที่ใช้งานง่าย นักวิทยุสมัครเล่นมือใหม่ก็ทำได้

ประกอบง่าย

ตัวอย่างเช่น มาดูวงจรของเครื่องตรวจจับโลหะแบบธรรมดากัน เป็นประเภทพัลส์ แต่เนื่องจากความเรียบง่ายของการออกแบบจึงไม่สามารถแยกแยะระหว่างประเภทของโลหะได้ ดังนั้นจึงไม่สามารถใช้งานอุปกรณ์ดังกล่าวในพื้นที่ที่พบวัตถุที่ทำจากโลหะที่ไม่ใช่เหล็กได้

วิธีการประกอบอุปกรณ์

ในการประกอบวงจรเครื่องตรวจจับโลหะแบบง่าย ๆ ด้วยมือของคุณเอง คุณจะต้องมีเครื่องมือและชิ้นส่วนดังต่อไปนี้:

  • การมีอยู่ของวงจรไมโคร KR1006VI1 และทรานซิสเตอร์ IRF740
  • การปรากฏตัวของไมโครวงจร K157UD2 และทรานซิสเตอร์ VS547
  • ตัวนำทองแดง 0.5 มม. (PEV);
  • ทรานซิสเตอร์ NPN;
  • ตัวเรือนและวัสดุต่างๆ
  • บัดกรี, ฟลักซ์, หัวแร้ง

รายละเอียดอื่น ๆ แสดงอยู่ในแผนภาพ เพื่อให้วงจรประกอบยึดแน่นหนาควรเตรียมกล่องพลาสติกไว้

แท่งสามารถทำได้โดยใช้ท่อพลาสติกเส้นผ่านศูนย์กลางขนาดเล็ก จะมีการติดตั้งคอยล์ตรวจจับโลหะที่ส่วนล่าง


จุดเริ่มต้นของการทำงาน

แผนภาพวงจรของเครื่องตรวจจับโลหะที่ใช้ทรานซิสเตอร์เป็นตัวเลือกทั่วไปสำหรับหลายรุ่น การประกอบเริ่มต้นด้วยการผลิตแผงวงจรพิมพ์ ถัดไปองค์ประกอบวิทยุทั้งหมดจะถูกติดตั้งตรงตามที่แสดงในแผนภาพ

เพื่อให้มั่นใจว่าอุปกรณ์ทำงานได้อย่างเสถียร จึงมีการใช้ตัวเก็บประจุแบบฟิล์มในวงจร ซึ่งจะทำให้คุณสามารถใช้มันในสภาพอากาศหนาวเย็นได้โดยไม่มีปัญหาใดๆ

ประเภทพลังงานสำหรับอุปกรณ์

อุปกรณ์สามารถทำงานได้บนแรงดันไฟฟ้า 9-12 V เนื่องจากมีพลังงานเพียงพอจึงใช้พลังงานอย่างเข้มข้น ขอแนะนำให้ติดตั้งแบตเตอรี่สูงสุด 3 ก้อนและเชื่อมต่อเป็นวงจรขนาน คุณสามารถใช้แบตเตอรี่ขนาดเล็กที่มีเครื่องชาร์จได้ ด้วยความสามารถนี้ เครื่องตรวจจับโลหะจึงทำงานได้นานขึ้น

การติดตั้งคอยล์

มีประเภทและรูปแบบที่แตกต่างกันสำหรับการผลิตเครื่องตรวจจับโลหะ แต่ในรุ่นพัลซิ่งจะอนุญาตให้ติดตั้งขดลวดได้อย่างไม่ถูกต้อง เมื่อทำแมนเดรล การม้วนควรมีมากถึง 25 รอบ และเส้นผ่านศูนย์กลางของแหวนควรอยู่ที่ 1900-200 มม.

ขดลวดทุกรอบจะต้องหุ้มด้วยเทปไฟฟ้า การลดจำนวนรอบลงเหลือ 22 รอบ และเส้นผ่านศูนย์กลางด้าม 270 มม. จะช่วยให้คุณตรวจจับวัตถุในตำแหน่งที่ลึกยิ่งขึ้น หน้าตัดของลวดบนขดลวดคือ 0.5 มม.

เมื่อขดลวดพร้อมให้ติดเข้ากับตัวเรือนที่ทนทานและมีความแข็งแกร่งเพียงพอซึ่งไม่ควรมีชิ้นส่วนที่เป็นโลหะ มิฉะนั้น จะสามารถป้องกันสนามแม่เหล็กได้ และการทำงานของเครื่องตรวจจับโลหะจะหยุดชะงัก ตัวเครื่องอาจทำจากไม้หรือพลาสติกก็ได้แต่เพื่อให้สามารถทนต่อแรงกระแทกต่างๆที่อาจทำให้ขดลวดเสียหายได้

ควรบัดกรีสายไฟเข้ากับตัวนำหลายแกน ตัวเลือกที่ดีที่สุดคือสายไฟแบบสองแกน


การติดตั้งวงจรเครื่องตรวจจับโลหะที่ไม่ใช่เหล็กมีความซับซ้อนกว่าเล็กน้อย และต้องสังเกตความแม่นยำสูงในการผลิตขดลวด จำนวนรอบถึง 100 ชิ้น และใช้ท่อไวนิลเป็นแกนกลาง ฟอยล์ถูกพันไว้ที่ด้านบนของขดลวด ซึ่งก่อตัวเป็นตะแกรงไฟฟ้าสถิต

การตั้งค่าอุปกรณ์

หากการติดตั้งวงจรเสร็จสิ้นแล้ว เครื่องตรวจจับโลหะก็ไม่จำเป็นต้องตั้งค่าเพิ่มเติม ตัวบ่งชี้ความไวของมันจะสูงสุด แต่สามารถปรับแบบละเอียดได้ผ่านความต้านทานตัวแปร R13 จะต้องดำเนินการจนกว่าการคลิกที่เกิดขึ้นไม่บ่อยจะเริ่มขึ้นในหูฟัง

หากการปรับล้มเหลว จะต้องเปลี่ยนความต้านทานเป็น R12 เมื่อปรับตัวต้านทานไว้ตรงกลางจะถือว่าปกติ

ออสซิลโลสโคปเหมาะสำหรับการตรวจสอบอุปกรณ์ วัดความถี่ของทรานซิสเตอร์ T2 และพัลส์ควรอยู่ได้นานถึง 150 มิลลิวินาที ความถี่ในการทำงานที่เหมาะสมคือสูงถึง 150 Hz


วิธีการใช้งานอุปกรณ์

คุณไม่ควรรีบเร่งและเริ่มทำงานทันทีหลังจากเปิดเครื่องตรวจจับโลหะ มันควรจะเสถียร ดังนั้นคุณต้องรอถึง 20 วินาที หลังจากปรับตัวต้านทานให้เหมาะสมแล้ว คุณก็สามารถเริ่มมองหาโลหะได้

บันทึก!

ภาพวงจรเครื่องตรวจจับโลหะ

บันทึก!

บันทึก!

กำลังโหลด...กำลังโหลด...