Преобразование рациональных выражений: виды преобразований, примеры. Рациональное выражение

В далеком прошлом, когда еще не была придумана система исчисления, люди подсчитывали все на пальцах. С появлением арифметики и основ математики стало гораздо проще и практичнее вести учет товаров, продуктов, а также бытовых предметов. Однако как выглядит современная система исчисления: на какие виды делятся существующие числа и что значит "рациональный вид чисел"? Давайте разберемся.

Сколько разновидностей чисел существует в математике?

Само понятие "число" обозначает некую единицу любого предмета, которая характеризует его количественные, сравнительные или порядковые показатели. Для того чтобы правильно подсчитать количество определенных вещей или провести некие математические операции с числами (сложить, умножить и др.), в первую очередь следует ознакомиться с разновидностями этих самых чисел.

Итак, существующие числа можно разделить по следующим категориям:

  1. Натуральные - это те числа, которыми мы подсчитываем количество предметов (самое меньшее натуральное число равно 1, логично, что ряд натуральных чисел бесконечен, т. е. не существует наибольшего натурального числа). Множество натуральных чисел принято обозначать буквой N.
  2. Целые числа. К этому множеству относятся все при этом в него добавляются и отрицательные значения, включая число "ноль". Обозначение множества целых чисел записывают в виде латинской буквы Z.
  3. Рациональные числа - это те, которые мы мысленно можем преобразовать в дробь, числитель которой будет принадлежать множеству целых чисел, а знаменатель - натуральных. Чуть ниже мы разберем подробнее, что значит "рациональное число", и приведем несколько примеров.
  4. - множество, в которое входят все рациональные и Обозначается данное множество буквой R.
  5. Комплексные числа содержат в себе часть действительного и часть переменного числа. Используются в решении различных кубических уравнений, которые, в свою очередь, могут иметь в формулах под отрицательное выражение (i 2 = -1).

Что значит "рациональный": разбираем на примерах

Если рациональными считаются те числа, которые мы можем представить в виде обыкновенной дроби, то получается, что все положительные и отрицательные целые числа также входят в множество рациональных. Ведь любое целое число, например 3 или 15, можно представить в виде дроби, где в знаменателе будет единица.

Дроби: -9/3; 7/5, 6/55 - вот примеры рациональных чисел.

Что значит "рациональное выражение"?

Идем дальше. Мы уже разобрали, что значит рациональный вид чисел. Давайте теперь представим себе математическое выражение, которое состоит из суммы, разности, произведения или частного различных чисел и переменных. Вот пример: дробь, в числителе которой сумма двух или нескольких целых чисел, а знаменатель содержит в себе как целое число, так и некую переменную. Именно такое выражение и называют рациональным. Исходя из правила "на ноль делить нельзя" можно догадаться, что значение данной переменной не может быть таковым, чтобы значение знаменателя обращалось в ноль. Поэтому при решении рационального выражения следует сначала определить область значения переменной. Например, если в знаменателе следующее выражение: x+5-2, то получается, что "x" не может быть равен -3. Ведь в таком случает все выражение превращается в ноль, поэтому при решении необходимо исключить целое число -3 для данной переменной.

Как правильно решать рациональные уравнения?

Рациональные выражения могут содержать в себе довольно-таки большое количество чисел и даже 2 переменные, поэтому порой их решение становится затруднительным. Для облегчения решения такого выражения рекомендуется произвести некие операции рациональным путем. Итак, что значит "рациональным способом" и какие правила необходимо применять при решении?

  1. Первый вид, когда достаточно всего лишь упростить выражение. Для этого можно прибегнуть к операции сокращения числителя и знаменателя до несокращаемой величины. Например, если в числителе имеется выражение 18x, а в знаменателе 9х, то, сокращая оба показателя на 9x, получаем просто целое число, равное 2.
  2. Второй способ практичен тогда, когда в числителе имеем одночлен, а в знаменателе - многочлен. Разберем на примере: в числителе имеем 5x, а в знаменателе - 5x + 20x 2 . В таком случае лучше всего вынести переменную в знаменателе за скобки, получим следующий вид знаменателя: 5x(1+4x). А теперь можно воспользоваться первым правилом и упростить выражение, сократив 5x в числителе и в знаменателе. В итоге получим дробь вида 1/1+4x.

Какие действия можно выполнять с рациональными числами?

Множество рациональных чисел имеет ряд своих особенностей. Многие из них весьма схожи с характеристикой, присутствующей у целых и натуральных чисел, ввиду того что последние всегда входят в множество рациональных. Вот несколько свойств рациональных чисел, зная которые, можно с легкостью решить любое рациональное выражение.

  1. Свойство коммутативности позволяет суммировать два или несколько чисел, вне зависимости от их очередности. Проще говоря, от перемены мест слагаемых сумма не меняется.
  2. Свойство дистрибутивности позволяет решать задачи с помощью распределительного закона.
  3. И, наконец, операции сложения и вычитания.

Даже школьники знают, что значит "рациональный вид чисел" и каким образом решать задачи на основе таких выражений, поэтому взрослому образованному человеку просто необходимо вспомнить хотя бы азы множества рациональных чисел.

    Рациональное выражение алгебраическое выражение, не содержащее радикалов. Другими словам, это одна или несколько алгебраических величин (чисел и букв), соединённых между собой знаками арифметических действий: сложения, вычитания, умножения… … Википедия

    Алгебраическое выражение, не содержащее радикалов и включающее только действия сложения, вычитания, умножения и деления. Напр., a2 + b, x/(y z2) … Большой Энциклопедический словарь

    Алгебраическое выражение, не содержащее радикалов и включающее только действия сложения, вычитания, умножения и деления. Например, a2 + b, х/(у z2). * * * РАЦИОНАЛЬНОЕ ВЫРАЖЕНИЕ РАЦИОНАЛЬНОЕ ВЫРАЖЕНИЕ, алгебраическое выражение, не содержащее… … Энциклопедический словарь

    Алгебраическое выражение, не содержащее радикалов, например a2 + b, х/(у z3). Если входящие в Р. в. буквы считать переменными, то Р. в. задаёт рациональную функцию (См. Рациональная функция) от этих переменных … Большая советская энциклопедия

    Алгебрарическое выражение, не содержащее радикалов и включающее только действия сложения, вычитания, умножения и деления. Напр., а2 + b, х/(y z2) … Естествознание. Энциклопедический словарь

    ВЫРАЖЕНИЕ - первичное математическое понятие, под которым подразумевают запись из букв и чисел, соединённых знаками арифметических действий, при этом могут быть использованы скобки, обозначения функций и т.п.; обычно В формула млн. её часть. Различают В (1)… … Большая политехническая энциклопедия

    РАЦИОНАЛЬНОЕ - (Rational; Rational) термин, используемый для описания мыслей, чувств и действий, согласуемых с разумом; установка, базирующаяся на объективных ценностях, полученных в результате практического опыта.«Объективные ценности устанавливаются в опыте… … Словарь по аналитической психологии

    РАЦИОНАЛЬНОЕ ПОЗНАНИЕ - субъективный образ объективного мира,полученный с помощью мышления. Мышление – активный процесс обобщенного и опосредованного отражения действительности, обеспечивающий открытие на основе чувственных данных ее закономерных связей и их выражение … Философия науки и техники: тематический словарь

    УРАВНЕНИЕ, РАЦИОНАЛЬНОЕ - Логическое или математическое выражение, основанное на (рациональных) предположениях о процессах. Такие уравнения отличаются от эмпирических уравнений тем, что их параметры получаются в результате дедуктивных выводов из теоретических… … Толковый словарь по психологии

    РАЦИОНАЛЬНЫЙ, рациональная, рациональное; рационален, рациональна, рационально. 1. прил. к рационализм (книжн.). Рациональная философия. 2. Вполне разумный, обоснованный, целесообразный. Он внес рациональное предложение. Рациональное… … Толковый словарь Ушакова

    1) Р. а л г е б р а и ч е с к о г о у р а в н е н и я f(x)=0степени п алгебраическое уравнение g(y)=0с коэффициентами, рационально зависящими от коэффициентов f(x), такое, что знание корней этого уравнения позволяет найти корни данного уравнения… … Математическая энциклопедия

Целое выражение - это математическое выражение, составленное из чисел и буквенных переменных с помощью действий сложения, вычитания и умножения. Также к целым относятся выражения, которые имеют в своем составе деление на какое либо число, отличное от нуля.

Примеры целого выражения

Ниже представлены несколько примеров целых выражений:

1. 12*a^3 + 5*(2*a -1);

3. 4*y- ((5*y+3)/5) -1;

Дробные выражения

Если же в выражении присутствует деление на переменную или на другое выражение содержащее переменную, то такое выражение не является целым. Такое выражение называется дробным. Дадим полное определение дробного выражения.

Дробное выражение - это математическое выражение, которое помимо действий сложения, вычитания и умножения, выполненных с числами и буквенными переменными, а также деления на число не равное нулю, содержит так же деление на выражения с буквенными переменными.

Примеры дробных выражений:

1. (12*a^3 +4)/a

3. 4*x- ((5*y+3)/(5-y)) +1;

Дробные и целые выражения составляют два больших множества математических выражений. Если эти множества объединить, то получим новое множество, которое называется рациональными выражениями. То есть рациональные выражения это все целый и дробные выражения.

Нам известно, что целые выражения имеют смысл при любых значениях переменных, которые в него входят. Это следует из того, что для нахождения значения целого выражения необходимо выполнять действия, которые всегда возможны: сложение, вычитание, умножение, деление на число отличное от нуля.

Дробные же выражения, в отличии от целых, могут и не иметь смысла. Так как присутствует операция деления на переменную или выражение содержащее переменные, и это выражение может обратится в нуль, а делить на нуль нельзя. Значения переменных, при которых дробное выражение будет иметь смысл, называют допустимыми значениями переменных.

Рациональная дробь

Одним из частных случаев рациональных выражений будет являться дробь, числитель и знаменатель которой многочлены. Для такой дроби в математике тоже существует свое название - рациональная дробь.

Рациональная дробь будет иметь смысл в том случае, если её знаменатель не равен нулю. То есть допустимыми будут являться все значения переменных, при которых знаменатель дроби отличен от нуля.

На данном уроке будут рассмотрены основные сведения о рациональных выражениях и их преобразованиях, а также примеры преобразования рациональных выражений. Данная тема как бы обобщает изученные нами до этого темы. Преобразования рациональных выражений подразумевают сложение, вычитание, умножение, деление, возведение в степень алгебраических дробей, сокращение, разложение на множители и т. п. В рамках урока мы рассмотрим, что такое рациональное выражение, а также разберём примеры на их преобразование.

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Основные сведения о рациональных выражениях и их преобразованиях

Определение

Рациональное выражение - это выражение, состоящее из чисел, переменных, арифметических операций и операции возведения в степень.

Рассмотрим пример рационального выражения:

Частные случаи рациональных выражений:

1. степень: ;

2. одночлен: ;

3. дробь: .

Преобразование рационального выражения - это упрощение рационального выражения. Порядок действий при преобразовании рациональных выражений: сначала идут действия в скобках, затем операции умножения (деления), а затем уже операции сложения (вычитания).

Рассмотрим несколько примеров на преобразование рациональных выражений.

Пример 1

Решение:

Решим данный пример по действиям. Первым выполняется действие в скобках.

Ответ:

Пример 2

Решение:

Ответ:

Пример 3

Решение:

Ответ: .

Примечание: возможно, у вас при виде данного примера возникла идея: сократить дробь перед тем, как приводить к общему знаменателю. Действительно, она является абсолютно правильной: сначала желательно максимально упростить выражение, а затем уже его преобразовывать. Попробуем решить этот же пример вторым способом.

Как видим, ответ получился абсолютно аналогичным, а вот решение оказалось несколько более простым.

На данном уроке мы рассмотрели рациональные выражения и их преобразования , а также несколько конкретных примеров данных преобразований.

Список литературы

1. Башмаков М.И. Алгебра 8 класс. - М.: Просвещение, 2004.

2. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.

Из курса алгебры школьной программы переходим к конкретике. В этой статье мы подробно изучим особый вид рациональных выражений – рациональные дроби , а также разберем, какие характерные тождественные преобразования рациональных дробей имеют место.

Сразу отметим, что рациональные дроби в том смысле, в котором мы их определим ниже, в некоторых учебниках алгебры называют алгебраическими дробями. То есть, в этой статье мы под рациональными и алгебраическими дробями будем понимать одно и то же.

По обыкновению начнем с определения и примеров. Дальше поговорим про приведение рациональной дроби к новому знаменателю и о перемене знаков у членов дроби. После этого разберем, как выполняется сокращение дробей. Наконец, остановимся на представлении рациональной дроби в виде суммы нескольких дробей. Всю информацию будем снабжать примерами с подробными описаниями решений.

Навигация по странице.

Определение и примеры рациональных дробей

Рациональные дроби изучаются на уроках алгебры в 8 классе. Мы будем использовать определение рациональной дроби, которое дается в учебнике алгебры для 8 классов Ю. Н. Макарычева и др.

В данном определении не уточняется, должны ли многочлены в числителе и знаменателе рациональной дроби быть многочленами стандартного вида или нет. Поэтому, будем считать, что в записях рациональных дробей могут содержаться как многочлены стандартного вида, так и не стандартного.

Приведем несколько примеров рациональных дробей . Так , x/8 и - рациональные дроби. А дроби и не подходят под озвученное определение рациональной дроби, так как в первой из них в числителе стоит не многочлен, а во второй и в числителе и в знаменателе находятся выражения, не являющиеся многочленами.

Преобразование числителя и знаменателя рациональной дроби

Числитель и знаменатель любой дроби представляют собой самодостаточные математические выражения, в случае рациональных дробей – это многочлены, в частном случае – одночлены и числа. Поэтому, с числителем и знаменателем рациональной дроби, как и с любым выражением, можно проводить тождественные преобразования. Иными словами, выражение в числителе рациональной дроби можно заменять тождественно равным ему выражением, как и знаменатель.

В числителе и знаменателе рациональной дроби можно выполнять тождественные преобразования . Например, в числителе можно провести группировку и приведение подобных слагаемых, а в знаменателе – произведение нескольких чисел заменить его значением. А так как числитель и знаменатель рациональной дроби есть многочлены, то с ними можно выполнять и характерные для многочленов преобразования, например, приведение к стандартному виду или представление в виде произведения.

Для наглядности рассмотрим решения нескольких примеров.

Пример.

Преобразуйте рациональную дробь так, чтобы в числителе оказался многочлен стандартного вида, а в знаменателе – произведение многочленов.

Решение.

Приведение рациональных дробей к новому знаменателю в основном применяется при сложении и вычитании рациональных дробей .

Изменение знаков перед дробью, а также в ее числителе и знаменателе

Основное свойство дроби можно использовать для смены знаков у членов дроби. Действительно, умножение числителя и знаменателя рациональной дроби на -1 равносильно смене их знаков, а в результате получится дробь, тождественно равная данной. К такому преобразованию приходится достаточно часто обращаться при работе с рациональными дробями.

Таким образом, если одновременно изменить знаки у числителя и знаменателя дроби, то получится дробь, равная исходной. Этому утверждению отвечает равенство .

Приведем пример. Рациональную дробь можно заменить тождественно равной ей дробью с измененными знаками числителя и знаменателя вида .

С дробями можно провести еще одно тождественное преобразование, при котором меняется знак либо в числителе, либо в знаменателе. Озвучим соответствующее правило. Если заменить знак дроби вместе со знаком числителя или знаменателя, то получится дробь, тождественно равная исходной. Записанному утверждению соответствуют равенства и .

Доказать эти равенства не составляет труда. В основе доказательства лежат свойства умножения чисел. Докажем первое из них: . С помощью аналогичных преобразований доказывается и равенство .

Например, дробь можно заменить выражением или .

В заключение этого пункта приведем еще два полезных равенства и . То есть, если изменить знак только у числителя или только у знаменателя, то дробь изменит свой знак. Например, и .

Рассмотренные преобразования, позволяющие изменять знак у членов дроби, часто применяются при преобразовании дробно рациональных выражений.

Сокращение рациональных дробей

В основе следующего преобразования рациональных дробей, имеющего название сокращение рациональных дробей, лежит все тоже основное свойство дроби. Этому преобразованию соответствует равенство , где a , b и c – некоторые многочлены, причем b и c - ненулевые.

Из приведенного равенства становится понятно, что сокращение рациональной дроби подразумевает избавление от общего множителя в ее числителе и знаменателе.

Пример.

Сократите рациональную дробь .

Решение.

Сразу виден общий множитель 2 , выполним сокращение на него (при записи общие множители, на которые сокращают, удобно зачеркивать). Имеем . Так как x 2 =x·x и y 7 =y 3 ·y 4 (при необходимости смотрите ), то понятно, что x является общим множителем числителя и знаменателя полученной дроби, как и y 3 . Проведем сокращение на эти множители: . На этом сокращение завершено.

Выше мы выполняли сокращение рациональной дроби последовательно. А можно было выполнить сокращение в один шаг, сразу сократив дробь на 2·x·y 3 . В этом случае решение выглядело бы так: .

Ответ:

.

При сокращении рациональных дробей основная проблема заключается в том, что общий множитель числителя и знаменателя далеко не всегда виден. Более того, он не всегда существует. Для того, чтобы найти общий множитель или убедиться в его отсутствии нужно числитель и знаменатель рациональной дроби разложить на множители. Если общего множителя нет, то исходная рациональная дробь не нуждается в сокращении, в противном случае – проводится сокращение.

В процессе сокращения рациональных дробей могут возникать различные нюансы. Основные тонкости на примерах и в деталях разобраны в статье сокращение алгебраических дробей .

Завершая разговор о сокращении рациональных дробей, отметим, что это преобразование является тождественным, а основная сложность в его проведении заключается в разложении на множители многочленов в числителе и знаменателе.

Представление рациональной дроби в виде суммы дробей

Достаточно специфическим, но в некоторых случаях очень полезным, оказывается преобразование рациональной дроби, заключающееся в ее представлении в виде суммы нескольких дробей, либо сумме целого выражения и дроби.

Рациональную дробь, в числителе которой находится многочлен, представляющий собой сумму нескольких одночленов, всегда можно записать как сумму дробей с одинаковыми знаменателями, в числителях которых находятся соответствующие одночлены. Например, . Такое представление объясняется правилом сложения и вычитания алгебраических дробей с одинаковыми знаменателями .

Вообще, любую рациональную дробь можно представить в виде суммы дробей множеством различных способов. Например, дробь a/b можно представить как сумму двух дробей – произвольной дроби c/d и дроби, равной разности дробей a/b и c/d . Это утверждение справедливо, так как имеет место равенство . К примеру, рациональную дробь можно представить в виде суммы дробей различными способами: Представим исходную дробь в виде суммы целого выражения и дроби. Выполнив деление числителя на знаменатель столбиком, мы получим равенство . Значение выражение n 3 +4 при любом целом n является целым числом. А значение дроби является целым числом тогда и только тогда, когда ее знаменатель равен 1 , −1 , 3 или −3 . Этим значениям отвечают значения n=3 , n=1 , n=5 и n=−1 соответственно.

Ответ:

−1 , 1 , 3 , 5 .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 13-е изд., испр. - М.: Мнемозина, 2009. - 160 с.: ил. ISBN 978-5-346-01198-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
Loading...Loading...