Орион (космический корабль). Интересное: космический корабль орион Пилотируемый корабль орион наса

Орион - многоцелевой частично многоразовый пилотируемый космический корабль США, разрабатываемый с середины 2000-х годов в рамках программы «Созвездие». Целью этой программы было возвращение американцев на Луну, а корабль «Орион» предназначался для доставки людей и грузов на Международную космическую станцию (МКС) и для полётов к Луне, а также к Марсу в дальнейшем. В околоземных полётах «Орион» должен прийти на смену космическим челнокам Space shuttle, завершившим полёты в 2011 году, а в будущем обеспечить высадку человека на Марс.

Первоначально в документах НАСА корабль назывался CEV (англ. Crew Exploration Vehicle - пилотируемый исследовательский корабль). Затем корабль получил официальное название в честь известного созвездия - «Орион». С 2011 года временным названием изменённого корабля стало MPCV (Multi-Purpose Crew Vehicle - многоцелевой пилотируемый корабль).

Первоначально испытательный полёт космического корабля был намечен на 2013 год, первый пилотируемый полёт с экипажем из двух астронавтов планировался на 2014 год, начало полётов к Луне - на 2019-2020 гг. В конце 2011 года предполагалось, что первый полёт без астронавтов состоится в 2014 году, а первый пилотируемый полёт - в 2017.. В декабре 2013 года озвучены планы на первый беспилотный тестовый полёт (EFT-1) с помощью носителя Дельта 4 в сентябре 2014 года, первый беспилотный запуск с помощью носителя SLS запланирован в 2017 году. . В марте 2014 первый беспилотный тестовый полёт (EFT-1) с помощью носителя Дельта 4 был перенесен на декабрь 2014 года

Три парашюта опускают спускаемый модуль корабля «Орион» на испытательном полигоне Юта в Аризоне.

Проверка системы прерывания запуска космического корабля при возникновении нештатной ситуации.

Испытания макета космического аппарата в аэродинамической трубе.

Фотография теста в аэродинамической трубе.

Астронавты осваивают макет нового космического корабля, в Космическом центре Джонсона, в Хьюстоне, штат Техас.

Двигатель корабля «Орион» проходит испытания на испытательном стенде Космического центра.

Фотографии проверки двигателей.

Корабль тестирует спуск на воду в центре НАСА, в Лэнгли.

Ракета Арес1, предназначенная для выведения на орбиту космического корабля «Орион», тестируется на испытательном полигоне.

Астронавт учится устанавливать поручни, в космическом центре Джонсона.

Специалисты НАСА обследуют модель нового корабля после испытаний в аэродинамической трубе.

Тестовую модель космического корабля «Орион» сбрасывают с самолёта в небе над Аризоной.

Тестовая модель корабля «Орион» спускается на парашюте.

Тестируется спуск на одном парашюте.

Мягкая посадка в горах Аризоны.

Теплозащитный экран нового космического корабля.

Super Guppy транспортный корабль НАСА перевозит модуль космического корабля из Манчестера, штат Нью-Гемпшир в Космический центр имени Кеннеди в штате Флорида.

Разгрузка космического модуля.

Сборка нового космического корабля в космическом центре имени Кеннеди.

Вспомогательная ракета готова к испытаниям на полигоне в Нью-Мексико.

Вспомогательная ракета стартовала с полигона Нью Мексико.

Космический корабль «Орион» проходит испытания погружением в бассейн на военно-морской базе Норфолк в Вирджинии.

Макет корабля «Орион» проходит испытания в водах Атлантического океана.

Астронавт учится действовать в состоянии невесомости в Космическом центре имени Джонсона.

Проверка системы старта.

Сварка производится специальным сварочным аппаратом.

Ускорители готовы к испытаниям.

Ракетный двигатель проходит испытания в Космическом центре НАСА в штате Миссисипи.

Тест системы управления ориентацией двигателя космического корабля «Орион».

Полностью собранный модуль для экипажа в Космическом центре Кеннеди НАСА во Флориде.

Стартовая площадка.Мыс Канаверал, Флорида. Именно отсюда сделает свой первый полёт в космос новый космический корабль «Орион».

Плод многолетних трудов и объект столь длительных ожиданий, Orion провёл в полёте всего лишь 4 часа 24 минуты. За это время он поднялся на орбиту высотой 5800 километров и сделал два витка вокруг Земли. Сотрудник , инженер Молли Уайт поделилась с The Verge своим рассказом о переживаниях создателей корабля и представлениями о судьбе космической программы США.

Переживания

«Это было невероятно! Во время обратного отсчёта толпа затихла, все мы затаили дыхание в надежде, что всё пройдёт хорошо. И когда он стартовал, так громко, такой огромный... это было просто невообразимо!», – делится своими впечатлениями учёный, принимавший участие в подготовке Orion к запуску.

Молли Уайт в своём микроблоке в Twitter буквально вела обратный отсчёт месяцам, дням, часам и минутам до запуска Orion – корабля, который первым более чем через четыре десятилетия поднимет людей за пределы околоземной орбиты.

«Эти последние несколько дней мы только и делали, что смотрели, ждали и становились всё более и более взволнованными», – рассказывает Уайт, имея ввиду то, что запуск сначала отменили из-за сильного ветра и ряда технических проблем.

Воспоминания

Сотрудница NASA вспоминает, что, будучи маленькой девочкой, она уже очень хотела работать в NASA. Она обожала своих дедушек, оба были инженерами. В школе Уайт добилась определённых успехов в математике и естественных науках, но особая любовь к космосу у неё появилась после работы над проектом в средних классах, который девочка посвятила космосу.

Нынешний полёт Orion стал значимым для Уайт, поскольку с самого начала работы в NASA ей не повезло: космическая программа по исследованию Луны (корабли Арес I и Арес V), ради которой она устраивалась на работу в агентство, в её первый же день на рабочем месте была отменена руководством США, в рамках сокращения расходов.

Orion – надежда NASA

«Очень многое поставлено на карту, нам очень нужны эти данные, чтобы провести доработку конструкции нашего аппарата и узнать, как те или иные составляющие Orion взаимодействуют друг с другом. Да, у нас есть модели, симуляторы, но, несмотря на то, что мы сделали всё возможное, существует вероятность, что мы могли пропустить нечто важное, или о чём даже и не подозревали. Ты же не можешь знать того, чего ты не знаешь, ведь так?», – говорит инженер.

4-местный космический аппарат Orion, массой 8,6 тонны – перспективный американский корабль, разработанный корпорацией Lockheed Martin. Во время первого испытательного полета NASA рассчитывало проверить надёжность его теплозащиты: поскольку аппарат будет входить в плотные слои атмосферы со скоростью 32 тыс. километров в час, теплозащита должна выдерживать нагревание до 2200 градусов Цельсия.

По словам Уайт, экспериментальный полёт должен был стать испытанием для и парашютной системы корабля, отвечающей за мягкость посадки. Важным моментом являлась также проверка надёжности системы радиационной защиты, которая встроена в элементы корпуса капсулы.

Нынешний запуск является очередным этапом в длительной программе разработки кораблей нового поколения. NASA не имеет тех финансовых ресурсов, какими организация располагала в 60-е годы для лунной программы, поэтому агентство продвигается по этому пути медленно и с большой осторожностью. По данным экспертов, стоимость программы Orion составляет $15 млдр. На программу NASA с 2005 по 2009 год уже израсходовало $5 млрд.

Успешное завершение полёта

«Orion вернулся на Землю!», – сообщил ведущий трансляции полёта Роб Навиас.

Капсула космического корабля приводнилась в акватории Тихого океана приблизительно в тысяче километров от порта Сан-Диего. Капсулу обнаружили специалисты NASA и военные моряки с многоцелевого корабля USS Anchorage.

Второй испытательный запуск Orion состоится через четыре года и будет предусматривать полёт к Луне. Предполагается, что в 2021 году аппарат возьмёт на борт астронавтов и отправится к Красной планете.

2018-09-17. Космическое агентство США обнародовало 5 проблемных вопросов при полетах к Марсу.
В первую очередь человеческий полет к Марсу это очень сложная и комплексная задача. В связи с этим, чтобы превратить эти планы из фантазий в факты, космическое агентство США осуществило условную классификацию проблемных вопросов по пяти классам, а именно:
1. Радиация. Первая опасность, которая будет сопутствовать астронавтам при полете к Марсу наиболее трудно визуализируема, однако она является одной из основных проблем. В основном это объясняется тем, что полет к Марсу будет проходить за пределами естественной защиты Земли, а следовательно у членов экипажей будет повышены риски возникновения рака, повреждения центральной нервной системы, изменения когнитивных функций, уменьшения моторики и др. Необходимо отметить, что существующая в настоящее время международная космическая станция хотя и защищена магнитным полем Земли, тем не менее они подвергаются в десять раз большему воздействию радиации, нежели на поверхности планеты, но все еще меньше чем в глубоком космосе.
Для смягчения этой опасности, космические корабли НАСА будут иметь защиту от радиации и системы дозиметрии и оповещений. Кроме того, в агентстве проводятся исследования в области медицинских контрмер для защиты от радиации, таких как фармацевтические препараты.
2. Изоляция и лишение свободы. Поведенческие проблемы среди группы людей, которые в течении длительного периода времени находятся в замкнутом пространстве, неизбежны, даже если речь идет о специально обученных и подготовленных членов экипажей космических кораблей. В связи с этим агентство проводит работы в области тщательного отбора и подготовки экипажей, что позволит минимизировать данный риск даже в течении перелетов, которые будут длиться от нескольких месяцев до нескольких лет.
Вместе с тем, на Земле у нас есть роскошь, используя мобильные телефоны осуществлять почти мгновенную связь со всеми окружающими. При этом, при полете на Марс астронавты будут более сильно изолированы чем мы можем себе это представить.
Уменьшение объемов сна, циркадная десинхронизация и переутомления могут усугубить проблемы и привести к негативным последствиям для здоровья, а следовательно приведут к ненулевым рискам для конечной цели миссии.
Для устранения этой опасности в НАСА разрабатываются методы мониторинга состояния здоровья и процесса адаптации астронавтов к условиям перелета, совершенствуются различные инструменты и технологии для использования в условиях полета в интересах раннего выявления и лечения. Исследования также проводятся и в областях рабочих нагрузок, производительности труда, светотерапии (планируется использовать для циркадного выравнивания) и т.д.
3. Расстояние от Земли. Третья и, возможно, самая очевидная опасность - это расстояние. В среднем Марс находится на расстоянии 140 млн. миль от Земли. Вместо трехдневного полета на Луну астронавты будут находиться в космосе около трех лет. При этом существующая в настоящее время статистика была, в основном, получена при помощи наблюдения за состоянием астронавтов на борту МКС, что не всегда сопоставимо с полетом к Марсу. При этом, если нештатная ситуация произойдет на станции, то астронавты всегда смогут вернуться на Землю в течении нескольких часов. Кроме этого, грузовые транспортные корабли снабжают станцию свежей продукцией, медицинским оборудованием и другими ресурсами на постоянной основе.
В связи с этим планирование и самодостаточность являются очень важными ключами к проведению успешной марсианской миссии, а сами астронавты в условиях длительности передачи данных на Землю (до 20 минут) должны быть готовы и иметь возможность к самостоятельному решению проблем.
4. Гравитация. Изменение силы тяжести является четвертой опасностью для астронавтов. На Марсе члены экипажей должны будут в течении двух лет жить в условиях гравитации, которая значительно меньше чем на Земле. Кроме этого в течении шестимесячного перелета гравитация будет отсутствовать вовсе. Также необходимо отметить и то, что когда астронавты наконец-то вернутся домой они должны будут пройти курс реабилитации. К проблемным моментам перелета также можно отнести и то, что в ходе взлета и посадки астронавты будут испытывать временное повышение увеличения силы тяжести.
Для устранения вышеперечисленных недостатков НАСА проводит исследования в области как методов предотвращения остеопорозов, так и способы по их лечению. Также в рамках снижения этого типа рисков проводятся исследования в области метаболизма человека.
5. Враждебные и закрытые среды. Космический корабль является не только домом для астронавтов, но и машиной. Космическое агентство США отдает себе отчет о том, что экосистема внутри корабля играет важную роль для астронавтов, а следовательно адекватно оценивает важность условий обитания, включая: температуру, давление, освещение, шум и объем герметичного отсека. Крайне важно чтобы астронавты получали в ходе полета необходимую пищу, сон, а также могли совершать необходимые физические упражнения. В связи с этим космическое агентство США разрабатывает технологий, которые должны будут включать системы контроля за всеми параметрами среды обитания астронавтов, начиная от контроля за качеством воздуха и заканчивая контролем за микроорганизмами.

Что будет, если на заряд взрывчатого вещества поставить какой-то предмет? Бытовая логика подсказывает что он или будет разрушен взрывом, или же (если он достаточно прочный) будет отброшен на какое-то расстояние. А что, если вместо взрывчатки у нас ядерная бомба, а вместо предмета космический корабль? Тогда мы получим проект космического корабля “Орион”, которые разрабатывался в 50-е годы учеными из Лос-Аламосской лаборатории...

Прежде чем описать суть концепции, стоит совершить небольшой исторический экскурс в середину 20 века. До конца 1950-х в США не было единой организации, которая бы занималась вопросами космической программы. Вместо этого там существовал целый ряд конкурирующих организаций при разных министерствах и ведомствах. Но запуск СССР первого Спутника (что оказалось шоком для многих обывателей - доставляющую цитату из произведения Стивена Кинга можно ) и несколько громких провалов по программе “Авангард” вынудили президента Эйзенхаура принять решение о создании национальной организации, в рамках которой оказались бы сосредоточены все ресурсы направляемые на космическую гонку. Этой организацией стало хорошо известное всем NASA, которое получило в свое распоряжение все разрабатываемые к тому моменту перспективные космические проекты.

Одним из них и был космический корабль “Орион”. Суть его заключалась в следующем: корабль снабжается мощной плитой, устанавливаемой за кормой. Ядерные бомбы небольшой мощности (от 0.01 до 0.35 килотонн) должны были равномерно выбрасываться в направлении, противоположном полёту корабля и подрываться на сравнительно малой дистанции (до 100 м). Отражающая плита принимала на себя импульс, и передавала его кораблю через систему амортизаторов (или без них, для беспилотных версий). От повреждения световой вспышкой, потоками гамма-излучения и высокотемпературной плазмой, отражающая плита должна была быть защищена покрытием из графитовой смазки, которое заново распылялось бы после каждого подрыва.


Принципиальная схема корабля


Слишком безумно чтобы быть реализуемым? Не спешите делать выводы. Дело в том, что в концепции “взрыволета” было здравое зерно. Химические ракеты, которые и по настоящее время являются единственным средством доставки грузов в космос отличаются убойно-низким КПД. Это связано с тем, что они имеют скорость истечения реактивной массы приблизительно 3-4 км/с, что означает, что необходимо предусмотреть n ступеней в конструкции корабля, если его надо разогнать до скорости 3n км/с. Это приводит к тому, что скажем для того, чтобы доставить спускаемый аппарат с астронавтами весом в две тонны до поверхности Луны, приходится строить трехступенчатую ракету высотой 110 м и сжигать свыше 2600 тонн горючего. Подрыв же ядерного заряда в зависимости от его мощности может дать удельный импульс от 100 до 30 000 км/с, что позволяет создать корабль, чье ТТХ радикально бы превзошло всю когда-либо созданную технику.

В рамках проекта были проведены некоторые макетные испытания. В частности, эксперимент с обычными зарядами и 100 килограммовой моделью корабля показал, что такой полет может быть устойчивым. Кроме того во время ядерных испытания на атолле Эниветок покрытые графитом стальные сферы были размещены в 9 метрах от эпицентра взрыва. После взрыва они были найдены неповрежденными: тонкий слой графита испарился с их поверхностей, что доказало, что предложенная схема использования графитовой смазки для защиты плиты в принципе возможна.

Кроме того, своеобразный "опыт" был проведен в августе 1957 года. Во время подземных ядерных испытания в славном штате Невада, 900 килограммовая стальная плита закрывающая шахту на дне которой был взорван ядерный заряд, была буквально выброшена ударной волной в атмосферу со скоростью примерно 66 км/с (как показали замеры с камер наблюдения). Насчет дальнейшей судьбы плиты мнения расходятся - некоторые энтузиасты полагают что она стала первым сделанным человеком объектом вышедшим в космос, более реалистичный взгляд заключается в том, что она попросту сгорела в атмосфере. В любом случае, совершенно ясно что энергия ядерного взрыва позволяла достичь скоростей, несравнимых с обычными ракетами.

Одним из участников рабочей группы по разработке программы был известный ученый Фримен Дайсон , который считал что использование химических ракет просто неразумно и является слишком дорогостоящим удовольствием - в частности он сравнивал их с дирижаблями 30-х годов, в то время как корабль "Орион" с современным Боингом. Девизом его рабочей группы было «Марс — к 1965 году, Сатурн — к 1970!», и этот слоган был не настолько самоуверенным, как может показаться на первый взгляд.


Фримен Дайсон

В частности, самый простой вариант “Ориона” имел бы стартовую массу в 880 тонн и мог доставлять на орбиту 300 тонн груза по цене 150 $ за килограмм и 170 тонн груза на Луну (сравните с возможностями и ценой Сатурна-5). Модификация для межпланетных полетов имела бы стартовый вес в 4000 тонны при использовании бомб мощностью 0.14 килотонн и могла бы доставлять 800 тонн полезной нагрузки и 60 пассажиров к Марсу. Как показали расчеты, полет к Сатурну с возвращением на Землю продлился бы всего 3 года.

Может возникнуть резонный вопрос - как бы запускали такую махину с Земли? Первоначально «Орион» предполагалось запускать с атомного полигона Джекесс-Флетс все в том же славном штате Невада. Корабль, имеющий форму пули, устанавливался бы на 8 стартовых башнях высотой 75 метров для того, чтобы не быть повреждённым от ядерного взрыва у поверхности. При запуске каждую секунду должен был производиться один взрыв мощностью 0,1 кт. После выхода на орбиту, калибр зарядов увеличивался.

Но стоит отметить, что создатели “Ориона” не ограничивались лишь межпланетными перелетами. Фримен Дайсон предложил несколько проектов взрыволета которые могли бы использоваться для межзвездных полетов.

Расчеты Дайсона показали, что использование мегатонных водородных бомб позволило бы разогнать корабль весом 400 000 тонн до 3,3% скорости света. Из общего веса корабля на полезную нагрузку отводилось бы 50 000 тонн - все остальное на 300 000 ядерных зарядов необходимых для полета и графитовую смазку (Карл Саган кстати предложил что такой корабль был бы отличным способом избавиться от мировых запасов ядерного оружия). Полет до Альфы Центавры занял бы 130 лет. Современные же расчеты показали, что правильная конструкция корабля и зарядов позволили бы достичь где-то 8% -10% скорости света, что позволило бы долететь до ближайшей звезды за 40-45 лет. Стоимость такого проекта на середину 60-х оценивалась в 10% тогдашнего ВВП США (где-то 2.5 триллиона долларов в пересчете на наши цены).

Конечно, проект имел ряд проблем, которые необходимо было бы как-то решить. Первая и самая очевидное - радиоактивное загрязнение Земли при старте. Для того, чтобы отправить 4000 тонный корабль в межпланетную экспедицию требовалось взорвать 800 бомб. По самым пессимистичным оценкам это бы дало загрязнение эквивалентное подрыву 10 мегатонной ядерной бомбы. По более оптимистичным оценкам, использование более эффективных и дающих меньший выход радиации зарядов сумело бы значительно уменьшить эту цифру. Кстати, стоимость самих бомб была бы не так и велика - лишь 7% стоимости МБР приходится собственно на сами боеголовки. Куда больше тратится на ее корпус, системы наведения, топливо и обслуживание. По подсчетам, стоимость одного маленького ядерного заряда для "Ориона" составила бы 300 000 долларов в современных ценах.

Во-вторых, оставался вопрос создания надежной системы амортизаторов, которые бы защитили корабль и экипаж от чрезмерных перегрузок, а также защита экипажа от радиации и оборудования от электромагнитного импулься.

В-третьих, существовал риск повреждения защитной пластины и самого корабля обломками и шрапнелью от ядерного взрыва.

После создания NASA, проект еще некоторое время получал небольшое финансирование, но затем был свернут. В развернувшейся в те годы борьбе идеологий победили сторонники Вернера Фон Брауна с концепцией мощных химических ракет. С тех пор, идея использования взрыволетов никогда не пользовалась серьезной поддержкой внутри агентства, что авторы "Ориона" всегда считали большой ошибкой.

Впрочем, помимо идеологии большую роль сыграл тот фактор, что создатели во многом опередили время - ни тогда, ни сейчас у человечества пока что не возникало насущной необходимости в единовременном выводе тысяч тонн груза на орбиту. К тому же, учитывая насколько сейчас популярно экологическое движение, крайне тяжело представить что какие-то политики дадут добро на такой ядерный полет. Формальная точка в истории проекта была поставлена в 1963 году, когда СССР и США подписали договор о запрещении ядерных испытаний (в том числе в воздухе и космосе). Была предпринята попытка вставить в текст специальную оговорку для кораблей вроде “Ориона”, но СССР отказался делать какие-либо исключения из общего правила.

Но как бы то ни было, такой тип корабля является пока что единственным проектом звездолета, который мог бы быть создан на основе имеющихся технологий и принести научные результаты в недалеком будущем. Никакие другие технологически возможные на данном этапе типы двигателей для космических аппаратов не обеспечивают приемлемого времени для получения результатов. А все остальные предлагаемые концепции - фотонный двигатель, звездолеты на антиматерии класса "Валькирия" имеют большое количество нерешенных проблем и допущений, которые делают их возможную реализацию делом отдаленного будущего. Про так любимые фантастами червоточины и WARP-двигатели и говорить не приходится - как бы не была приятна идея мгновенного перемещения, к сожалению это все пока что остается чистой воды фантастикой.

Кто-то как-то сказал, что несмотря на то, что сейчас “Орион” (и его идейные последователи) представляют собой лишь теоретическую концепцию, но он всегда остается в запасе на случай возникновения каких-либо чрезвычайных обстоятельств, которые потребуют отправки в космос большого корабля. Сам Дайсон считал что такой корабль позволит обеспечить выживание человеческой расы в случае какой-то глобальной катастрофы и предсказывал что при тогдашнем уровне экономического роста человечество могло бы начать межзвездные полеты через 200 лет.

С тех пор прошло уже 50 лет и пока что явных предпосылок к тому, что этот прогноз сбудется вроде нет. Но с другой стороны, никто не может быть уверен в том, что несет ему будущее - и кто знает, возможно со временем, когда у человечества появится действительная необходимость в выводе на орбиту больших кораблей, со всех этих проектов все же стряхнут пыль. Главное только, чтобы причиной этому будет не какие-то чрезвычайные происшествия, а экономические соображения и стремление наконец-то попробовать покинуть наши родительскую колыбель и отправиться к другим звездам.

Loading...Loading...