"теория вероятности в заданиях егэ и огэ". Простые задачи по теории вероятности

Приведенные к настоящему моменту в открытом банке задач ЕГЭ по математике (mathege.ru), решение которых основано на одной лишь формуле, представляющей собой классическое определение вероятности.

Понять формулу проще всего на примерах.
Пример 1. В корзине 9 красных шаров и 3 синих. Шары различаются только цветом. Наугад (не глядя) достаём один из них. Какова вероятность того, что выбранный таким образом шар окажется синего цвета?

Комментарий. В задачах по теории вероятности происходит нечто (в данном случае наше действие по вытаскиванию шара), что может иметь разный результат - исход. Нужно заметить, что на результат можно смотреть по-разному. "Мы вытащили какой-то шар" - тоже результат. "Мы вытащили синий шар" - результат. "Мы вытащили именно вот этот шар из всех возможных шаров" - такой наименее обобщенный взгляд на результат называется элементарным исходом. Именно элементарные исходы имеются в виду в формуле для вычисления вероятности.

Решение. Теперь вычислим вероятность выбора синего шара.
Событие А: "выбранный шар оказался синего цвета"
Общее число всех возможных исходов: 9+3=12 (количество всех шаров, которые мы могли бы вытащить)
Число благоприятных для события А исходов: 3 (количество таких исходов, при которых событие А произошло, - то есть, количество синих шаров)
P(A)=3/12=1/4=0,25
Ответ: 0,25

Посчитаем для той же задачи вероятность выбора красного шара.
Общее число возможных исходов останется тем же, 12. Число благоприятных исходов: 9. Искомая вероятность: 9/12=3/4=0,75

Вероятность любого события всегда лежит в пределах от 0 до 1.
Иногда в повседневной речи (но не в теории вероятности!) вероятность событий оценивают в процентах. Переход между математической и разговорной оценкой осуществляется путем умножения (или деления) на 100%.
Итак,
При этом вероятность равна нулю у событий, которые не могут произойти - невероятны. Например, в нашем примере это была бы вероятность вытащить из корзины зеленый шар. (Число благоприятных исходов равно 0, Р(А)=0/12=0, если считать по формуле)
Вероятность 1 имеют события, которые абсолютно точно произойдут, без вариантов. Например, вероятность того, что «выбранный шар окажется или красным или синим» - для нашей задачи. (Число благоприятных исходов: 12, Р(А)=12/12=1)

Мы рассмотрели классический пример, иллюстрирующий определение вероятности. Все подобные задачи ЕГЭ по теории вероятности решаются применением данной формулы.
На месте красных и синих шаров могут быть яблоки и груши, мальчики и девочки, выученные и невыученные билеты, билеты, содержащие и не содержащие вопрос по какой-то теме (прототипы , ), бракованные и качественные сумки или садовые насосы (прототипы , ) – принцип остается тем же.

Немного отличаются формулировкой задачи теории вероятности ЕГЭ, где нужно вычислить вероятность выпадения какого-то события на определенный день. ( , ) Как и в предыдущих задачах нужно определить, что является элементарным исходом, после чего применить ту же формулу.

Пример 2. Конференция длится три дня. В первый и второй день выступают по 15 докладчиков, в третий день – 20. Какова вероятность того, что доклад профессора М. выпадет на третий день, если порядок докладов определяется жеребьевкой?

Что здесь является элементарным исходом? – Присвоение докладу профессора какого-то одного из всех возможных порядковых номеров для выступления. В жеребьевке участвует 15+15+20=50 человек. Таким образом, доклад профессора М. может получить один из 50 номеров. Значит, и элементарных исходов всего 50.
А какие исходы благоприятные? – Те, при которых окажется, что профессор будет выступать в третий день. То есть, последние 20 номеров.
По формуле вероятность P(A)= 20/50=2/5=4/10=0,4
Ответ: 0,4

Жеребьевка здесь представляет собой установление случайного соответствия между людьми и упорядоченными местами. В примере 2 установление соответствия рассматривалось с точки зрения того, какое из мест мог бы занять конкретный человек. Можно к той же ситуации подходить с другой стороны: кто из людей с какой вероятностью мог бы попасть на конкретное место (прототипы , , , ):

Пример 3. В жеребьевке участвуют 5 немцев, 8 французов и 3 эстонца. Какова вероятность того, что первым (/вторым/седьмым/последним – не важно) будет выступать француз.

Количество элементарных исходов – количество всех возможных людей, которые могли бы по жеребьевке попасть на данное место. 5+8+3=16 человек.
Благоприятные исходы – французы. 8 человек.
Искомая вероятность: 8/16=1/2=0,5
Ответ: 0,5

Немного отличается прототип . Остались задачи про монеты () и игральные кости (), несколько более творческие. Решение этих задач можно посмотреть на страницах прототипов.

Приведем несколько примеров на бросание монеты или кубика.

Пример 4. Когда подбрасываем монету, какова вероятность выпадения решки?
Исходов 2 – орел или решка. (считается, что монета никогда не падает на ребро) Благоприятный исход – решка, 1.
Вероятность 1/2=0,5
Ответ: 0,5.

Пример 5. А если подбрасываем монету два раза? Какова вероятность того, что оба раза выпадет орел?
Главное определить, какие элементарные исходы будем рассматривать при подбрасывании двух монет. После подбрасывания двух монет может получиться один из следующих результатов:
1) PP – оба раза выпала решка
2) PO – первый раз решка, второй раз орел
3) OP – первый раз орел, второй раз решка
4) OO – оба раза выпал орел
Других вариантов нет. Значит, элементарных исходов 4. Благоприятный из них только первый, 1.
Вероятность: 1/4=0,25
Ответ: 0,25

Какова вероятность того, что из двух подбрасываний монеты один раз выпадет решка?
Количество элементарных исходов то же, 4. Благоприятные исходы – второй и третий, 2.
Вероятность выпадения одной решки: 2/4=0,5

В таких задачах может пригодиться ещё одна формула.
Если при одном бросании монеты возможных вариантов результата у нас 2, то для двух бросаний результатов будет 2·2=2 2 =4 (как в примере 5), для трех бросаний 2·2·2=2 3 =8, для четырех: 2·2·2·2=2 4 =16, … для N бросаний возможных результатов будет 2·2·...·2=2 N .

Так, можно найти вероятность выпадения 5 решек из 5 бросаний монеты.
Общее число элементарных исходов: 2 5 =32.
Благоприятных исходов: 1. (РРРРР – все 5 раз решка)
Вероятность: 1/32=0,03125

То же верно и для игральной кости. При одном бросании возможных результатов здесь 6. Значит, для двух бросаний: 6·6=36, для трех 6·6·6=216, и т. д.

Пример 6. Бросаем игральную кость. Какова вероятность, что выпадет четное число?

Всего исходов: 6, по числу граней.
Благоприятных: 3 исхода. (2, 4, 6)
Вероятность: 3/6=0,5

Пример 7. Бросаем две игральные кости. Какова вероятность, что в сумме выпадет 10? (округлить до сотых)

Для одного кубика 6 возможных исходов. Значит, для двух, по вышеупомянутому правилу, 6·6=36.
Какие исходы будут благоприятными для того, чтоб в сумме выпало 10?
10 надо разложить на сумму двух чисел от 1 до 6. Это можно сделать двумя способами: 10=6+4 и 10=5+5. Значит, для кубиков возможны варианты:
(6 на первом и 4 на втором)
(4 на первом и 6 на втором)
(5 на первом и 5 на втором)
Итого, 3 варианта. Искомая вероятность: 3/36=1/12=0,08
Ответ: 0,08

Другие типы задач B6 будут рассмотрены в одной из следующих статей «Как решать».

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Ключевые задачи по теории вероятностей Подготовка К ОГЭ № 9 МБОУ «Гимназия №4 им. А.С. Пушкина» Автор-составитель: Софина Н.Ю.

2 слайд

Описание слайда:

Основные проверяемые требования к математической подготовке № 9 ОГЭ по математике Решать практические задачи, требующие систематического перебора вариантов; сравнивать шансы наступления случайных событий, оценивать вероятности случайного события, сопоставлять и исследовать модели реальной ситуации с использованием аппарата вероятности и статистики. № 9 – базовое задание. Максимальный балл за выполнение задания - 1.

3 слайд

Описание слайда:

Вероятностью события A называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместимых событий, которые могут произойти в результате одного испытания или наблюдения Классическое определение вероятности Напомним формулу для вычисления классической вероятности случайного события Р = n m

4 слайд

Описание слайда:

Классическое определение вероятности Пример: Родительский комитет закупил 40 кижек-раскрасок для подарков детям на окончание учебного года. Из них 14 по сказкам А.С. Пушкина и 26 по сказкам Г.Х.Андерсена. Подарки распределяются случайным образом. Найдите вероятность того, что Насте достанется книжка-раскраска по сказкам А.С. Пушкина. Решение: m= 14; n= 14 +26=40 Р= 14/40= 0,35 Ответ: 0, 35.

5 слайд

Описание слайда:

Пример: На экзамен было вынесено 60 вопросов. Иван не выучил 3 из них. Найдите вероятность того, что ему попадётся выученный вопрос. Решение: Здесь n=60. Иван не выучил 3, значит выучил все остальные, т.е. m= 60-3=57. Р=57/60=0,95. Классическое определение вероятности Ответ: 0,95.

6 слайд

Описание слайда:

«Порядок определяется жеребьёвкой» Пример: В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные- из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая пятой, окажется из Китая. Решение: В условии задачи есть «волшебное» слово «жребий», значит мы забываем о порядке выступления. Т.о., m= 20-8-7=5 (из Китая); n=20. Р= 5/20 = 0,25. Ответ: 0, 25.

7 слайд

Описание слайда:

Пример: Научная конференция проводится в 5 дней. Всего запланировано 75 докладов- первые 3 дня по 17 докладов, остальные распределены поровну между 4-м и 5-м днями. Порядок докладов определяется жеребьёвкой. Какова вероятность того, что доклад профессора Иванова окажется запланированным на последний день конференции? Решение: Занесём данные в таблицу. Получили, что m=12; n=75. Р=12/75= 0,16. Ответ: 0,16. «Порядок определяется жеребьёвкой» День I II III IV V Всего Число докладов 17 17 17 12 12 75

8 слайд

Описание слайда:

Частота события Точно так же, как и вероятность, находится частота события, задания на которую также есть в прототипах. В чём же отличие? Вероятность- это прогнозируемая величина, а частота- констатация факта. Пример: Вероятность того, что новый планшет в течение года поступит в гарантийный ремонт, равна 0,045. В некотором городе из 1000 проданных планшетов в течение года в гарантийную мастерскую поступила 51 штука. На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе? Решение: Найдём частоту события: 51/1000=0,051. А вероятность равна 0,045 (по условию).Значит в этом городе событие «гарантийный ремонт» происходит чаще, чем предполагалось. Найдём разницу ∆= 0,051- 0,045= 0,006. При этом, надо учесть, что нам НЕ важен знак разности, а лишь её абсолютное значение. Ответ: 0,006.

9 слайд

Описание слайда:

Задачи с перебором вариантов («монеты», «матчи») Пусть k – количество бросков монеты, тогда количество всевозможных исходов: n = 2k. Пример: В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз. Решение: Варианты выпадения монеты: ОО; ОР; РР; РО. Т.о., n=4. Благоприятные исходы: ОР и РО. Т.е., m= 2. Р=2/4 = 1/2 = 0,5. Ответ: 0,5.

10 слайд

Описание слайда:

Пример: Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд будет первая владеть мячом. Команда "Меркурий" по очереди играет с командами "Марс", "Юпитер", "Уран". Найдите вероятность того, что во всех матчах право владеть мячом выиграет команда "Меркурий"? Задачи с перебором вариантов («монеты», «матчи») Решение: Обозначим право владения первой мячом команды "Меркурий" в матче с одной из других трех команд как "Решка". Тогда право владения второй мячом этой команды – «Орел». Итак, напишем все возможные исходы бросания монеты три раза. «О» – орел, «Р» – решка. ; т.е., n=8; m=1. Р=1/8= 0,125. Ответ: 0,125 n = 23 «Марс» «Юпитер» «Уран» О О О О О Р О Р О О Р Р Р О О Р О Р Р Р Р

11 слайд

Описание слайда:

Задачи на «кубики» (игральные кости) Пусть k – количество бросков кубика, тогда количество всевозможных исходов: n = 6k. Пример: Даша дважды бросает игральный кубик. Найдите вероятность того, что сумме у нее выпало 8 очков. Результат округлите до сотых. Ответ: 0,14. Решение: В сумме на двух кубиках должно выпасть 8 очков. Это возможно, если будут следующие комбинации: 2 и 6 6 и 2 3 и 5 5 и 3 4 и 4 m= 5 (5 подходящих комбинаций) n =36 Р= 5/36 = 0,13(8)

12 слайд

Описание слайда:

Независимые события и закон умножения Вероятность нахождения и 1-го, и 2-го, и n-го события находятся по формуле: Р= Р1*Р2*…*Рn Пример: Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся. Результат округлите до сотых. Ответ: 0,02. Решение: Результат каждого следующего выстрела не зависит от предыдущих. Поэтому события «попал при первом выстреле», «попал при втором выстреле» и т.д. независимы. Вероятность каждого попадания равна 0,8. Значит, вероятность промаха равна 1 – 0,8 = 0,2. 1 выстрел: 0,8 2 выстрел: 0,8 3 выстрел: 0,8 4 выстрел: 0,2 5 выстрел: 0,2 По формуле умножения вероятностей независимых событий, получаем: Р= 0,8 ∙ 0,8 ∙ 0,8 ∙ 0,2 ∙ 0,2 = 0,02048 ≈ 0,02.

13 слайд

Описание слайда:

Сочетания законов «и» и законов «или» Пример: Офис закупает канцелярию для сотрудников 3 различных фирм. Причём продукция 1-ой фирмы составляет 40% всех поставок, а остальных 2-х- поровну. Выяснилось, что 2% ручек 2-ой фирмы- бракованные. Процент брака в 1-ой и 3-ей фирме соответственно 1% и 3%. Сотрудник А взял ручку из новой поставки. Найдите вероятность того, что она будет исправна. Решение: Продукция 2и 3 фирм составляет (100%-40%):2=30% от поставок. Р(брака)= 0,4· 0,01+ 0,3·0,02 + 0,3·0,03= 0,019. Р(исправных ручек) = 1- 0,019 = 0,981. Ответ: 0,981.

Легкие задания

На столе лежит 25 пирожков: 7 – с повидлом, 9 – с картошкой, остальные с капустой. Какова вероятность, что случайно выбранный пирожок окажется с капустой?

0,36

В такси работает 40 автомобилей: 14 – марки “Лада”, 8 – марки “Рено”, 2 – марки “Мерседес”, а остальные – марки “Шкода”. Какова вероятность того, что на Ваш вызов приедет “Мерседес”?

0,05

Определите вероятность того, что при бросании игрального кубика выпадет число не меньше трех.

Ира, Дима, Вася, Наташа и Андрей сдают норматив по бегу на 60 метров. Найдите вероятность того, что быстрее всех пробежит девочка?

Вероятность того, что телефон, купленный в подземном переходе окажется подделкой, составляет 0,83. Какова вероятность того, что купленный в переходе телефон окажется не подделкой?

0,17

В баскетбольном турнире принимает участие 20 команд, включая команду “Мужики”. Все команды разбивают на 4 группы: A, B, C, D. Какова вероятность того, что команда “Мужики” окажется в группе A?

0,25

В лотерейном мешке содержатся бочонки с номерами от 5 до 94 включительно. Какова вероятность, того, что извлеченный из мешка бочонок содержит двузначное число? Ответ округлите до сотых.

0,94

Перед экзаменом Игорь дотянул до последнего и успел выучить только 5 билетов из 80. Определите вероятность того, что ему попадется выученный билет.

0,0625

Аня включает радио и случайным образом выбирает радиоволну. Всего ее радиоприемник ловит 20 радиоволн и всего на 7 из них в данный момент играет музыка. Най­ди­те ве­ро­ят­ность того, что Аня попадет на музыкальную волну.

0,35

В каждой двадцатой бутылке газировки под крышкой спрятан код с выигрышем. Определите вероятность того, что в купленной бутылке под крышкой окажется выигрышный код.

0,05

Задания посложнее

Какова вероятность, что случайно выбранное трехзначное число делится на 5?

0,2

Записан рост (в см) пяти учащихся: 166, 158, 132, 136, 170. На сколько отличается среднее арифметическое этого набора чисел от его медианы?

По статистическим данным одной небольшой страны известно, что вероятность того, что родившийся младенец окажется мальчиком, равна 0,507. В 2017 г. в этой стране на 1000 родившихся младенцев в среднем пришлось 486 девочек. Насколько частота рождения девочек в 2017 г. в этой стране отличается от вероятности этого события?

0,007

Игральную кость бросают дважды. Найдите вероятность того, что сумма двух выпавших чисел равна 3 или 7. Ответ округлите до сотых.

0,22

Какова вероятность, что случайно выбранное трехзначное число делится на 2?

0,5

Найдите вероятность того, что при двух бросках монетки решка выпадет ровно 1 раз.

0,5

Игральную кость бросают дважды, найдите вероятность того, что оба раза выпадет число, не меньше трех. Ответ округлите до сотых.

0,31

По статистическим данным одной небольшой страны известно, что вероятность того, что родившийся младенец окажется мальчиком, равна 0,594. В 2017 г. в этой стране на 1000 родившихся младенцев в среднем пришлось 513 девочек. Насколько частота рождения девочек в 2017 г. в этой стране отличается от вероятности этого события?

0,107

Записан рост (в см) пяти учащихся: 184, 145, 176, 192, 174. На сколько отличается среднее арифметическое этого набора чисел от его медианы?

1,8

Средний рост жителей деревни “Великаны” составляет 194 см. Рост Николая Петровича составляет 195 см. Какое из следующих утверждений верно?

1) Обязательно рост одного из жителей деревни равен 194 см.

2) Николай Петрович самый высокий житель деревни.

3) Обязательно найдется хоть один мужчина из этой деревни ниже Николая Петровича.

4) Обязательно найдется хоть один житель из этой деревни ниже Николая Петровича.

4

Сложные задания

Стрелок 4 раза стреляет из ружья по мишеням. Вероятность его точного попадания в мишень при одном выстреле равна 0,5. Найдите вероятность того, что стрелок первые два раза попал в мишень, а последние два раза промахнулся.

0,0625

Вероятность того, что батарейка бракованная, равна 0,05. Покупатель в магазине выбирает случайную упаковку с двумя батарейками. Найдите вероятность того, что обе батарейки окажутся исправными.

0,9025

Стрелок стреляет по мишеням 5 раз подряд. Вероятность попадания в мишень при выстреле равна 0,7. Найдите вероятность того, что стрелок первые четыре раза попал в мишени, а последний раз промахнулся. Результат округлите до сотых.

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом .

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом .

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

Важным частным случаем является ситуация, когда имеется равновероятных элементарных исходов, и произвольные из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле . Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов , прямо в условии написано число всех исходов .

Ответ получаем по формуле .

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков — 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть , где А — это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. .

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. .

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае .

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого - 3, для пятого - 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение , которое обозначается символом 6! и читается «шесть факториал».

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов В нашем случае .

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение .

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

В нашем случае .

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго - 5 способами, третьего - четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: . В общем случае ответ на этот вопрос дает формула для числа сочетаний из элементов по элементам:

В нашем случае .

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

Ответ: 0,98.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие «У. верно решит ровно 9 задач» входит в условие «У. верно решит больше 8 задач», но не относится к условию «У. верно решит больше 9 задач».

Однако, условие «У. верно решит больше 9 задач» содержится в условии «У. верно решит больше 8 задач». Таким образом, если мы обозначим события: «У. верно решит ровно 9 задач» — через А, «У. верно решит больше 8 задач» — через B, «У. верно решит больше 9 задач» через С. То решение будет выглядеть следующим образом:

Ответ: 0,06.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме «Тригонометрия», либо к теме «Внешние углы». По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

Ответ: 0,35.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: — лампочка горит, — лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события «лампочка перегорела», «лампочка горит», «лампочка горит»: , где вероятность события «лампочка горит» подсчитывается как вероятность события, противоположного событию «лампочка не горит», а именно: .

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: .

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.

В данной презентации представлены наиболее часто встречающиеся на экзамене задачи по теории вероятности. Задачи базового уровня. Презентация поможет и учителям на уроках обобщающего повторения, и учащимся при самостоятельной подготовке к экзамену.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

ТЕОРИЯ ВЕРОЯТНОСТЕЙ КЛЮЧЕВЫЕ ЗАДАЧИ Готовимся к ОГЭ

БРОСАНИЕ МОНЕТЫ

1. Монета брошена два раза. Какова вероятность выпадения одного «орла» и одной «решки»? Решение: При бросании одной монеты возможны два исхода – «орёл» или «решка». При бросании двух монет – 4 исхода (2*2=4): «орёл» - «решка» «решка» - «решка» «решка» - «орёл» «орёл» - «орёл» Один «орёл» и одна «решка» выпадут в двух случаях из четырёх. Р(А)=2:4=0,5. Ответ: 0,5.

2. Монета брошена три раза. Какова вероятность выпадения двух «орлов» и одной «решки»? Решение: При бросании трёх монет возможны 8 исходов (2*2*2=8): «орёл» - «решка» - «решка» «решка» - «решка» - «решка» «решка» - «орёл» - «решка» «орёл» - «орёл» - «решка» «решка» - «решка» -«орёл» «решка» - «орёл» - «орёл» «орёл» - «решка» - «орёл» «орёл» - «орёл» - «орёл» Два «орла» и одна «решка» выпадут в трёх случаях из восьми. Р(А)=3:8=0,375. Ответ: 0,375.

3. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что орел не выпадет ни разу. Решение: При бросании четырёх монет возможны 16 исходов: (2*2*2*2=16): Благоприятных исходов – 1 (выпадут четыре решки). Р(А)=1:16=0,0625. Ответ: 0,0625.

ИГРА В КОСТИ

4. Определите вероятность того, что при бросании кубика выпало больше трёх очков. Решение: Всего возможных исходов – 6. Числа большие 3 - 4, 5, 6 . Р(А)= 3:6=0,5. Ответ: 0,5.

5. Брошена игральная кость. Найдите вероятность того, что выпадет чётное число очков. Решение: Всего возможных исходов – 6. 1, 3, 5 - нечётные числа; 2, 4, 6 -чётные числа. Вероятность выпадения чётного числа очков равна 3:6=0,5. Ответ: 0,5.

6. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых. Решение: У данного действия - бросания двух игральных костей всего 36 возможных исходов, так как 6² = 36. Благоприятные исходы: 2 6 3 5 4 4 5 3 6 2 Вероятность выпадения восьми очков равна 5:36 ≈ 0,14. Ответ: 0,14.

7. Дважды бросают игральный кубик. В сумме выпало 6 очков. Найдите вероятность того, что при одном из бросков выпало 5 очков. Решение: Всего исходов выпадения 6 очков - 5: 2 и 4; 4 и 2; 3 и 3; 1 и 5; 5 и 1. Благоприятных исходов - 2. Р(А)=2:5=0,4. Ответ: 0,4.

8. На экзамене 50 билетов, Тимофей не выучил 5 из них. Найдите вероятность того, что ему попадется выученный билет. Решение: Тимофей выучил 45 билетов. Р(А)=45:50=0,9. Ответ: 0,9.

СОРЕВНОВАНИЯ

9. В чемпионате по гимнастике участвуют 20 спортсменов: 8 из России, 7 из США, остальные из Китая. Порядок выступления определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая. Решение: Всего исходов 20. Благоприятных исходов 20-(8+7)=5. Р(А)=5:20=0,25. Ответ: 0,25.

10. На соревнования по метанию ядра приехали 4 спортсмена из Франции, 5 из Англии и 3 из Италии. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что спортсмен, выступающий пятым, будет из Италии. Решение: Число всех возможных исходов – 12 (4 + 5 + 3 = 12). Число благоприятных исходов – 3. Р(А)=3:12=0,25. Ответ: 0,25.

11. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 12 участников из России, в том числе Владимир Орлов. Найдите вероятность того, что в первом туре Владимир Орлов будет играть с каким-либо бадминтонистом из России? Решение: Всего исходов – 25 (Владимир Орлов с 25 бадминтонистами). Благоприятных исходов – (12-1)=11. Р(А)=11:25 = 0,44. Ответ: 0,44.

12. Конкурс исполнителей проводится в 5 дней. Всего заявлено 75 выступлений - по одному от каждой страны. В первый день 27 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса? Решение: Всего исходов – 75. Исполнители из России выступают на третий день. Благоприятных исходов – (75-27):4=12. Р(А)=12: 75 = 0,16. Ответ: 0,16 .

13. Коля выбирает двузначное число. Найдите вероятность того, что оно делится на 5. Решение: Двузначные числа: 10;11;12;…;99. Всего исходов – 90. Числа, делящиеся на 5: 10; 15; 20; 25; …; 90; 95. Благоприятных исходов – 18. Р(А)=18:90=0,2. Ответ: 0,2.

РАЗНЫЕ ЗАДАЧИ НА ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ

14. Фабрика выпускает сумки. В среднем на 170 качественных сумок приходится шесть сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых. Решение: Всего исходов – 176. Благоприятных исходов – 170. Р(А)=170:176 ≈ 0,97. Ответ: 0,97.

15. В среднем из каждых 100 поступивших в продажу аккумуляторов 94 аккумулятора заряжены. Найдите вероятность того, что купленный аккумулятор не заряжен. Решение: Всего исходов – 100. Благоприятных исходов – 100-94=6. Р(А)=6:100=0,06. Ответ: 0,06.

ИСТОЧНИКИ http://mathgia.ru http:// www.schoolmathematics.ru


Loading...Loading...