Принцип классификации стали по назначению. Классификация сталей по назначению

Классификация сталей по химическому составу

По химическому составу стали подразделяют на:

При определении степени легирования содержание углерода во внимание не принимают, марганец и кремний считаются легирующими элементами при их содержании более 1 и 0,8 % соответственно.

Классификация сталей по структуре

Структура стали – менее устойчивый классификационный признак, так как зависит от скорости охлаждения (толщины стенки отливок), степени легирования, режима термообработки и других изменяющихся факторов, но структура готового изделия позволяет объективно оценивать его качество.

Стали по структуре классифицируют в состояниях после отжига и нормализации.

В отожженном состоянии стали подразделяют на:

  • доэвтектоидные – имеющие в структуре избыточный феррит
  • эвтектоидные – структура которых состоит из перлита
  • заэвтектоидные – в структуре которых имеются вторичные карбиды, выделяющиеся из аустенита
  • ледебуритные – в структуре которых содержатся первичные (эвтектические) карбиды
  • аустенитные
  • ферритные

После нормализации стали подразделяют на следующие структурные классы:

  • перлитный
  • аустенитный
  • ферритный

Классификация сталей по назначению

Конструкционные – стали, предназначенные для изготовления деталей машин и элементов строительных конструкций.

Конструкционные стали подразделяются на:

  • обыкновенного качества;
  • улучшаемые;
  • цементируемые;
  • автоматные;
  • высокопрочные;
  • рессорно-пружинные.

Инструментальные – стали, применяемые при изготовлении режущих и измерительных инструментов.

Инструментальные стали подразделяются на подгруппы по изготовлению:

  • для режущего инструмента;
  • для измерительного инструмента;
  • для штампово-прессовой оснастки.

Специального назначения – стали с особыми физическими и механическими свойствами.

Стали специального назначения подразделяются на:

  • нержавеющие (коррозионно-стойкие);
  • жаростойкие;
  • жаропрочные;
  • износостойкие;
  • магнитные;
  • немагнитные и т.д.

Классификация сталей по качеству

По качеству стали классифицируются на:

  • обыкновенного качества – содержащие до 0,06 % серы и 0,07 % фосфора;
  • качественные – содержащие до 0,035 % серы и 0,035 % фосфора;
  • высококачественные – содержащие не более 0,025 % серы и 0,025 % фосфора;
  • особо высококачественные – содержащие не более 0,015 % серы и 0,025 % фосфора.

Под качеством понимается совокупность свойств стали, определяемых металлургическим процессом ее производства (способ выплавки). Однородность химического состава, строение и свойства стали зависят от содержания вредных примесей и газов.

Классификация сталей по степени раскисления

По степени раскисления стали классифицируют на:

  • спокойные (сп);
  • полуспокойные (пс);
  • кипящие (кп).

Раскислением называют процесс удаления кислорода из жидкой стали.

Спокойные стали раскисляют марганцем, алюминием и кремнием в плавильной печи и ковше. Они затвердевают в изложнице спокойно, без газовыделения, с образованием в верхней части слитков усадочной раковины.

Дендритная ликвация вызывает анизотропию механических свойств. Пластические свойства стали в поперечном (по отношению к направлению прокатки или ковки сечении значительно ниже, чем в продольном.

Зональная ликвация приводит к тому, что в верхней части слитка содержание серы, фосфора и углерода увеличивается, а в нижней – уменьшается. Это приводит к значительному ухудшению свойств изделия из такого слитка, вплоть до отбраковки.

Кипящие стали раскисляют только марганцем, что недостаточно. Перед разливкой в них содержится повышенное количество кислорода, который при затвердевании слитка частично реагирует с углеродом и выделяется в виде газовых пузырей окиси углерода, создавая впечатление «кипения» стали.

Кипящая сталь практически не содержит неметаллических включений продуктов раскисления. Эти стали выплавляют низкоуглеродистыми и с очень малым содержанием кремния (менее 0,07 %), но с повышенным количеством газообразных примесей. При прокатке слитков газовые пузыри, заполненные окисью углерода, завариваются. Листовой прокат из такой стали предназначен для изготовления деталей кузовов автомобилей вытяжкой, имеет хорошую штампуемость в холодном состоянии.

Полуспокойные стали по степени их раскисления занимают промежуточное положение между спокойными и кипящими сталями. Частично их раскисляют в плавильной печи и в ковше, а окончательно – в изложнице за счет содержащегося в металле углерода. Ликвация в слитках полуспокойной стали меньше, чем в кипящей, и приближается к ликвации в слитках спокойной стали.

Литература

  1. Материаловедение / Ю.Т. Чумаченко, Г.В. Чумаченко. – Ростов н/Д: Феникс, 2005. – 320 с.
  2. Материаловедение / О.В. Травин, Н.Т. Травина. М.: Металлургия. 1989. 384 с.
  3. Металловедение / А.П. Гуляев. М.: Металлургия, 1986. 544 с.
  4. Материаловедение / А.М. Адаскин, В.М. Зуев. – М.: ПрофОбрИздат, 2001. – 240 с.
  5. Справочник молодого токаря-револьверщика / Е.О. Пешков. М., Высшая школа, 1966. 179 с.
  6. Справочная книга сварщика / А.М. Китаев, Я.А. Китаев. М.: Машиностроение, 1985. – 256 с.
  7. Материалы в приборостроении и автоматике: Справочник / Под ред. Ю.М. Пятина. – М.: Машиностроение, 1982. – 528 с.
  8. Общетехнический справочник / Под общ. ред. Е.А. Скороходова. – М.: Машиностроение, 1989. – 512 с.

Сталь является основным металлическим материалом, применяемым в производстве машин, инструментов и приборов. Ее широкое использование объясняется наличием в этом материале целого комплекса ценных технологических, механических и физико-химических свойств. К тому же, сталь имеет относительно невысокую стоимость и может изготавливаться значительными партиями. Процесс производства этого материала постоянно совершенствуется, благодаря чему свойства и качество стали могут обеспечивать безаварийную эксплуатацию современных машин и приборов при высоких рабочих параметрах.

Общие принципы классификации марок сталей

Основные классификационные признаки сталей: химический состав, назначение, качество, степень раскисления, структура.

  • Стали по химическому составу подразделяют на углеродистые и легированные. По массовой доле углерода и первая, и вторая группы сталей делят на: низкоуглеродистые (менее 0,3% С), среднеуглеродистые (концентрация С находится в пределах 0,3-07%), высокоуглеродистые – с концентрацией углерода более 0,7%.

Легированными называются стали, содержащие, помимо постоянных примесей, добавки, вводимые для повышения механических свойств этого материала.

В качестве легирующих добавок используют хром, марганец, никель, кремний, молибден, вольфрам, титан, ванадий и многие другие, а также сочетание этих элементов в различных процентных соотношениях. По количеству добавок стали делят на низколегированные (легирующих элементов менее 5%), среднелегированные (5-10%), высоколегированные (содержат более 10% добавок).

  • По своему назначению стали бывают конструкционными, инструментальными и материалами специального назначения, обладающими особыми свойствами.

Наиболее обширным классом являются конструкционные стали , которые предназначаются для изготовления строительных конструкций, деталей приборов и машин. В свою очередь, конструкционные стали подразделяют на рессорно-пружинные, улучшаемые, цементуемые и высокопрочные.

Инструментальные стали различают в зависимости от назначения произведенного из них инструмента: мерительного, режущего, штампов горячей и холодной деформации.

Стали специального назначения разделяют на несколько групп: коррозионностойкие (или нержавеющие), жаростойкие, жаропрочные, электротехнические.

  • По качеству стали бывают обыкновенного качества, качественными, высококачественными и особо качественными.

Под качеством стали понимают сочетание свойств, обусловленных процессом её изготовления. К таким характеристикам относятся: однородность строения, химического состава, механических свойств, технологичность. Качество стали зависит от содержания в материале газов – кислорода, азота, водорода, а также вредных примесей – фосфора и серы.

  • По степени раскисления и характеру процесса затвердевания стали бывают спокойными, полуспокойными и кипящими.

Раскислением называют операцию удаления из жидкой стали кислорода, который провоцирует хрупкое разрушение материала при горячих деформациях. Спокойные стали раскисляют с помощью кремния, марганца и алюминия.

  • По структуре разделяют стали в отожженном (равновесном) состоянии и нормализованном. Структурные формы сталей – феррит, перлит, цементит, аустенит, мартенсит, ледебурит и другие.

Влияние углерода и легирующих элементов на свойства стали

Стали промышленного производства являются сложными по химическому составу сплавами железа и углерода. Кроме этих основных элементов, а также легирующих компонентов в легированных сталях, материал содержит постоянные и случайные примеси. От процентного содержания этих компонентов и зависят основные характеристики стали.

Как защитить свои постройки от : профилактика, лечение, советы специалистов.Станки для резки и гибки арматуры: Вы узнаете о том, для чего они нужны, как их использовать и насколько они необходимы на строительной площадке.

В нашем прайс-листе Вы можете ознакомиться с актуальной в Санкт-Петербурге и Ленинградской области.

Определяющее влияние на свойства стали оказывает углерод. После отжига структура этого материала состоит из феррита и цементита, содержание которого увеличивается пропорционально росту концентрации углерода. Феррит является малопрочной и пластичной структурой, а цементит – твердой и хрупкой. Поэтому повышение содержания углерода приводит к увеличению твердости и прочности и снижению пластичности и вязкости. Углерод меняет технологические характеристики стали: обрабатываемость давлением и резанием, свариваемость. Увеличение концентрации углерода приводит к ухудшению обрабатываемости резанием из-за упрочнения и снижения теплопроводности. Отделение стружки от стали с высокой прочностью повышает количество выделяемой теплоты, что провоцирует уменьшение стойкости инструмента. Но низкоуглеродистые стали с малой вязкостью также обрабатываются плохо, так как образуется с трудом удаляемая стружка.

Наилучшую обрабатываемость резанием имеют стали с содержанием углерода 0,3-0,4%.

Увеличение концентрации углерода приводит к снижению способности стали к деформации в горячем и холодном состояниях. Для стали, предназначенной для сложной холодной штамповки, количество углерода ограничено 0,1%.

Хорошей свариваемостью обладают низкоуглеродистые стали. Для сварки средне- и высокоуглеродистых сталей используют подогрев, медленное охлаждение и прочие технологические операции, предотвращающие появление холодных и горячих трещин.

Для получения высоких прочностных свойств количество легирующих компонентов должно быть рациональным. Избыток легирования, исключая введение никеля, приводит к снижению запаса вязкости и провокации хрупкого разрушения.

  • Хром – недефицитный легирующий компонент, оказывает позитивное воздействие на механические свойства стали при его содержании до 2%.
  • Никель – наиболее ценная и дефицитная легирующая добавка, вводимая в концентрации 1-5%. Он наиболее эффективно снижает порог хладноломкости и способствует увеличению температурного запаса вязкости.
  • Марганец, как более дешёвый компонент, часто используют в качестве заменителя никеля. Увеличивает предел текучести, но может сделать сталь чувствительной к перегреву.
  • Молибден и вольфрам – дорогие и дефицитные элементы, применяемые для повышения теплостойкости быстрорежущих сталей.

Принципы маркировки сталей по российской системе

На современном рынке металлопродукции не существует общей системы маркировки сталей, что значительно затрудняет торговые операции, приводя к частым ошибкам при заказе.

В России принята буквенно-цифровая система обозначения, в которой буквами маркируют названия элементов, содержащихся в стали, а цифрами – их количество. Буквами также обозначают способ раскисления. Маркировкой «КП» обозначают кипящие стали, «ПС» – полуспокойные, а «СП» – спокойные стали.

  • Стали обыкновенного качества имеют индекс Ст, после которого указывается условный номер марки от 0 до 6. Затем указывают степень раскисления. Впереди ставят номер группы: А – сталь с гарантированными механическими характеристиками, Б – химическим составом, В – обоими свойствами. Как правило, индекс группы А не ставится. Пример обозначения – Б Ст.2 КП.
  • Для обозначения конструкционных качественных углеродистых сталей впереди указывается двухзначное число, обозначающее содержание С сотыми долями процента. В конце – степень раскисления. Например, сталь 08КП. Качественные инструментальные углеродистые стали впереди имеют букву У, а далее – концентрация углерода двухзначным числом в десятых долях процента – например, сталь У8. Высококачественные стали в конце марки имеют букву А.
  • В марках легированных сталей буквами обозначают легирующие элементы: «Н» – никель, «Х» – это хром, «М» – молибден, «Т» – это титан, «В» – вольфрам, «Ю» - алюминий. В конструкционных легированных сталях впереди указывается содержание С в сотых частях процента. В инструментальных легированных сталях углерод маркируется десятыми долями процента, если содержание этого компонента превышает 1,5% – его концентрация не указывается.
  • Быстрорежущие инструментальные стали обозначены индексом Р и указанием содержания вольфрама в процентах, например, Р18.

Маркировка сталей по американской и европейской системам

Собираетесь купить металлопрокат? В нашем разумные цены и качество производителя.

В США существует несколько систем маркировки сталей, разработанных различными организациями по стандартизации. Для нержавеющих сталей, чаще всего, применяют систему AISI, которая действует и в Европе. Согласно AISI, сталь обозначается тремя цифрами, в отдельных случаях после них идут одна или несколько букв. Первая цифра говорит о классе стали, если она – 2 или 3, то это аустенитный класс, если 4 – ферритный или мартенситный. Следующие две цифры обозначают порядковый номер материала в группе. Буквы обозначают:

  • L – низкую массовую доля углерода, менее 0,03%;
  • S – нормальную концентрацию С, менее 0,08%;
  • N – означает, что добавлен азот;
  • LN – низкое содержание углерода сочетается с добавкой азота;
  • F – повышенную концентрацию фосфора и серы;
  • Se – сталь содержит селен, В – кремний, Cu – медь.

В Европе применяется система EN, которая отличается от российской тем, что в ней сначала перечисляются все легирующие элементы, а затем в том же порядке цифрами указывается их массовая доля. Первая цифра – концентрация углерода в сотых долях процента.

Если легированные стали, конструкционные и инструментальные, кроме быстрорежущих, включают более 5% хотя бы одной легирующей добавки, перед содержанием углерода ставят букву «Х».

Страны ЕС применяют маркировку EN, в некоторых случаях параллельно указывая национальную марку, но с пометкой «устаревшая».

Международные аналоги коррозионно-стойких и жаропрочных сталей

Коррозионно-стойкие стали

Европа (EN)

Германия (DIN)

США (AISI)

Япония (JIS)

СНГ (GOST)

1.4000 X6Cr13 410S SUS 410 S 08Х13
1.4006 X12CrN13 410 SUS 410 12Х13
1.4021 X20Cr13 (420) SUS 420 J1 20Х13
1.4028 X30Cr13 (420) SUS 420 J2 30Х13
1.4031 X39Cr13 SUS 420 J2 40Х13
1.4034 X46Cr13 (420) 40Х13
1.4016 X6Cr17 430 SUS 430 12Х17
1.4510 X3CrTi17 439 SUS 430 LX 08Х17Т
1.4301 X5CrNI18-10 304 SUS 304 08Х18Н10
1.4303 X4CrNi18-12 (305) SUS 305 12Х18Н12
1.4306 X2CrNi19-11 304 L SUS 304 L 03Х18Н11
1.4541 X6CrNiTi18-10 321 SUS 321 08Х18Н10Т
1.4571 X6CrNiMoTi17-12-2 316 Ti SUS 316 Ti 10Х17Н13М2Т

Жаропрочные марки стали

Европа (EN)

Германия (DIN)

США (AISI)

Япония (JIS)

СНГ (GOST)

1.4878 X12CrNiTi18-9 321 H 12Х18Н10Т
1.4845 X12CrNi25-21 310 S 20Х23Н18

Марки быстрорежущих сталей

Марка стали

Аналоги в стандартах США

Страны СНГ ГОСТ

Евронормы

Р0 М2 СФ10-МП

Р2 М10 К8-МП

Р6 М5 К5-МП

Р6 М5 Ф3-МП

Р6 М5 Ф4-МП

Р6 М5 Ф3 К8-МП

Р10 М4 Ф3 К10-МП

Р6 М5 Ф3 К9-МП

Р12 М6 Ф5-МП

Р12 Ф4 К5-МП

Р12 Ф5 К5-МП

Конструкционная сталь

Марка стали

Аналоги в стандартах США

Страны СНГ ГОСТ

Евронормы

Базовый сортамент нержавеющих марок стали

СНГ (ГОСТ)

Евронормы (EN)

Германия (DIN)

США (AISI)

03 Х17 Н13 М2

X2 CrNiMo 17-12-2

03 Х17 Н14 М3

X2 CrNiMo 18-4-3

03 Х18 Н10 Т-У

06 ХН28 МДТ

X3 NiCrCuMoTi 27-23

08 Х17 Н13 М2

X5CrNiMo 17-13-3

08 Х17 Н13 М2 Т

Х6 CrNiMoTi 17-12-2

Х6 CrNiTi 18-10

20 Х25 Н20 С2

X56 CrNiSi 25-20

03 Х19 Н13 М3

02 Х18 М2 БТ

02 Х28 Н30 МДБ

X1 NiCrMoCu 31-27-4

03 Х17 Н13 АМ3

X2 CrNiMoN 17-13-3

03 Х22 Н5 АМ2

X2 CrNiMoN 22-5-3

03 Х24 Н13 Г2 С

08 Х16 Н13 М2 Б

X1 CrNiMoNb 17-12-2

08 Х18 Н14 М2 Б

1.4583 Х10 CrNiMoNb

Х10 CrNiMoNb 18-12

X8 СrNiAlTi 20-20

X3 CrnImOn 27-5-2

Х6 CrNiMoNb 17-12-2

Х12 CrMnNiN 18-9-5

Подшипниковая сталь

Рессорно-пружинная сталь

Марка стали

Аналоги в стандартах США

Страны СНГ ГОСТ

Евронормы

Теплоустойчивая сталь

Марка стали

Аналоги в стандартах США

Страны СНГ ГОСТ

Евронормы

GD Star Rating
a WordPress rating system

Маркировка стали по российской, европейской и американской системам , 4.6 из 5 - всего голосов: 63

Стали классифицируют:

  • - по химическому составу;
  • - структуре;
  • - назначению;
  • - качеству;
  • - степени раскисления.

По химическому составу стали подразделяют:

  • - на углеродистые (низкоуглеродистые до 0,2% С, среднеуглеродистые 0,2-0,45; высокоуглеродистые, содержащие более 0,5% С);
  • - легированные (сумма легирующих элементов у низколегированных сталей до 2,5%; у среднелегированных 2,5-10,0%; у высоколегированных - более 10,0%).

При определении степени легирования содержание углерода во внимание не принимают, марганец и кремний считаются легирующими элементами при их содержании более 1 и 0,8% соответственно.

При обозначении марок стали используют следующие обозначения химических элементов: Г - марганец, М - молибден, Д - медь, Р - бор, С - кремний, В - вольфрам, Ю - алюминий, П - фосфор, Н - никель, Ф - ванадий, Б - ниобий, А - азот, X - хром, Т - титан, К - кобальт, Ц - цирконий.

Для маркировки стали в России пользуются определенным сочетанием цифр и букв, показывающих примерный химический состав стали.

Первые цифры в марке стали указывают содержание углерода в сотых долях процента. Если в начале маркировки перед буквами стоит одна цифра, то она выражает содержание углерода в десятых долях процента; при содержании углерода свыше 1% цифру перед буквами не ставят.

Далее в маркировке следуют буквы, показывающие наличие соответствующих легирующих элементов в составе стали. Цифры за буквами показывают среднее (округленное до 1) процентное содержание легирующего элемента. При этом если содержание элемента до 1,5%, цифра не ставится. В отдельных случаях может быть указано более точно содержание легирующего элемента. Например, сталь 32Х06Л - содержит в среднем 0,32% С и 0,6% Сг. Последняя буква «Л» указывает, что сталь литейная.

Для обозначения высококачественной легированной стали в конце маркировки добавляют букву «А». Высококачественная сталь содержит меньше серы и фосфора, чем качественная.

Некоторые стали специального назначения выделены в отдельные группы и имеют особую маркировку. Каждой группе присваивается своя буква и ставится впереди:

Ж - хромистая нержавеющая сталь;

Я - хромоникелевая нержавеющая сталь;

Р - быстрорежущая сталь;

Ш - шарикоподшипниковая сталь;

Е - электротехническая сталь.

Структура стали - менее устойчивый классификационный признак, так как зависит от скорости охлаждения (толщины стенки отливок) , степени легирования, режима термообработки и других изменяющихся факторов, но структура готового изделия позволяет объективно оценивать его качество.

Стали по структуре классифицируют в состояниях после отжига и нормализации.

В отожженном состоянии стали подразделяют:

  • - на доэвтектоидные, имеющие в структуре избыточный феррит;
  • - эвтектоидные, структура которых состоит из перлита;
  • - заэвтектоидные, в структуре которых имеются вторичные карбиды, выделяющиеся из аустенита;
  • - ледебуритные, в структуре которых содержатся первичные (эвтектические) карбиды;
  • - аустенитные",
  • - ферритные.

После нормализации стали подразделяют на следующие структурные классы:

  • - перлитный;
  • - аустенитный;
  • - ферритный.

На формирование структуры стали в наибольшей степени влияет углерод. Структура стали без термической обработки после медленного охлаждения состоит из смеси феррита и цементита (структура такой стали либо перлит + феррит, либо перлит + цементит). Количество цементита в стали прямо пропорционально содержанию углерода. Твердые частицы цементита повышают сопротивление деформации, уменьшая пластичность и вязкость. Таким образом, с увеличением в стали содержания углерода возрастают твердость, предел прочности и уменьшаются вязкость, относительное удлинение и сужение.

Для заэвтектоидных сталей на их механические свойства сильное влияние оказывает вторичный цементит, который образует хрупкую сетку вокруг зерен перлита. Эта сетка способствует преждевременному разрушению стального изделия под нагрузкой. Поэтому заэвтектоидные стали применяют после специального отжига, в результате которого получают в структуре зернистый перлит.

Уменьшение содержания углерода ниже 0,3% и увеличение сверх 0,4% приводит к ухудшению обрабатываемости резанием. Дальнейшее увеличение содержания углерода снижает технологическую пластичность стали при обработке давлением и ухудшает ее свариваемость - способность материалов образовывать неразъемные соединения с заданными свойствами.

Кремний слабо влияет на структуру и механические свойства углеродистой стали, но как раскислитель он способствует улучшению литейных свойств. Кремний сильно повышает предел текучести стали, что снижает ее способность к вытяжке. Поэтому в сталях, предназначенных для холодной штамповки, содержание кремния должно быть наименьшим.

Марганец является хорошим десульфуратором и раскислителем (уменьшает вредное влияние серы и кислорода); способствует повышению механических свойств стали, не снижая пластичности, и резко уменьшает хрупкость при высоких температурах (красноломкость). В отечественной практике содержание марганца выдерживают в пределах 0,35-0,65% в низкоуглеродистых сталях и 0,5-0,8% в средне- и высокоуглеродистых. Многие зарубежные фирмы предпочитают иметь в углеродистых сталях 0,9-1,1% марганца.

Сера является вредной примесью в стали, ее содержание не должно превышать 0,06%. С железом сера образует химическое соединение - сульфид железа (легкоплавкий эвтектический сплав), располагающийся обычно по границам зерен металлической матрицы. При нагревании стали до 1000-1300 °С эвтектика расплавляется и нарушается связь между зернами металла, т.е. происходит охрупчивание.

При наличии в стали марганца исключается образование легкоплавкой эвтектики и явление красноломкости.

Сульфиды, как и другие неметаллические включения, сильно снижают однородность строения и механические свойства стали, в особенности пластичность, ударную вязкость и предел выносливости, а также ухудшают свариваемость и коррозионную стойкость.

Фосфор является вредной примесью в стали, и содержание его не должно превышать 0,08%. Растворяясь в феррите, фосфор сильно искажает и уплотняет его кристаллическую решетку. При этом увеличиваются пределы прочности и текучести сплава, но уменьшаются его пластичность и вязкость. Фосфор значительно повышает порог хладноломкости стали.

Газы (азот, водород, кислород) частично растворены в стали и присутствуют в виде хрупких неметаллических включений - оксидов и нитридов. Концентрируясь по границам зерен, они повышают порог хладноломкости, понижают предел выносливости и сопротивление хрупкому разрушению. Например, хрупкие оксиды при горячей обработке стали давлением не деформируются, а крошатся и разрыхляют металл.

Кремний, марганец, сера, фосфор, а также газы: кислород, азот, водород - являются постоянными примесями в стали. Кроме них в стали могут быть случайные примеси , попадающие в сталь из вторичного сырья или руд отдельных месторождений. Из стального лома (скрапа) в сталь могут попасть хром, никель, олово и ряд других элементов. Отдельные примеси находятся в стали в небольших количествах и не оказывают существенного влияния.

По назначению стали делятся на три группы:

конструкционные, предназначенные для изготовления деталей машин и элементов строительных конструкций. Подразделяются на детали:

  • - обыкновенного качества;
  • - улучшаемые;
  • - цементуемые;
  • - автоматные;
  • - высокопрочные;
  • - рессорно-пружинные;

инструментальные", подразделяют на подгруппы по изготовлению:

Режущего инструмента; измерительного инструмента; штам- пово-прессовой оснастки;

стали специального назначения с особыми физическими и механическими свойствами:

  • - нержавеющие (коррозионно-стойкие);
  • - жаростойкие;
  • - жаропрочные;
  • - износостойкие и др.

По качеству стали классифицируются на:

обыкновенного качества, содержат до 0,06% S и 0,07% Р;

качественные, содержащие до 0,035% S и 0,035% Р;

высококачественные - не более 0,025% S и 0,025% Р;

особо высококачественные - не более 0,015% S и 0,025% Р.

Под качеством понимается совокупность свойств стали, определяемых металлургическим процессом ее производства. Однородность химического состава, строение и свойства стали зависят от содержания вредных примесей и газов.

По степени раскисления стали классифицируют:

  • - на спокойные (сп);
  • - полуспокойные (пс);
  • - кипящие (кп).

Раскислением называют процесс удаления кислорода из жидкой стали.

Спокойные стали раскисляют марганцем, алюминием и кремнием в плавильной печи и ковше. Они затвердевают в изложнице спокойно, без газовыделения, с образованием в верхней части слитков усадочной раковины.

Дендритная ликвация вызывает анизотропию механических свойств. Пластические свойства стали в поперечном (по отношению к направлению прокатки или ковки) сечении значительно ниже, чем в продольном.

Зональная ликвация приводит к тому, что в верхней части слитка содержание серы, фосфора и углерода увеличивается, а в нижней - уменьшается. Это приводит к значительному ухудшению свойств изделия из такого слитка, вплоть до отбраковки.

Кипящие стали раскисляют только марганцем, что недостаточно. Перед разливкой в них содержится повышенное количество кислорода, который при затвердевании слитка частично реагирует с углеродом и выделяется в виде газовых пузырей окиси углерода, создавая впечатление «кипения» стали.

Кипящая сталь практически не содержит неметаллических включений продуктов раскисления. Эти стали выплавляют низкоуглеродистыми и с очень малым содержанием кремния (менее 0,07%), но с повышенным количеством газообразных примесей. При прокатке слитков газовые пузыри, заполненные окисью углерода, завариваются. Листовой прокат из такой стали предназначен для изготовления деталей кузовов автомобилей вытяжкой, имеет хорошую штампуемость в холодном состоянии.

Полуспокойные стали по степени их раскисления занимают промежуточное положение между спокойными и кипящими сталями. Частично их раскисляют в плавильной печи и в ковше, а окончательно - в изложнице за счет содержащегося в металле углерода. Ликвация в слитках полуспокойной стали меньше, чем в кипящей, и приближается к ликвации в слитках спокойной стали.

Сталь – самый известный в мире сплав . По сути, говоря о железных конструкциях и предметах, мы говорим об изделиях (или их производстве) из той или иной стали. 99% сплава относится к категории конструкционных сталей, так что практически не существует инструментов или оборудования, где он бы ни использовался.

В этой статье мы постараемся затронуть такие темы как классификация марок, цена стали, ее свойства и применение в строительстве.

Сталь – сплав железа и углерода. В обычных случаях доля углерода колеблется от 0,1 до 2,14 %. Но, учитывая, что в состав легированных сталей может входить множество дополнительных ингредиентов, сегодня под сталью подразумевают такой сплав, где доля железа составляет не менее 45%.

О том, что такое сталь, и как ее производят, расскажет этот видеосюжет:

Понятие и особенности

Главные привлекательные качества стали – высокая прочность при доступности сырья и относительно простом способе производства. Именно такая комбинация и ставит сплавы железа в позицию абсолютного лидера. На сегодня попросту не существует такой области народного хозяйства, где стали не занимали бы позицию конструкционного материала.

  • Железо и углерод – обязательные составляющие сплава. Из них и вязкость, благодаря чему сталь относят к деформируемым, ковким сплавам. А углерод – твердость и прочность, так как твердость всегда сочетается с хрупкостью. Добавка углерода невелика и даже в специализированных составах не превышает 3,4%.
  • Кроме того, из-за способа производства, сталь всегда содержит какую-то долю марганца – до 1 %, и – до 0,4%. Эти примеси мало влияют на свойства состава, если не превышают заданную норму. По тем же причинам в составе оказываются и вредные примеси – фосфор, сера, несвязанный азот и кислород. В процессе плавки и легирования от этих ингредиентов стараются избавиться, поскольку они уменьшают прочностные и пластичные свойства сплавов.
  • В сплав вводят искусственно другие добавки с целью изменить качества материала. Так, добавка хрома придает стали жаропрочность, а – стойкость к коррозии и вязкость.
  • Чрезвычайно полезным качеством железных сплавов является то, что на изменение свойств влияют очень небольшие по весу добавки других веществ. Это позволяет значительно разнообразить качества материала. Кроме того, на свойства сплава очень сильно влияет метод изготовления собственно продукции – холодное деформирование, горячее, закалка и так далее.

Соотношение с чугуном

Наиболее близок к стали по свойствам и составу . Часть материала и производится из предельного чугуна. Однако на практике различия в характеристиках оказываются весьма заметными:

  • сталь прочнее и тверже, чем чугун;
  • и имеет более низкую температуру плавления. Обманчивое впечатление создает массивность изделий из чугуна, поскольку он менее прочен;
  • сталь легче поддается механической обработке благодаря низкому содержанию углерода. ;
  • чугун имеет более низкую теплопроводность, то есть, лучше хранят тепло, чем стальные;
  • чугун нельзя подвергнуть такой процедуре, как закалка. А последняя может значительно увеличить прочность материала.

Преимущества и недостатки

Описывать плюсы и минусы материала довольно сложно. На практике мы имеем дело с продукцией из стали, причем из сплава самых разных марок, а, значит, и свойств. А одна из особенностей материала как раз и состоит в том, что метод изготовления изделии из него тоже влияет на его свойства. Качества сварной трубы не сравнить с характеристиками трубопровода из холоднокатаной стали.

В общем, можно говорить о следующих преимуществах стали:

  • высокая прочность и твердость – свойственно всем видам;
  • огромное разнообразие свойства, обусловленное разным составом и разными методами обработки;
  • вязкость и упругость, достаточные для применения на всех участках, где требуется стойкость к ударным, статическим и динамическим нагрузкам при отсутствии остаточной деформации;
  • легкость механической обработки – сварка, нарезка, сгибание;
  • очень высокая износостойкость по сравнению с другими конструкционными материалами и, соответственно, долговечность;
  • распространенность сырья и экономически выгодный метод производства, что обуславливает доступную стоимость сплавов.

К недостаткам можно отнести следующее:

  • самый большой недостаток материала – нестойкость к коррозии. Чтобы избежать повреждений, выпускают специальные виды металла стали – нержавеющие, однако их стоимость заметно выше. Чаще проблему решают за счет покрытия стальных изделий защитным слоем металла или полимера;
  • сплав накапливает электричество, что заметно усиливает электрохимическую коррозию. Сколько-нибудь объемные конструкции – корпуса машин, трубопроводы, нуждаются в специальной защите;
  • сплав не отличается легкостью, стальные конструкции имеют большой вес и заметно утяжеляют объекты;
  • изготовление стальных изделий – многоэтапный процесс. Недочеты и ошибки на любом из этапов оборачиваются значительным снижением качества.

Разновидности металла

Подсчитать количество известных и используемых на сегодня сплавов – задача очень непростая. Классифицировать их не менее сложно: свойства материала зависят от состава, метода получения, характера добавок, способа обработки и так далее.

Чаще всего используются следующие классификации:

  • по химическому составу сталей – углеродистые и легированные;
  • по структурному составу – аустенитную, ферритную и так далее;
  • по содержанию примесей – обычного качества, качественная и так далее;
  • по методу обработки – термическая закалка – отжиг, термомеханическая – ковка, химико-термическая – азотирование;
  • по назначению – инструментальные, конструкционные, специальные стали и так далее.

О нержавеющей стали поведает это видео:

Химический состав

Сплав, по сути своей – твердый раствор. Причем компонент в твердом основном материале растворяется по другим законам, чем в жидкости. Основой получения всех железных сплавов является способность железа к полиморфизму, то есть, формированию разных структурных фаз при разной температуре. Благодаря этому углерод и другие элементы, растворенные в железе при высокой температуре, не выпадают в осадок при понижении температуры, как это происходит с обычными жидкостями, а образуют совместную структуру.

По своему составы стали делятся на углеродистые и легированные.

Углеродистые

Углеродистые – главным, то есть, определяющим свойства легирующим компонентом является углерод. Различают 3 вида:

  • малоуглеродистые – менее 0,3 %. Сплавы отличаются ковкостью и стойкостью к динамическим нагрузкам;
  • среднеуглеродистые – доля углерода варьируется от 0,3 до 0,7%;
  • высокоуглеродистые содержат более 0,7% углерода. Их отличает более высокая прочность и твердость.

Это деление связано с теми преобразованиями, которые происходят в сплавах. До содержания углерода в 0,8 % сплав сохраняет доэвтектоидную структуру, то есть, имеет ферритно-перлитную структуру. При увеличении доли углерода структура меняется на эвтектоидную и заэвтектоидную, что соответствует перлиту и цементиту. Соотношение фаз во много определяет прочностные характеристики.

Пользователь сталкивается не столько с мало- или высокоуглеродистой сталью, сколько с составом определенной марки. Марка определяется соотношением нескольких критериев, а не только содержанием углерода.

Различают по назначению 3 группы:

  • А – нормируются механические качества. Группа подразделяется на 3 категории и 6 марок. Обозначается марка Ст от 0 до 6. Ст0 – это отбракованная по каким-то показателям сталь, используемая в незначимых конструкциях. Ст6 – в наибольшей степени соответствует понятию качественная сталь;
  • Б – нормируется по своему химическому составу, делится на 2 категории и 6 марок, обозначается БСт от 0 до 6. С увеличением номера повышается прочность и текучесть материала;
  • группа В нормируется и по механическим показателям, и по составу. Она делится на 5 марок, обозначается ВСт.

Применяется дополнительная классификация по содержанию марганца. I – с нормальным содержанием элемента, то есть, 0,25– 0,8%, и II – с повышенным, до 1,2%

Легированные

Легированными называют стали, в которые специально вводят дополнительные ингредиенты для придания составу других качеств. Классификация производится по суммарному объему всех легирующих добавок – не примесей марганца или фосфора.

Различают 3 вида:

  • низколегированные – с суммарным объемом добавок до 2,5%;
  • среднелегированные – содержит от 2,5 до 10% примесей;
  • в высоколегированных доля добавок превышает 10%.

Легирование значительно усложняет структуру твердого раствора, что приводит к возникновению сложнейшей классификации по структурному составу. Маркируются марки по составу: обязательно указывается доля углерода. А затем по уменьшению указывают доли легирующих добавок. Если доля примеси менее 1% вещество не указывается.

В качестве добавок применяют как неметаллы, так и металлы.

  • Марганец – увеличивает прочность и твердость материала, улучшает режущие свойства. Но при этом способствует увеличению зерна, что уменьшается стойкость к ударным нагрузкам.
  • Хром – улучшает стойкость к ударным и статическим нагрузкам, а также повышает жаропрочность. При большой доле хрома материал становится нержавеющим.
  • – увеличивает упругость сплава. При значительном содержании придает стали коррозийную стойкость и жаропрочность.
  • Молибден – повышает твердость сплава, но при этом уменьшает хрупкость.

Наиболее известна из легированных сталей, конечно, нержавеющая. Чаще всего это хромо-никелевая и хромистая сталь с долей хрома до 27%.

Фазовый и структурный состав

Получение стали – процесс непростой и неоднозначный. Особенность его состоит в том, что при плавке сплав проходит через фазовые превращения, которые и обуславливают сочетание прочности и упругости.

Легирование углеродом происходит в 2 этапа. На первой стадии при нагреве до 725 С железо соединяется с углеродом, образуя карбид, то есть, химическое соединение, называемое цементитом. При нормальной температуре сталь включает смесь цементита и феррита. При повышении температуры выше 725 С цементит растворяется в железе, формирую другую фазу – аустенит.

С этой особенностью связана классификация сплава по структурному составу в нормализованном виде:

  • перлитная – в основном это низкоуглеродистые и низколегированные стали;
  • мартенситные – с большим содержанием добавок;
  • аутенитная – высоколегированная.

В отожженном состоянии выделяют такие структурные классы:

  • доэвтектоидный,
  • заэвтектоидный,
  • ледебуритный,
  • ферритный,
  • аустенитный.

В чем смысл подобного деления? Дело в том, что легирующие добавки оказывают разное воздействие на разные структуры стали. Так, растворение в феррите легирующих элементов приводит к увеличению временного сопротивления, за исключением марганца и кремния, которые сплав упрочняют. При легировании аустенита понижается предел текучести при относительно высокой прочности. В результате материал легко и быстро упрочняется при деформации – наклепывании.

Классификация по раскислителю

При плавке металлов частой проблемой является растворенный в них газ – кислород, азот, водород, чтобы удалить его прибегают к раскислению. В зависимости от полноты процесса различают 3 вида:

  • спокойная – металл не содержит закиси железа. В сплаве полностью отсутствуют газы, так что его свойства наиболее стабильны и однородны. Применяется для ответственных конструкций, поскольку технология его получения дорогая;
  • полуспокойная – затвердевает без кипения, но сопровождается выделением газов. Какое-то количество газов остается, однако может быть удалено при прокатке сплава. Как правило, полуспокойная сталь используется как конструкционная;
  • кипящая – содержит растворенные газы. Это сказывается на свойствах: материал склонен к трещинообразованию при сварке, например, но, так как производство кипящей стали требует меньше всего затрат, производится и такой сплав для многих простых конструкций.

Классификация по назначению

Довольно условное разделение сталей по сферам применения стали.

  • Строительные – сплавы обычного качества и низколегированные, рассчитанные на высокие статические и в некоторых случаях динамические нагрузки. Главное требование к ним – хорошая свариваемость. На деле в зависимости от характера строительного объекта, применяется материал самого разного качества.
  • Инструментальные – как правило, высокоуглеродистые и высоколегированные, применяются при изготовлении инструментов. Различают штампованные сплавы, режущие и стали для измерительных инструментов. Режущие отличаются твердостью и теплостойкостью, материал для измерительных приборов – высокой износостойкостью.
  • Конструкционные – с низким содержанием марганца. Это цементируемые, высокопрочные, автоматные, шарико-подшипниковые, износостойкие и так далее, применяемые для изготовления самых разнообразных узлов и конструкций. Столь огромного разнообразия свойств добиваются за счет легирования.
  • Порой выделяют специальные стали – жаропрочные, жаростойкие, кислотоупорные, но на деле они являются разновидностью конструкционных.

Сталь может включать полезные примеси, то есть, легирующие элементы, и вредные. По содержанию вредных и различают 4 группы:

  • рядовые – или обыкновенного качества, с долей серы не более 0,06% и фосфора не выше 0,07%;
  • качественные – допускается доля серы не более 0,04% и фосфора не более 0,035%. Процесс их изготовления дороже, но и механические свойства сталей выше;
  • высококачественные – доля серы не превышает 0,025%, а фосфора – 0,025%. Получают сплавы в основном в электропечах, чтобы добиться большой чистоты;
  • особовысококачественные – выплавляются в электропечах специальными методами. Так получают только высоколегированные стали с содержанием серы до 0,015% и фосфора – 0,025%.

Производство сплава

Процесс изготовления сплава сводится к переработке чугуна, при которой отжигаются лишние примеси и вводятся легирующие элементы. Используются при этом несколько методов.

  • Мартеновский – расплавленный или твердый чугун с рудой плавят в мартеновской печи при 2000 С, чтобы отжечь лишний углерод. Добавки вводят в конце плавки. Сталь разливают в ковши и переправляют в прокатный цех.
  • Кислородно-конвертерный – более производительный. Сквозь чугун в печи продувают воздух или смесь воздуха с кислородом, добиваясь более быстрого и полного отжига.
  • Электроплавильный – плавка осуществляется в закрытой печи при 2200 С, что исключает попадание в сплав газов. Дорогостоящий метод, которым получают лишь высококачественные составы.
  • Прямой метод – в шахтной печи окатыши, получаемые из железной руды продувают продуктами сгорания природного газа – смесью кислорода, угарного газа, аммиака, при температуре в 1000 С.

На этом процесс изготовления стали не заканчивается. В тех случаях, когда необходимо получить максимально прочный материал, прибегают к дополнительной обработке.

Термический метод

К термическим способам относится:

  • отжиг – нагрев и медленное охлаждение разных видов и с разной скоростью;
  • закалка – нагрев выше критической температуры, что вызывает перекристаллизацию сплава, и быстрее охлаждение;
  • отпуск – процедура, осуществляет вслед за закалкой с целью уменьшить напряжение металла;
  • нормализация – тот же отжиг, но проводимый не в печи, а на воздухе.

Термомеханический способ

Термомеханические методы сочетают механическое и термическое воздействие:

  • высокотемпературная ТМО – закалка – наклеп, упрочнение, производится сразу же после нагрева, пока сплав сохраняет аустенитную структуру. Изменение вследствие пластической деформации при прокатке или штамповке сохраняется на 70% и после охлаждения и сталь оказывается более прочной;
  • при низкотемпературной ТМО – холоднокатаная сталь. Сплав нагревают для аустенитного состояния, охлаждают ниже точек рекристаллизации, чтобы добиться появления мартенситной фазы – в пределах 400– 600 С. Затем производится закалка – наклеп, прокатка. При охлаждении эффект полностью сохраняется.

Термохимическая обработка

Термохимическая обработка представляется собой нагрев сплавов и выдержку их в определенных химических средах. К наиболее известным методам относят:

  • цементацию – насыщение поверхности сплава углеродом. Таким образом получают износостойкий верхний слой;
  • азотирование – насыщение стали азотом. Цель такая же – получение верхнего износостойкого слоя, но по сравнению с цементацией, азотирование обеспечивает более высокую стойкость к коррозии;
  • нитроцементацию и цианирование – насыщение поверхностного слоя и углеродом и азотом. Обеспечивает более высокую скорость и производительность процесса.

Стоимость материала

Стоимость материала не менее разнообразна, чем количество марок. Условная сталь на Лондонской бирже металлов в декабре 2016 г стоит 325 $ за тонну. Стоимость нержавеющей стали заметно выше: холоднокатаная нержавеющая сталь сорта 304 в декабре оценивается в пределах от 1890 до 1925 $ за тонну.

Сталь – самый востребованный и самый распространенный металлический сплав в мире. Говоря о в народном хозяйстве, имеют в виду именно разнообразные стальные сплавы.

О том, как плавится сталь, смотрите в видео ниже:

Разобраться в таком вопросе, как классификация углеродистых сталей, очень важно, так как это позволяет получить полное представление о характеристиках той или иной разновидности этого популярного материала. , как и любых других, не менее важна, и специалист должен уметь разбираться в ней, чтобы правильно выбрать сплав в соответствии с его свойствами и химическим составом.

Отличительные характеристики и основные категории

К углеродистым сталям, основу которых составляют железо и углерод, относят сплавы, содержащие минимум дополнительных примесей. Количественное содержание углерода является основанием для следующей классификации сталей:

  • низкоуглеродистые (содержание углерода в пределах 0,2%);
  • среднеуглеродистые (0,2–0,6%);
  • высокоуглеродистые (до 2%).

Кроме достойных технических характеристик, следует отметить доступную стоимость , что немаловажно для материала, широко применяемого для производства самых разнообразных изделий.

К наиболее значимым достоинствам углеродистых сталей различных марок можно отнести:

  • высокую пластичность;
  • хорошую обрабатываемость (вне зависимости от температуры нагрева металла);
  • отличную свариваемость;
  • сохранение высокой прочности даже при значительном нагреве (до 400°);
  • хорошую переносимость динамических нагрузок.

Есть у углеродистых сталей и недостатки, среди которых стоит выделить:

  • снижение пластичности сплава при увеличении в его составе содержания углерода;
  • ухудшение режущей способности и снижение твердости при нагреве до температур, превышающих 200°;
  • высокую склонность к образованию и развитию коррозионных процессов, что налагает дополнительные требования к изделиям из такой стали, на которые должно быть нанесено защитное покрытие;
  • слабые электротехнические характеристики;
  • склонность к тепловому расширению.

Отдельного внимания заслуживает классификация углеродистых сплавов по структуре. Основное влияние на превращения в них оказывает количественное содержание углерода. Так, стали, относящиеся к категории доэвтектоидных, имеют структуру, основу которой составляют зерна феррита и перлита. Содержание углерода в таких сплавах не превышает 0,8%. С увеличением количества углерода уменьшается количество феррита, а объем перлита, соответственно, увеличивается. Стали, в составе которых содержится 0,8% углерода, по данной классификации относят к эвтектоидным, основу их структуры преимущественно составляет перлит. При дальнейшем увеличении количества углерода начинает формироваться вторичный цементит. Стали с такой структурой относятся к заэвтектоидной группе.

Увеличение в составе стали количества углерода до 1% приводит к тому, что такие свойства металла, как прочность и твердость, значительно улучшаются, а предел текучести и пластичность, напротив, ухудшаются. Если количество углерода в стали будет превышать 1%, это может привести к тому, что в ее структуре будет формироваться грубая сетка из вторичного мартенсита, что самым негативным образом сказывается на прочности материала. Именно поэтому в сталях, относящихся к категории высокоуглеродистых, количество углерода, как правило, не превышает 1,3%.

На свойства углеродистых сталей серьезное влияние оказывают и примеси, содержащиеся в их составе. Элементами, которые положительно воздействуют на характеристики сплава (улучшают раскисление металла), являются кремний и марганец, а фосфор и сера – это примеси, ухудшающие его свойства. Фосфор при повышенном содержании в составе углеродистой стали приводит к тому, что изделия из нее покрываются трещинами и даже ломаются при воздействии низких температур. Такое явление носит название хладноломкости. Что характерно, стали с повышенным содержанием фосфора, если они находятся в нагретом состоянии, хорошо поддаются сварке и обработке при помощи ковки, штамповки и др.

В изделиях из тех углеродистых сталей, в составе которых в значительном количестве содержится сера, может возникать такое явление, как красноломкость. Суть этого феномена заключается в том, что металл при воздействии высокой температуры начинает плохо поддаваться обработке. Структура углеродистых сталей, в составе которых содержится значительное количество серы, представляет собой зерна с легкоплавкими образованиями на границах. Такие образования при повышении температуры начинают плавиться, что приводит к нарушению связи между зернами и, как следствие, к образованию многочисленных трещин в структуре металла. Между тем параметры сернистых углеродистых сплавов можно улучшить, если выполнить их микролегирование при помощи циркония, титана и бора.

Технологии производства

На сегодняшний день в металлургической промышленности используются три основных технологии . Их основные отличия состоят в типе используемого оборудования. Это:

  • плавильные печи конвертерного типа;
  • мартеновские установки;
  • плавильные печи, работающие на электричестве.

В конвертерных установках расплавке подвергаются все составляющие стального сплава: чугун и стальной лом. Кроме того, расплавленный металл в таких печах дополнительно обрабатывается при помощи технического кислорода. В тех случаях, когда примеси, присутствующие в расплавленном металле, необходимо перевести в шлак, в него добавляют обожженную известь.

Процесс получения углеродистой стали по данной технологии сопровождается активным окислением металла и его угаром, величина которого может доходить до 9% от общего объема сплава. К недостатку данного технологического процесса следует отнести и то, что он проходит с образованием значительного количества пыли, а это вызывает необходимость использования специальных пылеочистительных установок. Применение таких дополнительных устройств сказывается на себестоимости получаемой продукции. Однако все недостатки, которыми характеризуется этот технологический процесс, в полной мере компенсируются его высокой производительностью.

Выплавка в мартеновской печи – еще одна популярная технология, которую применяют для получения углеродистых сталей различных марок. В ту часть мартеновской печи, которая называется плавильной камерой, загружается все необходимое сырье (стальной лом, чугун и др.), которое подвергается нагреванию до температуры плавления. В камере происходят сложные физико-химические взаимодействия, в которых принимают участие расплавленные металл, шлак и газовая среда. В результате получается сплав с требуемыми характеристиками, который в жидком состоянии выводится через специальное отверстие в задней стенке печи.

Сталь, получаемая при выплавке в электрических печах, за счет использования принципиально другого источника нагревания не подвергается воздействию окислительной среды, что позволяет сделать ее более чистой. В различных марках углеродистой стали, полученной при выплавке в электрических печах, присутствует меньшее количество водорода. Этот элемент является основной причиной появления в структуре сплавов флокенов, значительно ухудшающих их характеристики.

Каким бы способом ни выплавлялся углеродистый сплав и к какой бы категории в классификации он ни относился, основным сырьем для его производства являются чугун и металлический лом.

Способы улучшения прочностных характеристик

Если свойства марок улучшают посредством ввода в их состав специальных добавок, то решение такой задачи по отношению к углеродистым сплавам осуществляется за счет выполнения термообработки. Одним из передовых методов последней является поверхностная плазменная закалка. В результате использования этой технологии в поверхностном слое металла формируется структура, состоящая из мартенсита, твердость которого составляет 9,5 ГПа (на некоторых участках она доходит до 11,5 ГПа).

Поверхностная плазменная закалка также приводит к тому, что в структуре металла формируется метастабильный остаточный аустенит, количество которого возрастает, если в составе стали увеличивается процентное содержание углерода. Данное структурное образование, которое может преобразоваться в мартенсит при выполнении обкатки изделия из углеродистой стали, значительно улучшает такую характеристику металла, как износостойкость.

Одним из эффективных способов, позволяющих значительно улучшить характеристики углеродистой стали, является химико-термическая обработка. Суть данной технологии заключается в том, что стальной сплав, нагретый до определенной температуры, подвергают химическому воздействию, что и позволяет значительно улучшить его характеристики. После такой обработки, которой могут быть подвергнуты углеродистые стали различных марок, повышаются твердость и износостойкость металла, а также улучшается его коррозионная устойчивость по отношению к влажным и кислым средам.

Другие параметры классификации

Еще одним параметром, по которому классифицируют углеродистые сплавы, является степень их очищения от вредных примесей. Лучшими механическими характеристиками (но и более высокой стоимостью) отличаются стали, в составе которых присутствует минимальное количество серы и фосфора. Данный параметр стал основанием для классификации углеродистых сталей, в соответствии с которой выделяют сплавы:

  • обыкновенного качества (В);
  • качественные (Б);
  • повышенного качества (А).

Стали первой категории (их химический состав не уточняется производителем) выбирают, основываясь только на их механических характеристиках. Такие стали отличаются минимальной стоимостью. Их не подвергают ни термообработке, ни обработке давлением. Для качественных сталей производитель оговаривает химический состав, а для сплавов повышенного качества – и механические свойства. Что важно, изделия из сплавов первых двух категорий (Б и В) можно подвергать термообработке и горячей пластической деформации.

Существует классификация углеродистых сплавов и по их основному назначению. Так, различают конструкционные стали, из которых производят детали различного назначения, и инструментальные, используемые в полном соответствии с их названием – для изготовления различного инструмента. Инструментальные сплавы, если сравнивать их с конструкционными, отличаются повышенной твердостью и прочностью.

В маркировке углеродистой стали можно встретить обозначения «сп», «пс» и «кп», которые указывают на степень ее раскисления. Это еще один параметр классификации таких сплавов.
Буквами «сп» в маркировке обозначаются спокойные сплавы, в составе которых может содержаться до 0,12% кремния. Они характеризуются хорошей ударной вязкостью даже при низких температурах и отличаются высокой однородностью структуры и химического состава. Есть у таких углеродистых сталей и минусы, наиболее значимые из которых заключаются в том, что поверхность изделий из них менее качественная, чем у кипящих сталей, а после выполнения сварочных работ характеристики деталей из них значительно ухудшаются.

Полуспокойные сплавы (обозначаются буквами «пс» в маркировке), в которых кремний может содержаться в пределах 0,07–0,12%, характеризуются равномерным распределением примесей в своем составе. Этим обеспечивается постоянство характеристик изделий из них.

В кипящих углеродистых сталях, содержащих не более 0,07% кремния, процесс раскисления полностью не завершен, что становится причиной неоднородности их структуры. Между тем их выделяет ряд достоинств, к наиболее значимым из которых следует отнести:

  • невысокую стоимость, что объясняется незначительным содержанием специальных добавок;
  • высокую пластичность;
  • хорошую свариваемость и обрабатываемость при помощи методов пластической деформации.

Как маркируются углеродистые стальные сплавы

Разобраться в принципах маркировки углеродистой стали так же несложно, как и в основаниях ее классификации: они мало чем отличаются от правил обозначения стальных сплавов других категорий. Для того чтобы расшифровать такую маркировку, не нужно даже заглядывать в специальные таблицы.

Буква «У», стоящая в самом начале обозначения марки сплава, указывает на то, что он относится к категории инструментальных. О том, в какую качественную группу входит углеродистая сталь, говорят буквы «А», «Б» и «В», проставляемые в самом конце маркировки. Количество углерода, содержащееся в сплаве, проставляется в самом начале его маркировки. При этом для сталей, обладающих повышенным качеством (группа «А»), количество данного элемента будет указано в сотых долях процента, а для сплавов групп «Б» и «В» – в десятых.

В маркировке отдельных углеродистых сталей можно встретить букву «Г», стоящую после цифр, указывающих на количественное содержание углерода. Такая буква свидетельствует о том, что в металле содержится повышенное количество такого элемента, как марганец. На то, какой степени раскисления соответствует углеродистая сталь, указывают обозначения «сп», «пс» и «кп».

Углеродистые сплавы благодаря своим характеристикам и невысокой стоимости активно используются для производства элементов строительных конструкций, деталей машин, инструментов и металлических изделий различного назначения.

2 , средняя оценка: 5,00 из 5)

Loading...Loading...