Сложение двоичных чисел. Двоичная арифметика Выполнение арифметических действий на деление в информатике

Тема урока: Арифметические операции в позиционных системах счисления.

9 класс

Задачи урока:

    Дидактическая: ознакомить учащихся со сложением, вычитанием, умножение и делением в двоичной системе счисления и провести первичную отработку навыка проведения этих действий.

    Воспитательная: развивать интерес учащихся к познанию нового, показать возможность нестандартного подхода к вычислениям.

    Развивающая: развивать внимание, строгость мышления, умение рассуждать.

Структура урока.

    Оргмомент – 1 мин.

    Проверка домашнего задания с помощью устного теста – 15 мин.

    Домашнее задание – 2 мин.

    Решение задач с одновременным анализом и самостоятельной отработкой материала – 25 мин.

    Подведение итогов урока – 2 мин.

ХОД УРОКА

    Оргмомент.

    Проверка домашнего задания (устный тест) .

Учитель последовательно читает вопросы. Ученики внимательно слушают вопрос, не записывая его. Записывается только ответ, причём очень коротко. (Если можно ответить одним словом, то записывается только это слово).

    Что такое система счисления? (- это знаковая система, в которой числа записываются по определенным правилам с помощью знаков некоторого алфавита, называемого цифрами )

    Какие системы счисления вы знаете? ( непозиционные и позиционные )

    Какая система называется непозиционной? (ССЧ называется непозиционной, если количественный эквивалент (количественное значение) цифры в числе не зависит от её положения в записи числа ).

    Чему равно основание позиционной ССЧ. (равно количеству цифр, составляющих ее алфавит )

    Каким математическим действием надо воспользоваться, чтобы перевести целое число из десятичной ССЧ в любую другую? (Делением )

    Что нужно сделать, чтобы перевести число из десятичной ССЧ в двоичную? (Последовательно делить на 2 )

    Во сколько раз уменьшится число 11,1 2 при переносе запятой на один знак влево? (в 2 раза )

А теперь послушаем стих про необыкновенную девочку и ответим на вопросы. (Звучит стих )

НЕОБЫКНОВЕННАЯ ДЕВОЧКА

Ей было тысяча сто лет,
Она в сто первый класс ходила,
В портфеле по сто книг носила.
Все это правда, а не бред.

Когда, пыля десятком ног,
Она шагала по дороге.
За ней всегда бежал щенок
С одним хвостом, зато стоногий.

Она ловила каждый звук
Своими десятью ушами,
И десять загорелых рук
Портфель и поводок держали.

И десять темно-синих глаз
Рассматривали мир привычно,
Но станет все совсем обычным,
Когда поймете мой рассказ.

/ Н. Стариков /

И сколько же лет было девочке? (12 лет ) В какой она класс ходила? (5 класс ) Сколько у нее рук и ног было? (2 руки, 2 ноги ) Откуда у щенка 100 ног? (4 лапы )

После выполнения теста, ответы произносятся вслух самими учениками, проводится самопроверка и учащиеся сами выставляют себе оценки.

Критерий:

    10 правильных ответов (можно небольшой недочёт) – “5”;

    9 или 8 – “4”;

    7, 6 – “3”;

    остальные – “2”.

II. Задание на дом (2 мин)

10111 2 - 1011 2 = ? ( 1100 2 )
10111 2 + 1011 2 = ? ( 100010 2 )
10111 2 * 1011 2 = ? ( 11111101 2 ))

III. Работа с новым материалом

Арифметические операции в двоичной системе счисления.

Арифметика двоичной системы счисления основывается на использовании таблиц сложения, вычитания и умножения цифр. Арифметические операнды располагаются в верхней строке и в первом столбце таблиц, а результаты на пересечении столбцов и строк:

0

1

1

1

Сложение.

Таблица двоичного сложения предельно проста. Только в одном случае, когда производится сложение 1+1, происходит перенос в старший разряд.

1001 + 1010 = 10011

1101 + 1011 = 11000

11111 + 1 = 100000

1010011,111 + 11001,11 = 1101101,101

10111 2 + 1001 2 = ? (100000 2 )

Вычитание.

При выполнении операции вычитания всегда из большего по абсолютной величине числа вычитается меньшее, и ставится соответствующий знак. В таблице вычитания 1 с чертой означает заем в старшем разряде. 10111001,1 – 10001101,1 = 101100,0

101011111 – 110101101 = – 1001110

100000 2 - 10111 2 = ? (1001 2 )

Умножение

Операция умножения выполняется с использованием таблицы умножения по обычной схеме, применяемой в десятичной системе счисления с последовательным умножением множимого на очередную цифру множителя. 11001 * 1101 = 101000101

11001,01 * 11,01 = 1010010,0001

Умножение сводится к сдвигам множимого и сложениям.

111 2 * 11 2 = ? (10101 2 )

V. Подведение итогов урока

Карточка для дополнительной работы учащихся.

Выполните арифметические операции:

А) 1110 2 + 1001 2 = ? (10111 2 ); 1101 2 + 110 2 = ? (10011 2 );

10101 2 + 1101 2 = ? (100010 2 ); 1011 2 + 101 2 = ? (10000 2 );

101 2 + 11 2 = ? (1000 2 ); 1101 2 + 111 2 = ? (10100 2 );

Б) 1110 2 - 1001 2 = ? (101); 10011 2 - 101 2 = ? (1110 2 );

Сложение. В основе сложения чисел в двоичной системе счисления лежит таблица сложения одноразрядных двоичных чисел (табл. 6).

Важно обратить внимание на то, что при сложении двух единиц производится перенос в старший разряд. Это происходит тогда, когда величина числа становится равной или большей основания системы счисления.

Сложение многоразрядных двоичных чисел выполняется в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие. В качестве примера сложим в столбик двоичные числа :

Проверим правильность вычислений сложением в десятичной системе счисления. Переведем двоичные числа в десятичную систему счисления и сложим их:

Вычитание. В основе вычитания двоичных чисел лежит таблица вычитания одноразрядных двоичных чисел (табл. 7).

При вычитании из меньшего числа (0) большего (1) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой.

Вычитание многоразрядных двоичных чисел реализуется в соответствии с этой таблицей с учетом возможных заемов в старших разрядах.

Для примера произведем вычитание двоичных чисел :

Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел (табл. 8).

Умножение многоразрядных двоичных чисел осуществляется в соответствии с этой таблицей умножения по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя. Рассмотрим пример умножения двоичных чисел

Примечание: При сложении двух чисел, равных 1, в данном разряде получается 0, а 1-ца переносится в старший разряд.

Пример_21 : Даны числа 101 (2) и 11 (2) . Найти сумму этих чисел.

где 101 (2) = 5 (10) , 11 (2) = 3 (10) , 1000 (2) = 8 (10) .

Проверка: 5+3=8.

При вычитании из 0 единицы, занимается единица из старшего ближайшего разряда, отличного от 0. При этом, единица занятая в старшем разряде, даёт 2 единицы в младшем разряде и по единице во всех разрядах между старшим и младшим.

Пример_22 : Даны числа 101 (2) и 11 (2) . Найти разность этих чисел.

где 101 (2) =5 (10) , 11 (2) =3 (10) , 10 (2) =2 (10) .

Проверка: 5-3=2.

Операция умножения сводится к многократному сдвигу и сложению.

Пример_23 : Даны числа 11 (2) и 10 (2) . Найти произведение этих чисел.

где 11 (2) =3 (10) , 10 (2) =2 (10) , 110 (2) =6 (10) .

Проверка: 3*2=6.

Арифметические операции в восьмеричной системе счисления

При сложении двух чисел, в сумме равных 8, в данном разряде получается 0, а 1-ца переносится в старший разряд.

Пример_24 : Даны числа 165 (8) и 13 (8) . Найти сумму этих чисел.

где 165 (8) = 117 (10) , 13 (8) = 11 (10) , 200 (8) = 128 (10) .

При вычитании из меньшего числа большего, занимается единица из старшего ближайшего разряда, отличного от 0. При этом, единица занятая в старшем разряде, даёт 8 в младшем разряде.

Пример_25 : Даны числа 114 (8) и 15 (8) . Найти разность этих чисел.

где 114 (8) =76 (10) , 15 (8) =13 (10) , 77 (8) =63 (10) .

Арифметические операции в шестнадцатеричной системе счисления

При сложении двух чисел, в сумме равных 16, в данном разряде записывают 0, а 1-ца переносят в старший разряд.

Пример_26 : Даны числа 1B5 (16) и 53 (16) . Найти сумму этих чисел.

где 1B5 (16) = 437 (10) , 53 (16) = 83 (10) , 208 (16) = 520 (10) .

При вычитании из меньшего числа большего, занимается единица из старшего ближайшего разряда, отличного от 0. При этом, единица занятая в старшем разряде, даёт 16 в младшем разряде.

Пример_27 : Даны числа 11A (16) и 2C (16) . Найти разность этих чисел.

где 11A (16) =282 (10) , 2C (16) =44 (10) , EE (16) =238 (10) .

Кодирование данных в ЭВМ

Данные в компьютере представляются в виде кода, который состоит из единиц и нулей в разной последовательности.

Код – набор условных обозначений для представления информации. Кодирование – процесс представления информации в виде кода.

Коды чисел

При выполнении арифметических операций в ЭВМ применяют прямой, обратный и дополнительный коды чисел.

Прямой код

Прямой код (представление в виде абсолютной величины со знаком) двоичного числа – это само двоичное число, в котором все цифры, изображающие его значение, записываются как в математической записи, а знак числа записывается двоичной цифрой.

Целые числа могут представляться в компьютере со знаком или без знака.

Целые числа без знака обычно занимают в памяти один или два байта. Для хранения целых чисел со знаком отводится один, два или четыре байта, при этом старший (крайний левый) разряд отводится под знак числа. Если число положительное, то в этот разряд записывается 0, если отрицательное,- то 1.

Пример_28 :

1 (10) =0 000 0001 (2) , -1 (10) =1 000 0001 (2)


Положительные числа в ЭВМ всегда представляются с помощью прямого кода. Прямой код числа полностью совпадает с записью самого числа в ячейке машины. Прямой код отрицательного числа отличается от прямого кода соответствующего положительного числа лишь содержимым знакового разряда.

Прямой код используется при хранении чисел в памяти ЭВМ, а также при выполнении операций умножения и деления, но формат представления чисел в прямом коде неудобен для использования в вычислениях, поскольку сложение и вычитание положительных и отрицательных чисел выполняется по–разному, а потому требуется анализировать знаковые разряды операндов. Поэтому прямой код практически не применяется при реализации в АЛУ арифметических операций над целыми числами. Но отрицательные целые числа не представляются в ЭВМ с помощью прямого кода. Вместо этого формата широкое распространение получили форматы представления чисел в обратном и дополнительном кодах.

Обратный код

Обратный код положительного числа совпадает с прямым, а при записи отрицательного числа все его цифры, кроме цифры, изображающей знак числа, заменяются на противоположные (0 заменяется на 1, а 1 - на 0).

Пример_29 :

Пример_30 :

Для восстановления прямого кода отрицательного числа из обратного кода надо все цифры, кроме цифры, изображающей знак числа, заменить на противоположные.

Дополнительный код

Дополнительный код положительного числа совпадает с прямым, а код отрицательного числа образуется путем прибавления 1 к обратному коду.

Пример_31 :

Пример_32 :

Пример_33 :

Для целого числа -32 (10) записать дополнительный код.

1. После перевода числа 32 (10) в двоичную систему счисления получим:

32 (10) =100000 (2) .

2. Прямой код положительного числа 32 (10) равен 0010 0000.

3. Для отрицательного числа -32 (10) прямой код равен 1010 0000.

4. Обратный код числа -32 (10) равен 1101 1111.

5. Дополнительный код числа -32 (10) равен 1110 0000.

Пример_34 :

Дополнительный код числа равен 0011 1011. Найти значение числа в десятичной системе счисления.

1. Первый (знаковый) разряд числа 0 011 1011 равен 0, следовательно, число положительное.

2. У положительного числа дополнительный, обратный и прямой код совпадают.

3. Число в двоичной системе счисления получаем из записи прямого кода – 111011 (2) (нули из старших разрядов отбрасываем).

4. Число 111011 (2) после перевода в десятичную систему счисления равно 59 (10) .

Пример_35 :

Дополнительный код числа равен 1011 1011. Найти значение числа в десятичной системе счисления.

1. Знаковый разряд числа 1 011 1011 равен 1, следовательно, число отрицательное.

2. Для определения обратного кода числа из дополнительного кода вычитаем единицу. Обратный код равен 1 011 1010.

3. Прямой код получаем из обратного заменой всех двоичных цифр числа на противоположные (1 на 0, 0 на 1). Прямой код числа равен 1 100 0101 (в знаковом разряде записываем 1).

4. Число в двоичной системе счисления получаем из записи прямого кода – -100 0101 (2) .

4. Число -1000101 (2) после перевода в десятичную систему счисления равно -69 (10) .


Похожая информация.


Главная \ Документы \ Для учителя информатики

При использовании материалов этого сайта - и размещение баннера -ОБЯЗАТЕЛЬНО!!!

Двоичная арифметика

Числа которыми мы привыкли пользоваться называются десятичными и арифметика которой мы пользуемся также называется десятичной. Это потому, что каждое число можно составить из набора цифр содержащего 10 символов - цифр - "0123456789".

Так шло развитие математики, что именно этот набор стал главным, но десятичная арифметика не единственная. Если мы возьмём только пять цифр, то на их основе можно построить пятиричную арифметику, из семи цифр - семиричную. В областях знаний связанных с компьютерной техникой часто используют арифметику в которой числа составляются из шестнадцати цифр, соответственно эта арифметика называется шестнадцатиричной. Чтобы понять, что такое число в не десятичной арифметике сначала выясним, что такое число в десятичной арифметике.

Возьмём, к примеру, число 246. Эта запись означает, что в числе две сотни, четыре десятка и шесть единиц. Следовательно, можно записать следующее равенство:

246 = 200 + 40 + 6 = 2 * 10 2 + 4 * 10 1 + 6 * 10 0

Здесь знаками равенства отделены три способа записи одного и того же числа. Наиболее интересна нам сейчас третья форма записи: 2 * 10 2 + 4 * 10 1 + 6 * 10 0 . Она устроена следующим образом:

В нашем числе три цифры. Старшая цифра "2" имеет номер 3. Так вот она умножается на 10 во второй степени. Следующая цифра "4" имеет порядковый номер 2 и умножается на 10 в первой. Уже видно, что цифры умножаются на десять в степени на единицу меньше порядкового номера цифры. Уяснив сказанное, мы можем записать общую формулу представления десятичного числа. Пусть дано число, в котором N цифр. Будем обозначать i-ю цифру через a i. Тогда число можно записать в следующем виде: a n a n-1 ….a 2 a 1 . Это первая форма, а третья форма записи будет выглядеть так:

a n a n-1 ….a 2 a 1 = a n * 10 n-1 + a n-1 * 10 n-2 + …. + a 2 * 10 1 + a 1 * 10 0

где a i это символ из набора "0123456789"

В этой записи очень хорошо видна роль десятки. Десятка является основой образования числа. И кстати она так и называется "основание системы счисления", а сама система счисления, поэтому так и называется "десятичной". Конечно, никакими особыми свойствами число десять не обладает. Мы вполне можем заменить десять на любое другое число. Например, число в пятиричной системе счисления можно записать так:

a n a n-1 ….a 2 a 1 = a n * 5 n-1 + a n-1 * 5 n-2 + …. + a 2 * 5 1 + a 1 * 5 0

где a i это символ из набора "01234"

В общем, заменяем 10 на любое другое число и получаем совершенно другую систему счисления и другую арифметику. Наиболее простая арифметика получается, если 10 заменить на 2. Полученная система счисления называется двоичной и число в ней определяется следующим образом:

a n a n-1 ….a 2 a 1 = a n * 2 n-1 + a n-1 * 2 n-2 + …. + a 2 * 2 1 + a 1 * 2 0

где a i это символ из набора "01"

Эта система самая простая из всех возможных, так как в ней любое число образуется только из двух цифр 0 и 1. Понятно, что проще уже некуда. Примеры двоичных чисел: 10, 111, 101.

Очень важный вопрос. Можно ли двоичное число представить в виде десятичного числа и наоборот, можно ли десятичное число представить в виде двоичного.

Двоичное в десятичное. Это очень просто. Метод такого перевода даёт наш способ записи чисел. Возьмём, к примеру, следующее двоичное число 1011. Разложим его по степеням двойки. Получим следующее:

1011 = 1 * 2 3 + 0 * 2 2 + 1 * 2 1 + 1 * 2 0

Выполним все записанные действия и получим:

1 * 2 3 + 0 * 2 2 + 1 * 2 1 + 1 * 2 0 = 8 + 0+ 2 + 1 = 11. Таким образом, получаем, что 1011(двоичное) = 11 (десятичное). Сразу видно и небольшое неудобство двоичной системы. То же самое число, которое, в десятичной системе записано одним знаком в двоичной системе, для своей записи требует четыре знака. Но это плата за простоту (бесплатно ничего не бывает) . Но выигрыш двоичная система даёт огромный в арифметических действиях. И далее мы это увидим.

Представьте в виде десятичного числа следующие двоичные числа.

а) 10010 б) 11101 с) 1010 в) 1110 г) 100011 д) 1100111 е) 1001110

Сложение двоичных чисел.

Способ сложения столбиком в общем-то такой же как и для десятичного числа. То есть, сложение выполняется поразрядно, начиная с младшей цифры. Если при сложении двух цифр получается СУММА больше девяти, то записывается цифра=СУММА- 10, а ЦЕЛАЯ ЧАСТЬ (СУММА /10), добавляется в старшему разряду. (Сложите пару чисел столбиком вспомните как это делается.) Так и с двоичным числом. Складываем поразрядно, начиная с младшей цифры. Если получается больше 1, то записывается 1 и 1 добавляется к старшему разряду (говорят "на ум пошло").

Выполним пример: 10011 + 10001.

Первый разряд: 1+1 = 2. Записываем 0 и 1 на ум пошло.

Второй разряд : 1+0+1(запомненная единица) =2. Записываем 0 и 1 на ум пошло.

Третий разряд : 0+0+1(запомненная единица) = 1. Записываем 1.

Четвертый разряд 0+0=0. Записываем 0.

Пятый разряд 1+1=2. Записываем 0 и добавляем к шестым разрядом 1.

Переведём все три числа в десятичную систему и проверим правильность сложения.

10011 = 1*2 4 + 0*2 3 + 0*2 2 + 1*2 1 + 1*2 0 = 16 + 2 + 1 =19

10001 = 1*2 4 + 0*2 3 + 0*2 2 + 0*2 1 + 1*2 0 = 16 + 1 = 17

100100 = 1*2 5 + 0*2 4 + 0*2 3 + 1*2 2 + 0*2 1 + 0*2 0 =32+4=36

17 + 19 = 36 верное равенство

Примеры для самостоятельного решения:

а) 11001 +101 =

б) 11001 +11001 =

с) 1001 + 111 =

д) 10011 + 101 =

е) 11011 + 1111 =

д) 11111 + 10011 =

Как десятичное число перевести в двоичное. На очереди следующая операция - вычитание. Но этой операцией мы займёмся немного позже, а сейчас рассмотрим метод преобразования десятичного числа в двоичное.

Для того, чтобы преобразовать десятичное число в двоичное, его нужно разложить по степеням двойки. Но если разложение по степеням десятки получается сразу, то, как разложить по степеням двойки надо немного подумать. Для начала рассмотрим, как это сделать методом подбора. Возьмём десятичное число 12.

Шаг первый. 2 2 = 4, этого мало. Также мало и 2 3 = 8, а 2 4 =16 это уже много. Поэтому оставим 2 3 =8. 12 - 8 = 4. Теперь нужно представить в виде степени двойки 4.

Шаг второй. 4 = 2 2 .

Тогда наше число 12 = 2 3 + 2 2 . Старшая цифра имеет номер 4, старшая степень = 3, следовательно, должны быть слагаемые со степенями двойки 1 и 0. Но они нам не нужны, поэтому чтобы избавится от ненужных степеней, и оставить нужные запишем число так: 1*2 3 + 1*2 2 +0*2 1 + 0*2 0 = 1100 - это и есть двоичное представление числа 12. Нетрудно заметить, что каждая очередная степень - это наибольшая степень двойки, которая меньше разлагаемого числа. Чтобы закрепить метод рассмотрим ещё один пример. Число 23.

Шаг 1. Ближайшая степень двойки 2 4 = 16. 23 -16= 7.

Шаг 2. Ближайшая степень двойки 2 2 = 4. 7 - 4 = 3

Шаг 3. Ближайшая степень двойки 2 1 = 2. 3 - 2 = 1

Шаг 4. Ближайшая степень двойки 2 0 =1 1 - 1 =0

Получаем следующее разложение: 1*2 4 + 0*2 3 +1*2 2 +1*2 1 +1*2 0

А наше искомое двоичное число 10111

Рассмотренный выше метод хорошо решает поставленную перед ним задачу, но есть способ который алгоритмизируется значительно лучше. Алгоритм этого метода записан ниже:

Пока ЧИСЛО больше нуля делать

ОЧЕРЕДНАЯ ЦИФРА = остаток от деления ЧИСЛА на 2

ЧИСЛО = целая часть от деления ЧИСЛА на 2

Когда этот алгоритм завершит свою работу, последовательность вычисленных ОЧЕРЕДНЫХ ЦИФР и будет представлять двоичное число. Для примера поработаем с числом 19.

Начало алгоритма ЧИСЛО = 19

ОЧЕРЕДНАЯ ЦИФРА = 1

ОЧЕРЕДНАЯ ЦИФРА = 1

ОЧЕРЕДНАЯ ЦИФРА = 0

ОЧЕРЕДНАЯ ЦИФРА = 0

ОЧЕРЕДНАЯ ЦИФРА = 1

Итак, в результате имеем следующее число 10011. Заметьте, что два рассмотренных метода отличаются порядком получения очередных цифр. В первом методе первая полученная цифра - это старшая цифра двоичного числа, а во втором первая полученная цифра наоборот младшая.

Преобразуйте десятичные числа в двоичные двумя способами

а) 14 б) 29 в) 134 г) 158 е) 1190 ж) 2019

Как преобразовать в десятичное число дробную часть.

Известно, что любое рациональное число можно представить в виде десятичной и обыкновенной дроби. Обыкновенная дробь, то есть дробь вида А/В может быть правильной и неправильной. Дробь называется правильной если А<В и неправильной если А>В.

Если рациональное число представлено неправильной дробью, и при этом числитель дроби делится на знаменатель нацело, то данное рациональное число - число целое, во всех иных случаях возникает дробная часть. Дробная часть зачастую бывает очень длинным числом и даже бесконечным (бесконечная периодическая дробь, например 20/6), поэтому в случае с дробной частью у нас возникает не просто задача перевода одного представления в другое, а перевод с определённой точностью.

Правило точности. Предположим, дано десятичное число, которое в виде десятичной дроби представимо с точностью до N знаков. Для того, чтобы соответствующее двоичное число было той же точности, в нём необходимо записать M - знаков, так что бы

А теперь попробуем получить правило перевода, и для начала рассмотрим пример 5,401

Решение:

Целую часть мы получим по уже известным нам правилам, и она равна двоичному числу 101. А дробную часть разложим по степеням 2.

Шаг 1: 2 -2 = 0,25; 0,401 - 0,25 = 0,151. - это остаток.

Шаг 2: Сейчас необходимо степенью двойки представить 0,151. Сделаем это: 2 -3 = 0,125; 0,151 - 0,125 = 0,026

Таким образом, исходную дробную, часть можно представить в виде 2 -2 +2 -3 . То же самое можно записать таким двоичным числом: 0,011. В первом дробном разряде стоит ноль, это потому, что в нашем разложении степень 2 -1 отсутствует.

Из первого и второго шагов ясно, что это представление не точное и может быть разложение желательно продолжить. Обратимся к правилу. Оно говорит, что нам нужно столько знаков М чтобы 10 3 было меньше чем 2 М. То есть 1000<2 M . То есть в двоичном разложении у нас должно быть не менее десяти знаков, так как 2 9 = 512 и только 2 10 = 1024. Продолжим процесс.

Шаг 3: Сейчас работаем с числом 0,026. Ближайшая к этому числу степень двойки 2 -6 = 0,015625; 0,026 - 0,015625 = 0,010375 теперь наше более точное двоичное число имеет вид: 0,011001. После запятой уже шесть знаков, но этого пока недостаточно, поэтому выполняем ещё один шаг.

Шаг 4: Сейчас работаем с числом 0,010375. Ближайшая к этому числу степень двойки 2 -7 = 0,0078125;

0,010375 - 0,0078125 = 0,0025625

Шаг 5: Сейчас работаем с числом 0,0025625. Ближайшая к этому числу степень двойки 2 -9 = 0,001953125;

0,0025625 - 0,001953125 = 0,000609375

Последний получившийся остаток меньше чем 2 -10 и если бы мы желали продолжать приближение к исходному числу, то нам бы понадобилось 2 -11 , но это уже превосходит требуемую точность, а следовательно расчёты можно прекратить и записать окончательное двоичное представление дробной части.

0,401 = 0,011001101

Как видно, преобразование дробной части десятичного числа в двоичное представление немного более сложно, чем преобразование целой части. Таблица степеней двойки в конце лекции.

А сейчас запишем алгоритм преобразования:

Исходные данные алгоритма: Через А будем обозначать исходную правильную десятичную дробь записанную в десятичной форме. Пусть эта дробь содержит N знаков.

Алгоритм

Действие 1. Определим количество необходимых двоичных знаков М из неравенства 10 N < 2 M

Действие 2: Цикл вычисления цифр двоичного представления (цифры после нуля). Номер цифры будем обозначать символом К.

  1. Номер цифры = 1
  2. Если 2 -К > А

То в запись двоичного числа добавляем ноль

    • в запись двоичного числа добавляем 1
    • А = А - 2 -К
  1. К = К + 1
  2. Если К > М
  • то работа алгоритма завершена
  • Иначе переходим на пункт 2.

Переведите десятичные числа в двоичные

а) 3,6 б) 12,0112 в) 0,231 г) 0,121 д) 23, 0091

Вычитание двоичных чисел. Вычитать числа, будем также столбиком и общее правило тоже, что и для десятичных чисел, вычитание выполняется поразрядно и если в разряде не хватает единицы, то она занимается в старшем. Решим следующий пример:

Первый разряд. 1 - 0 =1. Записываем 1.

Второй разряд 0 -1. Не хватает единицы. Занимаем её в старшем разряде. Единица из старшего разряда переходит в младший, как две единицы (потому что старший разряд представляется двойкой большей степени) 2-1 =1. Записываем 1.

Третий разряд . Единицу этого разряда мы занимали, поэтому сейчас в разряде 0 и есть необходимость занять единицу старшего разряда. 2-1 =1. Записываем 1.

Проверим результат в десятичной системе

1101 - 110 = 13 - 6 = 7 (111) Верное равенство.

Еще один интересный способ выполнения вычитания связан с понятием дополнительного кода, который позволяет свести вычитание к сложению. Получается число в дополнительном коде исключительно просто, берём число, заменяем нули на единицы, единицы наоборот заменяем на нули и к младшему разряду добавляем единицу. Например, 10010, в дополнительном коде будет 011011.

Правило вычитания через дополнительный код утверждает, что вычитание можно заменить на сложение если вычитаемое заменить на число в дополнительном коде.

Пример: 34 - 22 = 12

Запишем этот пример в двоичном виде. 100010 - 10110 = 1100

Дополнительный код числа 10110 будет такой

01001 + 00001 = 01010. Тогда исходный пример можно заменить сложением так 100010 + 01010 = 101100 Далее необходимо отбросить одну единицу в старшем разряде. Если это сделать то, получим 001100. Отбросим незначащие нули и получим 1100, то есть пример решён правильно

Выполните вычитания. Обычным способом и в дополнительном коде, переведя предварительно десятичные числа в двоичные:

Выполните проверку переведя двоичный результат в десятичную систему счисления.

Умножение в двоичной системе счисления.

Для начала рассмотрим следующий любопытный факт. Для того, чтобы умножить двоичное число на 2 (десятичная двойка это 10 в двоичной системе) достаточно к умножаемому числу слева приписать один ноль.

Пример. 10101 * 10 = 101010

Проверка.

10101 = 1*2 4 + 0*2 3 + 1*2 2 + 0*2 1 +1*2 0 = 16 + 4 + 1 = 21

101010 =1*2 5 + 0*2 4 + 1*2 3 + 0*2 2 +1*2 1 +0*2 0 = 32 + 8 + 2 = 42

Если мы вспомним, что любое двоичное число разлагается по степеням двойки, то становится ясно, что умножение в двоичной системе счисления сводится к умножению на 10 (то есть на десятичную 2), а стало быть, умножение это ряд последовательных сдвигов. Общее правило таково: как и для десятичных чисел, умножение двоичных выполняется поразрядно. И для каждого разряда второго множителя к первому множителю добавляется один ноль справа. Пример (пока не столбиком):

1011 * 101 Это умножение можно свести к сумме трёх порязрядных умножений:

1011 * 1 + 1011 * 0 + 1011 * 100 = 1011 +101100 = 110111 В столбик это же самое можно записать так:

Проверка:

101 = 5 (десятичное)

1011 = 11 (десятичное)

110111 = 55 (десятичное)

5*11 = 55 верное равенство

Решите самостоятельно

а) 1101 * 1110 =

б) 1010 * 110 =

д) 101011 * 1101 =

е) 10010 * 1001 =

Примечание: Кстати таблица умножения в двоичной системе состоит только из одного пункта 1 * 1 = 1

Деление в двоичной системе счисления.

Мы уже рассмотрели три действия и думаю уже понятно, что в общем-то действия над двоичными числами мало отличаются от действий над десятичными числами. Разница появляется только в том, что цифр две а не десять, но это только упрощает арифметические операции. Так же обстоит дело и с делением, но для лучшего понимания алгоритм деления разберём более подробно. Пусть нам необходимо разделить два десятичных числа, например 234 разделить на 7. Как мы это делаем.

Мы выделяем справа (от старшего разряда) такое количество цифр, чтобы получившееся число было как можно меньше и в то же время больше делителя. 2 - меньше делителя, следовательно, необходимое нам число 23. Затем делим полученное число на делитель с остатком. Получаем следующий результат:

Описанную операцию повторяем до тех пор, пока полученный остаток не окажется меньше делителя. Когда это случится, число полученное под чертой, это частное, а последний остаток - это остаток операции. Так вот операция деления двоичного числа выполняется точно также. Попробуем

Пример: 10010111 / 101

Ищем число, от старшего разряда которое первое было бы больше чем делитель. Это четырехразрядное число 1001. Оно выделено жирным шрифтом. Теперь необходимо подобрать делитель выделенному числу. И здесь мы опять выигрываем в сравнении в десятичной системой. Дело в том, что подбираемый делитель это обязательно цифра, а цифры у нас только две. Так как 1001 явно больше 101, то с делителем всё понятно это 1. Выполним шаг операции.

Итак, остаток от выполненной операции 100. Это меньше чем 101, поэтому чтобы выполнить второй шаг деления, необходимо добавить к 100 следующую цифру, это цифра 0. Теперь имеем следующее число:

1000 больше 101 поэтому на втором шаге мы опять допишем в частное цифру 1 и получим следующий результат (для экономии места сразу опустим следующую цифру).

Третий шаг. Полученное число 110 больше 101, поэтому и на этом шаге мы запишем в частное 1. Получиться так:

Полученное число 11 меньше 101, поэтому записываем в частное цифру 0 и опускаем вниз следующую цифру. Получается так:

Полученное число больше 101, поэтому в частное записываем цифру 1 и опять выполняем действия. Получается такая картина:

1

0

Полученный остаток 10 меньше 101, но у нас закончились цифры в делимом, поэтому 10 это окончательный остаток, а 1110 это искомое частное.

Проверим в десятичных числах

На этом мы заканчиваем описание простейших арифметических операций, которые необходимо знать, для того, чтобы пользоваться двоичной арифметикой, и теперь попробуем ответить на вопрос "Зачем нужна двоичная арифметика". Конечно, выше уже было показано, что запись числа в двоичной системе существенно упрощает арифметические операции, но в то же время сама запись становится значительно длиннее, что уменьшает ценность полученного упрощения, поэтому необходимо поискать такие задачи, решение которых существенно проще в двоичных числах.

Задача 1: Получение всех выборок

Очень часто встречаются задачи, в которых нужно уметь построить все возможные комбинации из заданного набора предметов. Например, такая задача:

Дана большая куча камней, разложить камни по двум кучам таким образом, чтобы масса этих двух куч была как можно более одинаковой.

Эту задачу можно сформулировать так:

Найти такую выборку камней из большой кучи, что её общая масса будет как можно менее отличаться от половины массы большой кучи.

Задач такого сорта довольно много. И все они сводятся, как уже было сказано к умению получить все возможные комбинации (далее мы будем называть их выборками) из заданного набора элементов. И сейчас мы рассмотрим общий метод получения всех возможных выборок с использованием операции сложения двоичных чисел. А начнём с примера. Пусть есть множество из трёх предметов. Построим все возможные выборки. Предметы будем обозначать порядковыми номерами. То есть, имеются следующие предметы: 1, 2, 3.

Выборки: (0, 0, 1); (0, 1, 0); (0, 1, 1); (1, 0, 0); (1, 0, 1); (1, 1, 0); (1, 1, 1);

Если в позиции с очередным номером стоит единица, то это означает, что элемент с номером равным этой позиции присутствует в выборке, а если стоит ноль, то элемент не присутствует. Например, выборка (0, 1, 0); состоит из одного элемента с номером 2, а выборка (1, 1, 0); состоит из двух элементов с номерами 1 и 2.

Из этого примера ясно видно, что выборку можно представить в виде двоичного числа. Кроме того, нетрудно заметить, что выше записаны все возможные одно, двух и трехзначные двоичные числа. Перепишем их следующим образом:

001; 010; 011; 100; 101; 110; 111

1; 10; 11; 100; 101; 110; 111

Мы получили ряд последовательных двоичных чисел, каждое из которых получается из предыдущего прибавлением единицы. Можете это проверить. Используя эту замеченную закономерность можно построить следующий алгоритм получения выборок.

Исходные данные алгоритма

Дан набор предметов N - штук. Далее будем называть этот набор множеством исходных элементов. Пронумеруем все элементы исходного множества от 1 до N. Составим двоичное число из N незначащих нулей. 0000… 0 N Это нулевое двоичное число будет обозначать нулевую выборку с которой и начнётся процесс составления выборок. Разряды числа считаются справа налево, то есть самый левый разряд это самый старший.

Договоримся обозначать это двоичное число большими буквами ДВОИЧНОЕ

Алгоритм

Если ДВОИЧНОЕ число состоит целиком из единиц

То прекращаем работу алгоритма

    • Прибавляем к ДВОИЧНОМУ числу единицу по правилам двоичной арифметики.
    • Из полученного ДВОИЧНОГО числа составляем очередную выборку, как было описано выше.

Задача 2: Поиск больших простых чисел

Для начала вспомним, что простым числом называется такое натуральное число, которое делится только на 1 и на само себя. Примеры простых чисел: 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31

Поиск больших простых чисел - очень важная математическая задача. Большие простые числа необходимы для надёжного шифрования сообщений некоторыми алгоритмами шифрования. Причём необходимы не просто большие числа, а очень большие. Чем число больше, тем надежнее шифр, построенный на этом числе.

Примечание. Надёжным шифром называется такой шифр, для расшифровки которого нужно очень большое время.

Почему? Простое число играет роль ключа при шифровке и дешифровке. Кроме того, мы знаем, что простые числа встречаются в ряду натуральных чисел не слишком часто. Их достаточно много среди первой тысячи, потом их количество начинает быстро убывать. Поэтому если в качестве ключа мы возьмём не очень большое число, дешифровальщик с помощью даже не очень быстрого компьютера сможет до него добраться (перебирая в качестве ключа все простые одно за другим) за ограниченное время.

Достаточно надежный код можно получить если взять простое в котором, например 150 знаков. Однако, найти такое простое не так просто. Предположим, что некоторое число А (очень большое) нужно проверить на простоту. Это тоже самое, что поискать его делители. Если мы сможем найти делители в интервале от 2 до корень квадратный из А, то оно не простое. Оценим количество чисел которые необходимо проверить на способность разделить число А.

Предположим число А имеет 150 знаков. Корень квадратный из него будет содержать не менее 75 знаков. Чтобы перебрать такое количество возможных делителей нам потребуется очень мощный компьютер и огромное время, а это означает, что задача практически не решаема.

Как с этим бороться.

Во-первых, можно поучится быстрее осуществлять проверку на делимость одного числа на другое, во-вторых можно попытаться число А подбирать таким образом, чтобы оно было простым с высокой степенью вероятности. Оказывается это возможно. Математик Мерсен обнаружил, что числа следующего вида

Являются простыми с высокой степенью вероятности.

Чтобы понять фразу написанную выше, посчитаем сколько простых чисел находится в первой тысяче и сколько чисел Мерсена в этой же тысяче являются простыми. Итак, числа Мерсена в первой тысяче - это следующие:

2 1 - 1 = 1 ; 2 2 -1 = 3 ; 2 3 - 1 = 7 ; 2 4 - 1 = 15; 2 5 - 1 = 31 ; 2 6 -1 = 63;

2 7 - 1 =127 ; 2 8 -1 = 255; 2 9 - 1 = 511;

Жирным шрифтом помечены простые числа. Всего на 9 чисел Мерсена 5 простых. В процентах это 5/9*100 = 55,6%. В то же время на 1000 первых натуральных чисел только 169 простых. В процентах это 169/1000*100 = 16,9%. То есть в первой тысяче в процентом отношении простые среди чисел Мерсена встречаются почти в 4 раза чаще, чем среди просто натуральных чисел

___________________________________________________________

А теперь возьмём конкретное число Мерсена, например 2 4 - 1. Запишем его в виде двоичного числа.

2 4 - 1 = 10000 - 1 = 1111

Возьмём следующее число Мерсена 2 5 -1 и запишем его двоичным числом. Получим следующее:

2 5 -1 = 100000 - 1 = 11111

Уже видно, что все числа Мерсена представляют собой последовательность единиц и уже сам этот факт даёт большой выигрыш. Во-первых, в двоичной системе счисления получить очередное число Мерсена очень просто, достаточно к очередному числу дописать единицу, во-вторых, искать делители в двоичной системе много проще чем в десятичной.

Быстрый перевод десятичного числа в двоичное

Одна из главным проблем использования двоичной системы счисления - это сложность при переводе десятичного числа в двоичное. Это довольно трудоёмкое дело. Конечно, небольшие числа трёх или четырехзначные перевести не слишком сложно, но для десятичных чисел, в которых 5 и более знаков это уже затруднительно. То есть нам нужен способ, позволяющий быстро переводить в двоичное представление большие десятичные числа.

Такой способ был придуман французским математиком Лежандром. Пусть,например, дано число 11183445. Делим его на 64, получается остаток 21 и частное 174741. Это число делим опять на 64, получается в остатке 21 и частное 2730.Наконец, 2730, деленное на 64, даёт в остатке 42 и частное 42. Но 64 вдвоичной системе есть 1000000, 21 в двоичной системе - 10101, а 42 есть 101010,Поэтому, исходное число запишется в двоичной системе следующим образом:

101010 101010 010101 010101

Чтобы было более понятно, ещё один пример с числом поменьше. Переведём вдвоичное представление число 235. Поделим 235 на 64 с остатком. Получим:

ЧАСТНОЕ = 3, двоичное 11 или 000011

ОСТАТОК = 43, двоичное 101011

Тогда 235 = 11101011, Проверим этот результат:

11101011 = 2 7 + 2 6 + 2 5 + 2 3 + 2 1 + 2 0 = 128+64+32+8+2+1 = 235

Примечания:

  1. Нетрудно заметить, что в окончательное двоичное число включаются все остатки и на последнем шаге и остаток и частное.
  2. Частное записывается перед остатком.
  3. Если полученное частное или остаток имеют меньше 6 разрядов, в двоичном представлении (6 нулей содержит двоичное представление числа 64 = 1000000), то к нему добавляются незначащие нули.

И еще один сложный пример. Число 25678425.

Шаг 1: 25678425 делим на 64

Частное = 401225

Остаток = 25 = 011001

Шаг 2: 401225 делим на 64

Частное = 6269

Остаток = 9 = 001001

Шаг 3: 6269 делим на 64

Частное = 97

Остаток = 61 = 111101

Шаг 4: 97 делим на 64

Частное = 1 = 000001

Остаток = 33 = 100001

Число результат = 1.100001.111101.001001.011001

В этом числе точкой отделены входящие в него промежуточные результаты.

Переведите в двоичное представление числа:

ПРИЛОЖЕНИЕ: ТАБЛИЦА 1

0,015625

0,0078125

0,00390625

0,001953125

0,0009765625

0,00048828125

0,000244140625

0,0001220703125

0,00006103515625

0,000030517578125

0,0000152587890625

0,00000762939453125

0,000003814697265625

0,0000019073486328125

0,00000095367431640625

0,000000476837158203125

  1. Место урока: 9 класс-3 урок изучаемого раздела
  2. Тема занятия: Арифметические операции в двоичной системе счисления.

Вид занятия: лекция, беседа, самостоятельная работа.

Цели занятия:

Дидактическая: познакомить правилами выполнения арифметических операций (сложение, умножение, вычитание) в двоичной системе счисления.

Воспитательная: привитие навыков самостоятельности в работе, воспитание аккуратности, дисциплинированности.

Развивающая: развитие внимания, памяти учащихся, развитие умения сопоставлять полученную информацию.

Межпредметные связи: Математика:

Учебное оборудование (оснащение) занятия: проектор, таблица, карточки с заданиями.

Методическое обеспечение занятия: презентация в PowerPoint.

План урока

  1. Организационный момент (2 мин).
  2. Повторение (10)
  3. Объяснение нового материала (15 мин)
  4. Закрепление пройденного материала (10 мин)
  5. задание работы на дом
  6. Рефлексия (2 мин)
  7. Подведение итогов (2 мин)

Ход урока

  1. Организационный момент
  2. Актуализация знаний. Мы с вами продолжаем изучать тему системы счисления и целью нашего сегодняшнего урока будет научиться выполнять арифметические операции в двоичной системе счисления, а именно мы рассмотрим с вами правило выполнения таких операций как сложение, вычитание, умножение, деление.
  3. Проверка знаний (фронтальный опрос).

Давайте с вами вспомним:

  1. Что называется системой счисления?
  2. Что называется основанием системы счисления?
  3. Какое основание имеет двоичная система счисления?
  4. Укажите, какие числа записаны с ошибками и аргументируйте ответ:
    123
    8 , 3006 2 , 12ААС09 20 , 13476 10 ,
  5. Какое минимальное основание должна иметь система счисления, если в ней могут быть записаны числа: 10, 21, 201, 1201
  6. Какой цифрой заканчивается четное двоичное число?
    Какой цифрой заканчивается нечетное двоичное число?

4 . Изучение нового материала сопровождается презентацией

/ Приложение 1/

Учитель объясняет новую тему по слайдам презентации,учащиеся конспектируют и выполняют предложенные учителем задания в тетради.

Из всех позиционных систем особенно проста двоичная система счисления. Рассмотрим выполнение основных арифметических действий над двоичными числами.

Все позиционные системы счисления "одинаковы”, а именно, во всех них выполняются арифметические операции по одним и тем же правилам:

1 . справедливы одни и те же законы арифметики: коммутативный, ассоциативный, дистрибутивный;

2 .справедливы правила сложения, вычитания и умножения столбиком;

3. правила выполнения арифметических операций опираются на таблицы сложения и умножения.

Сложение

Рассмотрим примеры на сложение.

При сложении столбиком двух цифр справа налево в двоичной системе счисления, как в любой позиционной системе, в следующий разряд может переходить только единица.

Результат сложения двух положительных чисел имеет либо столько же цифр, сколько у максимального из двух слагаемых, либо на одну цифру больше, но этой цифрой может быть только единица.

1011022+111112=?

1110112+110112=?

Вычитание

Самостоятельная работа учащихся в тетради для закрепления материала

101101 2 -11111 2 =?

110011 2 -10101 2 =?
Умножение
Рассмотрим примеры на умножение.

Операция умножения выполняется с использованием таблицы умножения по обычной схеме (применяемой в десятичной системе счисления) с последовательным умножением множимого на очередную цифру множителя.
Рассмотрим примеры на умножение
При выполнении умножения в примере 2 складываются три единицы 1+1+1=11 в соответствующем разряде пишется 1, а другая единица переносится в старший разряд.
В двоичной системе счисления операция умножения сводится к сдвигам множимого и сложению промежуточных результатов.
Деление

Операция деления выполняется по алгоритму, подобному алгоритму выполнения операции деления в десятичной системе счисления.

Рассмотрим пример на деление

Закрепление (самостоятельная работа учащихся по карточкам выполняется в тетради) /приложение 2/

Для учащихся, которые выполнили самостоятельную работу за короткий промежуток времени, предлагается дополнительное задание.

5. Домашнее задание

2. Выучить правила выполнения арифметических действий в двоичной системе счисления, выучить таблицы сложения, вычитания умножения.

3. Выполните действия:

110010+111,01

11110000111-110110001

10101,101*111

6 Рефлексия

Сегодня на уроке самым познавательным для меня было …

Меня удивило, что …

Полученные сегодня на уроке знания я могу применить …

7. Итоги урока

Сегодня мы научились выполнять арифметические действия в двоичной системе счисления (выставление оценок за урок).

Подписи к слайдам:

Тема урока: «Арифметические операции в позиционных системах счисления»Учитель информатики Федорченко Марина ВалентиновнаМОУ Берёзовская СОШ с Берёзовка Тайшетский район Иркутская Область Давайте с вами вспомним: Что называется системой счисления?Что называется основанием системы счисления?Какое основание имеет двоичная система счисления?Укажите, какие числа записаны с ошибками и аргументируйте ответ:1238, 30062, 12ААС0920, 1347610 , Какое минимальное основание должна иметь система счисления, если в ней могут быть записаны числа: 10, 21, 201, 1201Какой цифрой заканчивается четное двоичное число?Какой цифрой заканчивается нечетное двоичное число?
Лаплас писал о своем отношении к двоичной (бинарной) системе счисления великого математика Лейбница: «В своей бинарной арифметике Лейбниц видел прообраз творения. Ему представлялось, что единица представляет божественное начало, а нуль – небытие и что высшее существо создает все из небытия точно таким же образом, как единица и нуль в его системе выражают все числа». Эти слова подчеркивают универсальность алфавита, состоящего из двух символов. Все позиционные системы счисления «одинаковы», а именно, во всех них выполняются арифметические операции по одним и тем же правилам:
справедливы одни и те же законы арифметики: --коммутативный (переместительный) m + n = n + m m · n = n · m ассоциативный (сочетательный) (m + n) + k = m + (n + k) = m + n + k (m · n) · k = m · (n · k) = m · n · k дистрибутивный (распределительный) (m + n) · k = m · k + n · k
справедливы правила сложения, вычитания и умножения столбиком;
правила выполнения арифметических операций опираются на таблицы сложения и умножения.
Сложение в позиционных системах счисления Из всех позиционных систем особенно проста двоичная система счисления. Рассмотрим выполнение основных арифметических действий над двоичными числами. Все позиционные системы счисления "одинаковы”, а именно, во всех них выполняются арифметические операции по одним и тем же правилам:справедливы одни и те же: коммутативный, ассоциативный, дистрибутивный;справедливы правила сложения, вычитания и умножения столбиком;правила выполнения арифметических операций опираются на таблицы сложения и умножения. Сложение
При сложении столбиком двух цифр справа налево в двоичной системе счисления, как в любой позиционной системе, в следующий разряд может переходить только единица. Результат сложения двух положительных чисел имеет либо столько же цифр, сколько у максимального из двух слагаемых, либо на одну цифру больше, но этой цифрой может быть только единица. Рассмотрим примеры Решить примеры самостоятельно:
1011012 + 111112
1110112 + 110112
1001100
1010110
При выполнении операции вычитания всегда из большего по абсолютной величине числа вычитается меньшее и у результата ставится соответствующий знак.
Вычитание Рассмотрим примеры Примеры:
1011012– 111112
1100112– 101012
1110
11110
Умножение в позиционных системах счисления Операция умножения выполняется с использованием таблицы умножения по обычной схеме (применяемой в десятичной системе счисления) с последовательным умножением множимого на очередную цифру множителя.Рассмотрим примеры на умножение. Рассмотрим примеры Рассмотрим пример на деление
Решим примеры:
11012 1112

111102:1102=
1011011
101
Домашнее задание 1.&3.1.22.Выучить правила выполнения арифметических действий в двоичной системе счисления, выучить таблицы сложения, вычитания, умножения.3. Выполните действия:110010+111,0111110000111-11011000110101,101*111 РефлексияСегодня на уроке самым познавательным для меня было …Меня удивило, что …Полученные сегодня на уроке знания я могу применить …

Loading...Loading...