Методика использования сужающих устройств для измерения расхода сред. Измерение расхода по перепаду давлений на сужающем устройстве Запорный кран, вентиль

В этом параграфе излагаются основные сведения о методике расчета сужающих устройств для измерения расхода жидкости, газа и пара 1. Расчет сужающего устройства производят на основании задания измеряемой среды и условий измерения, т. е. величин Если измеряемая среда - газ, то в задание необходимо включить состав газа в процентах по объему, влажность газа относительную или абсолютную, плотность сухой части влажного газа в нормальном состоянии и среднее местное барометрическое давление. На основании указанного задания определяют недостающие для расчета данные (§ 14-3, 14-5 и 14-6).

В задание для расчета сужающего устройства должны быть включены также необходимые сведения об участке трубопровода, где будет установлено сужающее устройство (§ 14-7). Если свойства измеряемой среды не позволяют осуществить непосредственное подключение дифманометра к сужающему устройству и требуют применения разделительных сосудов (§ 14-7), то эти сведения также должны быть включены в задание на расчет сужающего устройства.

В зависимости от задания и требований, предъявляемых к измерению расхода вещества, производят выбор типа сужающего устройства и дифманометра с отсчетным устройством или снабженного передающим преобразователем для работы в комплекте с вторичным прибором, с информационной или управляющей вычислительной машиной.

При измерении расхода вещества в пожаро- и взрывоопасном помещении дифманометры, потребляющие электроэнергию, должны удовлетворять требованиям соответствующих нормативных документов.

Давление среды, расход которой необходимо измерять, не должно превышать предельно допускаемого избыточного рабочего давления выбранного дифманометра.

Предельный номинальный перепад давления дифманометра необходимо выбирать из ряда чисел, установленного для данного прибора в соответствии с ГОСТ 18140-77. Для некоторых типов

дифманометров значения приведены в гл. 12. При этом необходимо иметь в виду, что чем больше выбранный перепад давления тем меньше будет значение сужающего устройства для измерения заданного расхода. При уменьшении повышается точность измерений и расширяется область измерений без поправки на влияние чисел Рейнольдса у диафрагм. В то же время при уменьшении сокращаются необходимые длины прямых участков трубопровода, уменьшается влияние отклонений действительного диаметра трубопровода от принятого при расчете и снижаются требования к точности установки сужающего устройства. Однако необходимо учитывать, что при уменьшении возрастает потеря давления в сужающем устройстве.

Если задана допускаемая потеря давления сужающем устройстве, то выбирают такое наибольшее значение а вместе с тем и (см. рис. 14-2-11), при которых потеря давления должна оставаться меньше допускаемой.

Верхний предел измерения дифманометра выбирается по заданному максимальному измеряемому расходу так, чтобы стандартное значение взятое из ряда, приведенного в § 12-1, было ближайшее большее по отношению к значению

Формулы, необходимые для расчета сужающего устройства, следуют из уравнений расхода (14-6-1) и (14-6-2). После преобразований получим:

В этих формулах наибольший перепад давления в сужающем устройстве при расходе При использовании колокольного с пружинным уравновешиванием, кольцевого с замкнутой кольцевой трубкой, мембранного или сильфонного дифманометра перепад давления принимают равным выбранному предельному номинальному перепаду давления При вычислении наибольшего перепада давления в сужающем устройстве по предельному номинальному перепаду давления поплавкового дифманометра необходимо учитывать плотность среды, находящейся над рабочей жидкостью прибора (§ 12-4 и 14-6).

Если по заданию измеряемая среда - жидкость, то поправочный множитель входящий в формулы (14-9-1) и (14-9-2), равен единице. При измерении расхода газа или пара для определения поправочного множителя 6 кроме известных величин необходимо значение

Расчет производится методом последовательных приближений.

В первом этапе расчета для определения можно задаться значением например, принять его равным для диафрагмы и для сопла или сопла Вентури, что соответствует

наиболее часто применяемым значениям Тогда, зная все необходимые величины можно по номограммам найти приближенное значение

Подставляя в формулу (14-9-1) или (14-9-2) найденное приближенное значение и значения других известных величин, определяют в первом приближении произведение По значению произведения находят по рис. 14-9-1 для диафрагмы и по рис. 14-9-2 - для сопла и сопла Вентури в первом приближении значение коэффициента расхода Значение соответствующее найденному определяют по формуле

Далее определяют число Рейнольдса (§ 14-3) при расходе, равном Если вычисленное значение для полученного модуля (см, рис. 14-3-7 и 14-3-8), то при принятых параметрах расходомера измерять расход данным методом невозможно. В случае расчет можно продолжить. Во всех случаях для повышения точности измерений желательно иметь (табл. 14-3-1).

Затем для полученного в первом приближении значения определяют поправочный множитель как было указано выше. Если то по известному значению необходимо найти поправочный множитель на шероховатость трубопровода по рис, 14-3-9 для диафрагмы и по рис. 14-3-10 для сопла и сопла Вентури. При расчете диафрагмы необходимо также определить поправочный множитель на недостаточную остроту входной кромки ее (рис. 14-3-11),

Полученные значения (для сопла и сопла Вентури позволяют найти во втором приближении коэффициент расхода и значение модуля по формуле

По подсчитанному значению находят соответствующие ему значения величин и определяют в третьем приближении по формуле

Затем по модулю находят значения и определяют Если коэффициент расхода отличается от только четвертым десятичным знаком, то вычисленное значение может считаться окончательным, т. е. принимают равным В противном случае продолжается дальнейшее уточнение модуля. Полученное окончательное значение служит для определения величин а также искомого значения диаметра отверстия сужающего устройства при которое подсчитывается (с четырьмя

Расчет расходомеров переменного перепада давления сводится к определению диаметра отверстия и других размеров сопла или диафрагмы, коэффициента расхода, динамического диапазона из­мерения, определяемого числами Рейнольдса, перепада давления и потерь давления на сужающем устройстве, поправочного мно­жителя на расширение, а также погрешности измерения расхода газа. Для расчета должны быть заданы максимальный (предель­ный), средний и минимальный расходы, диапазоны изменения дав­ления и температуры газа, внутренний диаметр и материал изме­рительного трубопровода, состав газа или его плотность при нор­мальных условиях, допустимые потери давления или предельный перепад давления, соответствующий максимальному расходу, а также среднее барометрическое давление в месте установки дифманометра-расходомера.

Методика расчета. Перед началом расчета выбираем типы и классы точности дифманометра-расходомера, манометра и термо­метра. Расчет проводится следующим образом.

1. Определяем округленный до трех значащих цифр вспомога­тельный коэффициент С при подстановке в нее значения максимального (предельного) расхода Q н. пр , темпера­туры и давления, плотности газа при нормальных условиях ρ н , коэффициента сжимаемости Z и диаметра измерительного трубо­провода D :

При найденном значении С возможны два вида расчета: по заданному перепаду давления или по заданным потерям давления. Если задан предельный перепад давления Δр пр , то по номограмме рис. 8.11 определяем предварительное относительное сужение m (модуль) сужающего устройства по найденному коэффициенту С и заданному предельному перепаду давления на сужающем устройстве Δр пр , . Найденное предварительное значение модуля m подставляем в формулу по определению тα и вычисляем предварительный коэффициент расхода α .

2. Вычисляем с точностью до четырех значащих цифр вспомогательный коэффициент

где ε - поправочный множитель на расширение газа для верхнего предельного перепада давле­ния дифманометра Δр пр , ; Δр пр , - верхний предельный перепад дав­ления на сужающем устройстве, кгс/м 2 .



3. Определяем уточненное значение модуля m с точностью до четырех значащих цифр по формуле

m = mα/α .

4. По уточненному значению модуля m нахо­дим новое значение поправочного множителя на расширение и вычисляем разность между

первоначально вычисленным значени­ем ε и уточненным. Если эта разность не превышает 0,0005, то вычисленные значения m и ε считаются окончательными.

5. Определяем диаметр d отверстия диафрагмы при оконча­тельно выбранном m

6. Найденные значения коэффициентов расхода α , поправоч­ного множителя на расширение ε , диаметра d отверстия диафраг­мы, а также Δр пр , р 1 , Т 1 , р н и Z используем для определения расхода газа и проверяем расчет пре­дельного расхода газа Q н. пр . Полученное значение Q н. пр . не долж­но отличаться от заданного более чем на 0,2 %. Если найденное значение предельного расхода газа отличается от заданного бо­лее чем на 0,2 %, то расчет повторяется до получения требуемой погрешности расчета предельного расхода газа и параметров диа­фрагмы.

7. Определяем новые уточненные значения модуля m , диамет­ра d отверстия диафрагмы, а также коэффициента расхода α и повторно рассчитываем. Если уточненное расчетное значение предельного расхода газа не отличается от за­данного более чем на 0,2 %, то уточненные значения m , d и α , фик­сируются в расчетном листе сужающего устройства.

8. Рассчитываем минимальное и максимальное числа Рейнольдса и сравниваем минимальное число Рейнольдса с граничными значениями

9. Определяем толщину диафрагмы Е , ши­рину цилиндрической части диафрагмы е ц , ши­рину кольцевой щели с , а также размеры коль­цевых камер a и b .

10. Выбираем длины прямых участков измерительных трубо­проводов до и после диафрагмы.

11. Рассчитываем погрешность измерения расхода

Полученные данные фиксируются в расчетном листе сужающего устройства и являются основой для его изготовления и мон­тажа.

Пример 9.3.3. Рассмотрим расчет диафрагмы при следующих исходных данных. Измеряемая среда - природный углеводородный газ с плотностью при нормальных условиях ρ н =0,727 кг/м 3 . Наибольший измеряемый (предельный) расход газа, приведенный к нормальным условиям, Q н.пр. = 100000 м 3 /ч, средний Q н.ср. =60000 м 3 /ч, минимальный, Q н. min =30000 м 3 /ч. Температура газа перед сужающим устройством Т 1 =278 К. Избыточное давление газа перед сужающим устройством р 1 изб = 1,2 МПа=12 кгс/см 2 . Предельный перепад давления на сужающем уст­ройстве (диафрагме) Δp пр =2500 кгс/м 2 =0,25 кгс/см 2 . Среднее барометрическое давление р б =0,1 МПа = 1 кгс/см 2 . Внутренний диаметр трубопровода перед ди­афрагмой D = 400 мм. Вязкость газа в рабочих условиях μ =1,13·10 -6 кгс·с/м 2 .

Перед диафрагмой находятся местные сопротивления в виде входного кол­лектора с двумя коленами, расположенными в разных плоскостях, и входной отсекающий кран. 3a диафрагмой установлена гильза термометра и выходной кран. Допустимая погрешность от неучета длин прямых участков до и после диафрагмы δ α L не должна превышать 0,3 %. Отбор давлений от диаф­рагмы - угловой. Внутри прямого участка измерительного трубопровода на рас­стоянии l =2 м имеется выступ от стыковки труб высотой h =1 мм. Эксцентриси­тет оси отверстия диафрагмы и измерительного трубопровода е =2 мм.

Приведенные погрешности δ пп и δ пк пропорционального и корневого пла­ниметров одинаковы и не превышают 0,5 % Абсолютные погрешности хода диаграмм дифманометра, манометра и термометра Δτ Δр , Δτ Δр , Δτ р и Δτ Т не превышают 2 мин.

Порядок расчета

1. В качестве сужающего устройства выбираем диафрагму (рис. 9.10, а) из нержавеющей стали марки Х17. В качестве вторичного измерительного прибора выбран сильфонный самопишущий дифманометр типа ДСС-734 класса точности 1,5 с предельным перепадом давления Δр пр = 2500 кгс/м 2 , имеющий дополнительную запись давления класса точности 1,0 с предельным давлением р пр = 25 кгс/см 2 . Для записи температуры газа выбран самопишущий манометрический термометр типа ТЖ класса точности 1,0 с пре­делом измерения от -50 до 50 °С.

2. Определяем абсолютное давление газа перед сужающим устройством по формуле:

p 1 = p 1 изб +p б = 1,2+0,1 = 1,3 МПа=13 кгс/см 2

3. При ρ н =0,727 кг/м 3 коэффициент сжимаемости природного газа будет 0,974.

4. Определяем вспомогательный коэффициент С по формуле:

5. При известном коэффициенте С =11,530 и предельном перепаде давления Δр пр = 2500 кгс/м 2 по фрагменту номограммы, рис. 9.11, определяем численное значение модуля диафрагмы m и необратимые поте­ри давления на диафрагме р п .

Для получения значения модуля т и потерь давления р п откладываем на ось абсцисс номограммы С =11,530 и восстанавливаем перпендикуляр до пере­сечения в точке А с кривой 1, соответствующей предельному перепаду давления Δр пр =2500 кгс/м 2 . Наклонная прямая 2, проходящая через точку А, соответст­вует значению искомого модуля диафрагмы m =0,356. Проведя из точки А горизонтальную прямую до пересечения с осью ординат, получаем значение необра­тимых потерь давления р п на диафрагме, равное 0,16 кгс/см 2 .

6. Рассчитаем минимальное число Рейнольдса Re min , соот­ветствующее минимальному расходу газа Q н. min =30000 м 3 /ч, т. е.

Re min = 0,0361 Q н. min ρн /(Dμ m ах ) = 0,0361·30000 ×

× 0,727/(400·1,13·10 -6) = 1,74·10 6 .

Такое значение минимального числа Рейнольдса удовлетворяет условию.

Рис. 9.11. Фрагмент номограммы для С =f p пр , т , р п ).

8. Определяем значение коэффициента адиабаты х в рабочих условиях при p 1 = 13 кгс/см 2 и Т =278 К:

х = 1,29 + 0,704·10 -6 р 1 = 1,29 +

0,704· 10 -6 · 13 = 1,29 + 0,088 = 1,378.

9. Рассчитаем предварительное значение поправочного множителя на расширения ε при известном предварительном значении модуля m =0,356, коэффициенте адиабаты х = 1,378, предельном перепаде давления Δр пр =0,25 кгс/см 2 и давлении p 1 = 13 кгс/см 2:

ε = 1 - (0,41 + 0,35m 2) Δр пр /(x Р 1) = 1 - (0,41 + 0,35 · 0,356 2) ×

× 0,25/(1,378·13)= 1 - 0,454·0,0140 = 0,99.

10. Вычисляем вспомогательный коэффициент при С = 11,530, ε =0,99 и Δр пр =2500 кгс/м 2:

= С/(ε ) = 11,530/(0,99 ) = 0,2329.

11. Определяем уточненное значение модуля m при =0,2329 и α =0,6466:

m = mα/α = 0,2329/0,6466 = 0,36.

12. При новом уточненном значении m =0,36 коэффициент расхода α равен

α = (1/ ) {0,5959 + 0,0312·0,36 1,05 -0,1840·0,36 4 +

0,0029·0,36 1,25 0,75 } = 1,0715(0,5959 + 0,01067 -

0,00309 + 0,0001324) = 0,6468.

13. При m =0,36 диаметр отверстия диафрагмы

d = = 400 = 240 мм.

14. Подставляем в формулу найденные значения d =240 мм, α =0,6468, ε = 0,99, Δр пр =2500 кгс/м 2 , p 1 = 13 кгс/см 2 , T 1 = 278 К, ρ н =0,727 кг/м 3 и Z =0,974:

Q н.пр = 0,2109αεd 2 = 0,2109·0,6468·0,99·240 2 ×

× = 7778,64·12,85 = 99955,6 м 3 /ч.

15. Находим погрешность расчета максимального расхода газа ΔQ по фор­муле:

Погрешность расчета ΔQ =0,04 % <0,2 %, что вполне допустимо. Здесь Q расч - уточненное расчетное значение максимального (предельного) расхода газа, м 3 /ч. Так как погрешность расчета 0,04 % вполне допустима, окончательно принимаем следующие параметры измерительной диафрагмы. Диаметр отверстия диафрагмы d =240 мм, коэффициент расхода α =0,6468 и модуль m =0,36.

16. Рассчитаем максимальное число Рейнольдса Re ma x , соответствующее предельному (максимальному) расходу газа Q н.пр = 100000 м 3 /ч:

Re max = 0,0361Q н.пр ρ н /() = 0,0361·100000×

×0,727/(400·1,13·10 -6) =2,64·10 6 .

17. Принимаем толщину диска диафрагмы Е =0,05 D .Тогда Е =0,05-400=20 мм. Ширину цилиндрической части отверстия диафрагмы е ц (рис.

9.10, а), которая затем переходит в коническую выходную часть, выбираем из соотношения 0,005 D 0,02 D . Приняв е ц =0,02 D , получаем, что е ц =0,02∙400=8 мм. Угол скоса конической выходной части диафрагмы q должен быть не менее 30 и не более 45°. Принимаем угол скоса .

18. Ширина кольцевой щели c , соединяющей камеры отбора давлений с трубопроводом, не должна превышать 0,03 D при т ≤ 0,45. В этом случае

19. Размеры сечений камер для отбора давлений a и b выбираем из условия:

Приняв b = 1,5a , получаем, что а ≥ 70,8 мм, а b ≥ 1,5а ≥ мм. Толщина h стенки корпуса камеры должна быть не менее 2 с , т. е.

20. Определяем длины прямых участков измерительного трубопровода перед диафрагмой L 1 и L 2 и после диафрагмы l 1 и l 2 исходя из заданной погрешности . Перед диафрагмой согласно условию находится два местных сопротивления. Наиболее удаленное от диафрагмы - входной патрубок с двумя коленами, расположенными в разных плоскостях, а ближайшее к диафрагме - входной кран. За диафрагмой находится гильза термометра и выходной кран. Определяем минимальное расстояние L 2 /D между входным патрубком с группой колен, расположенных в разных плоскостях и входным краном. При указанном расположении местных сопротивлений получаем, что L 2 /D= 30. При D =400 мм = 0,4 м

.

Минимальное расстояние L 2 /D между входным краном и диафрагмой, при модуле m =0,36 и заданной погрешности δ а L = 0,3 % равно 20. При L 2 /D =20

Расстояние l 1 от выходного торца диафрагмы до гильзы термометра должно быть более 2 D , т. е.

Определяем минимальное расстояние l 2 от выходного торца диафрагмы до выходного крана. При m =0,36

С учетом выполненных расчетов длины прямых участков измерительного трубопровода (рис. 9.10, а) имеют следующие размеры: L 1 =8 м, L 2 =12 м, l 1 =0,8 м и l 2 =2,8 м.

Расчет погрешности измерения расхода газа . Для расчета погрешности измерения расхода сухого газа выпишем исходные данные,

полученные при расчёте сужающего устройства (диафрагмы), а также определим ряд дополнительных данных. При диаметре трубопровода D = 400 мм, модуле m =0,36 и минимальном числе Рейнольдса Re min =1,74∙10 6 , исходя из условий, указанных в настоящей главе, можно принять, что и . При измерении фактических размеров измерительного трубопровода и диафрагмы было получено, что высота уступа внутри прямого участка трубопровода перед диафрагмой при стыковке труб h =1 мм на расстоянии l =2 м от диафрагмы, а эксцентриситет оси отверстия диафрагмы и измерительного трубопровода е =2 мм. При выбранных длинах прямых участков перед диафрагмой L 1 =8 м и L 2 =12 м и модуле m =0,36 значение погрешности δ а L = 0,3 %. При высоте уступа L =1 мм и диаметре D =400 мм находим, что:

При меньше 0,3% можно принять, что δ а L =0. При эксцентриситете е =2 мм проверяем выполнение условий:

Из указанных условий видно, что фактическое значение эксцентриситета е =2мм удовлетворяет условию, в связи с чем, погрешность от влияния эксцентриситета . Подставив полученные данные в формулу, получаем погрешность определения коэффициента расхода а .

Стандартные сужающие устройства могут применяться в комплекте с дифманометрами для измерения расхода и количества жидкостей, газов и пара в круглых трубопроводах (при любом их расположении).

При необходимости использования сужающих устройств на трубопроводах малого диаметра они должны подвергаться индивидуальной градуировке, т.е.

Экспериментальному определению зависимости

Самыми распространенными являются восемь вариантов типов СУ: диафрагмы с угловым, фланцевым и трехрадиусным способами отбора давления, сопла ИСА 1932, трубы Вентури с обработанной и необработанной конической частью короткие и длинные, сопла Вентури короткие и длинные. Стандартные диафрагмы применяются при соблюдении условия 0,2 и сопла Вен-

тури - при. Конкретный тип сужающего устройства выбирается при расчете в зависимости от условий применения, требуемой точности, допустимой потери давления.

Для соблюдения геометрического подобия СУ должны быть изго­товлены в соответствии с требованиями применительно к наиболее распространенным сужающим устройствам - диафрагмам, изображенным на рис. 12.4. Торцы диафрагмы должны быть плоскими и параллельными друг другу. Шероховатость торца в пределах D должна быть не более, выходной торец должен иметь шероховатость в пределах 0,01 мм. Если диафрагма служит для измерения расхода потока в обоих направлениях, то оба торца должны обрабатываться с шероховатостью не более, коническое расширение в этом случае отсутствует и кромки с обоих сторон должны быть острыми с радиусом закругления не более 0,05 мм. Если радиус закругления не превышает 0,0004d, то поправочный множитель на неостроту входной кромки принимается равным единице. Примм это условие выполняется. Шероховатость поверхности отверстия не должна превышать

Рис. 12.4. Способы отбора давления:

а - через отдельные отверстия; б - из кольцевых камер (угловые методы); в - через отверстия во фланцах (фланцевый метод при l1 = l2 = 25,4 мм, трехрадиусный - при l1 = D и l2 = 0,5D)

Толщина диафрагмы Е должна находиться в пределах до 0,05D, толщина определяется из условия отсутствия деформации под воздействием Δpв при известном пределе текучести материала. Если действительная толщина диафрагмы меньше расчетной, то к погрешности определения коэффициента истечения (12.18) добавляется погрешность δЕ.

Длина цилиндрической части отверстия диафрагмы должна находиться в пределах от 0,005D до 0,02D если толщина превышает последнюю цифру, то со стороны выходного торца делается коническая поверхность с углом конусности 45 ± 15°.

Отбор давлений р1 и р2 при угловом способе осуществляется либо через отдельные цилиндрические отверстия (рис. 12.4, а), либо из двух кольцевых камер, каждая из которых соединяется с внутренней полостью трубопровода кольцевой щелью или группой равномерно распределенных по окружности отверстий (рис. 12.4, б). Конструкция отборных устройств для диафрагм и сопл одинакова. Сужающие устройства с кольцевыми камерами более удобны в эксплуатации, особенно при наличии местных возмущений потока, так как кольцевые камеры обеспечивают выравнивание давления по окружности трубы, что позволяет более точно измерять перепад давления при сокращенных прямых участках трубопровода

При фланцевом и трехрадиусном способах отбора давления перепад измеряется через отдельные цилиндрические отверстия, расположенные на расстоянии в первом случае
мм, а во второмот плоскостей диафрагмы (рис. 12.4, в). Коэффициент истечения С зависит от способа отбора давления.

При установке сужающих устройств необходимо соблюдать ряд условий, влияющих на погрешность измерений.

Сужающее устройство в трубопроводе должно располагаться перпендикулярно оси трубопровода. Для диафрагм неперпендикулярность не должна превышать 1°. Ось сужающего устройства должна совпадать с осью трубопровода. Смещение оси отверстия сужающего устройства относительно оси трубопровода не должно превышатьЕсли смещение оси превышает указанное значение, но менее, то к погрешности коэффициента истечения в (12.18) прибавляют δех = 0,3%. Если смещение оси превышает указанное предельное значение, то установка СУ не допускается.

Участок трубопровода длиной 2D до и после сужающего устройства должен быть цилиндрическим, гладким, на нем не должно быть никаких уступов, а также заметных глазу наростов и неровностей от заклепок, сварочных швов и т.п. Трубопровод считается цилиндрическим, если отклонение диаметра не превышаетот его среднего значения. В противном случае, если на расстоянии lh до СУ высота уступа h удовлетворяет двум условиям

то к погрешности коэффициента истечения прибавляют δh = 0,2%.

Важным условием является необходимость обеспечения установившегося течения потока перед входом в сужающее устройство и после него. Такой поток обеспечивается наличием прямых участков трубопровода определенной длины до и после сужающего устройства. На этих участках не должны устанавливаться никакие устройства, которые могут исказить гидродинамику потока на входе или выходе сужающего устройства. Длина этих участков должна быть такой, чтобы искажения потока, вносимые коленами, вентилями, тройниками, смогли сгладиться до подхода потока к сужающему устройству. При этом необходимо иметь в виду, что более существенное значение имеют искажения потока перед сужающим устройством и значительно меньшее - за ним, поэтому задвижки

Таблица 12.2

Наименьшие относительные длины линейного участка до диафрагмы

Наименование местного сопротивления Коэффициенты Р
ак К ск 0,2 0,3 0,4 0,5 0,6 0,7 0,75 0,8
1 Задвижка, равнопроходный шаровой кран 11,5 82 6,7 12 12 12 13 15 19 24 30
2 Пробковый кран 14,5 30,5 2,0 16 18 20 23 26 30 И 34
3 Запорный кран, вентиль 17,5 64,5 4,1 18 18 19 22 26 а 38 44
4 Заслонка 21,0 38,5 1,4 25 29 32 36 40 45 4/ 50
5 Конфузор 5,0 114 6,8 5 5 6 6 У 16 11 зи
6 Симметричное резкое сужение 30,0 0,0 0,0 30 30 30 30 30 30 30 30
7 Диффузор 16,0 185 7,2 16 16 17 18 21 31 40 Э4
8 Симметричное резкое расширение 47,5 54,5 1,8 51 54 58 64 70 77 80 84
9 Одиночное колено 10,0 113 5,2 10 11 11 14 18 28 36 46

и вентили, особенно регулирующие, рекомендуется устанавливать после СУ. Длина Lк прямого участка перед сужающим устройством зависит от относительного диаметра β, диаметра трубопровода D и вида местного сопротивления, расположенного до прямого участка,

Постоянные коэффициенты, зависящие от вида местного сопротивления. Их величина и наименьшие значения Lк1/D для девяти типов местных сопротивлений приведены в табл. 12.2.

Так, для вида местного сопротивления «Задвижка, полнопроходной шаровой кран» при, приДлина прямого участка L2 после сужающего устройства зависит только от числа Дляи при = 0,8, Допускается уменьшение длины прямых участков перед СУ до величины, вызывающей дополнительную погрешность δL, которая не превысит ±1%. Погрешность суммируется со значением δс0 и рассчитывается по формуле

где отношение действительной длины прямого участка к расчетной. Погрешность всоответствует

Допускается сокращение длины линейного участка после СУ вдвое, но при этом дополнительная погрешность к коэффициенту истечения составит

Необходимо, чтобы контролируемая среда заполняла все поперечное сечение трубопровода, причем фазовое состояние вещества не должно изменяться при прохождении через сужающее устройство. Конденсат, пыль, газы или осадки, выделяющиеся из контролируемой среды, не должны скапливаться вблизи сужающего устройства.

Дифманометр подключается к сужающему устройству двумя соединительными линиями (импульсными трубками) внутренним диаметром не менее 8 мм. Допускается длина соединительных линий до 50 м, однако из-за возможности возникновения большой динамической погрешности не рекомендуется использовать линии длиной более 15 м.

Для правильного измерения расхода перепад давления на входе дифманометра должен быть равен перепаду давления, развиваемому сужающим устройством, т.е. перепад от сужающего устройства к дифманометру должен передаваться без искажения.

Это возможно в случае, если давление, создаваемое столбом среды в обеих соединительных трубках, будет одинаковым. В реальных условиях это равенство может нарушаться. Например, при измерении расхода газа причиной этого может быть скапливание конденсата в неодинаковом количестве в соединительных линиях, а при измерении расхода жидкости, наоборот, скапливание выделяющихся газовых пузырьков. Во избежание этого соединительные линии должны быть либо вертикальными, либо наклонными с уклоном не менее 1:10, причем на концах наклонных участков должны быть конденсато- или газосборники. Кроме того, обе импульсные трубки следует располагать рядом, чтобы избежать неодинакового нагрева или охлаждения их, что может привести к неодинаковой плотности заполняющей их жидкости и, следовательно, к дополнительной погрешности. При измерении расхода пара важно обеспечить равенство и постоянство уровней конденсата в обеих импульсных трубках, что достигается применением уравнительных сосудов.

К одному сужающему устройству может быть подключено несколько дифманометров. При этом допускается подключение соединительных линий одного дифманометра к соединительным линиям другого.

При измерении расхода жидкости дифманометр рекомендуется устанавливать ниже сужающего устройства 1, что исключает попадание в соединительные линии и дифманометр газа, который может выделиться из протекающей жидкости (рис. 12.5, а).

Рис. 12.5. Схема соединительных линий при измерении расхода жидкости с установкой дифматометра ниже (и) и выше (б) сужающего устройства:

1 - сужающее устройство; 2 - запорные вентили; 3 - продувочный вентиль; 4 - газосборники;

5 - разделительные сосуды

Для горизонтальных и наклонных трубопроводов соединительные линии должны подключаться через запорные вентили 2 к нижней половине трубы (но не в самой нижней части) во избежание попадания в линии газа или осадков из трубопровода. Если дифманометр все же устанавливается выше сужающего устройства (рис. 12.5, б), то в наивысших точках соединительных линий необходимо устанавливать газосборники 4 с продувочными вентилями. Если соединительная линия состоит из отдельных участков (например, при обходе какого-либо препятствия), то газосборники устанавливаются в наивысшей точке каждого участка. При установке дифманометра выше сужающего устройства трубки вблизи последнего прокладываются с U-образ­ным изгибом, опускающимся ниже трубопровода не менее чем на 0,7 м для уменьшения возможности попадания газа из трубы в соединительные линии. Продувка соединительных линий осуществляется через вентили 3.

При измерении расхода агрессивных сред в соединительных линиях возможно ближе к сужающему устройству устанавливаются разделительные сосуды 5. Соединительные линии между разделительным сосудом и дифманометром, частично и сам сосуд заполнены нейтральной жидкостью, плотность которой больше плотности измеряемой агрессивной среды. Остальная часть сосуда и линии до сужающего устройства заполнены контролируемой средой. Следовательно, поверхность раздела контролируемой среды и разделитель­ной жидкости находится внутри сосуда, причем уровни раздела в обоих сосудах должны быть одинаковыми.

Разделительная жидкость выбирается таким образом, чтобы она химически не взаимодействовала с контролируемой средой, не смешивалась с ней, не давала отложений и не была агрессивной по отношению к материалу сосудов, соединительных линий и дифманометра. Чаще всего в качестве разделительной жидкости используются вода, минеральные масла, глицерин, водоглицериновые смеси.

При измерении расхода газа дифманометр рекомендуется устанавливать выше сужающего устройства, чтобы конденсат, образовавшийся в соединительных линиях, мог стекать в трубопровод (рис. 12.6, а). Соединительные линии нужно подключать через запорные вентили 2 к верхней половине сужающего устройства, их прокладку желательно производить вертикально. Если вертикальная прокладка соединительных линий невозможна, то их следует прокладывать с наклоном в сторону трубопровода или конденсатосборников 4. Подобные требования должны выполняться и при расположении дифманометра ниже сужающего устройства (рис. 12.6, б). При измерении расхода агрессивного газа в соединительные линии должны включаться разделительные сосуды.

Рис. 12.6. Схема соединительных линий при измерении расхода газа с установкой дифманометра выше (я) и ниже (б) сужающего устройства:

1 - сужающее устройство; 2 - запорные вентили; 3 - проду­вочный вентиль; 4 - конденсатосборник

Рис. 12.7. Схема, поясняющая назначение уравнительных конденсационных сосудов при измерении расхода пара:

а-в - стадии измерения разности давлений

При измерении расхода перегретого водяного пара неизолированные соединительные линии оказываются заполненными конденсатом. Уровень конденсата и его температура в обеих линиях должны быть одинаковыми при любом расходе.

Для стабилизации верхних уровней конденсата в обеих соединительных линиях вблизи сужающего устройства устанавливаются уравнительные конденсационные сосуды. Назначение уравнительных сосудов можно пояснить с помощью рис. 12.7. Предположим, что при отсутствии уравнительных сосудов и некотором расходе пара уровень конденсата в обеих импульсных трубках одинаков. При увеличении расхода на сужающем устройстве увеличивается перепад давления, заставляющий нижнюю мембранную коробку сжиматься, а верхнюю растягиваться (рис. 12.7, б). Из-за изменения объемов коробок в нижнюю, «плюсовую» камеру дифманометра будет затекать конденсат из «плюсовой» импульсной трубки, что приведет к понижению уровня в ней на величину h. Из верхней, «минусовой» камеры дифманометра конденсат будет выталкиваться в импульсную трубку и в паропровод, но высота столба конденсата останется неизменной. Образовавшаяся разница уровней конденсата создает перепад давления hρg, уменьшающий перепад давления в сужающем устройстве. Таким образом, на дифманометр будет действовать перепад, т.е. показания расходомера будут заниженными. Нетрудно заметить, что абсолютная погрешность измерения будет расти с увеличением изменений расхода.

Очевидно, что погрешность можно снизить уменьшением h. Для этого на концах импульсных трубок устанавливают уравнительные конденсационные сосуды (рис. 12.8) - горизонтально расположенные цилиндры большого сечения. Так как сечение этих сосудов велико, вытекание из них конденсата мало изменит его уровень, так что перепад Δpд, измеряемый дифманометром, можно считать равным перепаду в сужающем устройстве.

Рис. 12.8. Схема соединительных линий при измерении расхода пара с установкой дифманометра ниже (а) и выше (б) сужающего устройства:

1 - сужающее устройство; 2 - уравнительные сосуды; 3, 4 - запорные и продувочные вентили;

Стандартные сужающие устройства могут применяться в комплекте с дифманометрами для измерения расхода и количества жидкостей, газов и пара в круглых трубопроводах (при любом их расположении), если их расчет, изготовление и установка выполнены в соответствии с ГОСТ 8.563.1-97 .

При необходимости использования сужающих устройств на трубопроводах меньшего диаметра они должны подвергаться индивидуальной градуировке, т.е. экспериментальному определению зависимости G =f(Δp).

В ГОСТ 8.563.1-97 даются восемь вариантов типов сужающих устройств: диафрагмы с угловым, фланцевым и трехрадиусным способами отбора давления, сопла ИСА 1932, трубы Вентури с обработанной и необработанной конической частью короткие и длинные, сопла Вентури короткие и длинные. Стандартные диафрагмы применяются при соблюдении условия 0,2 ≤ β ≤ 0,75, стандартные сопла - при 0,3 ≤ β ≤ 0,8 и сопла Вентури - при 0,3 ≤ β ≤ 0,75. Конкретный тип сужающего устройства выбирается при расчете в зависимости от условий применения, требуемой точности, допустимой потери давления.

Для соблюдения геометрического подобия сужающих устройств должны быть изготовлены в соответствии с требованиями ГОСТ 8.563.1-97, которые кратко рассмотрены применительно к наиболее распространенным сужающим устройствам - диафрагмам, изображенным на рис. 1. Торцы диафрагмы должны быть плоскими и параллельными друг другу. Шероховатость торца в пределах D должна быть не более 10 -4 d, выходной торец должен иметь шероховатость в пределах 0,01 мм. Если диафрагма служит для измерения расхода потока в обоих направлениях, то оба торца должны обрабатываться с шероховатостью не более 10 -4 d, коническое расширение в этом случае отсутствует и кромки с обоих сторон должны быть острыми с радиусом закругления не более 0,05 мм. Если радиус закругления не превышает 0,0004d, ТО поправочный множитель на неостроту входной кромки принимается равным единице. При d ≥ 125 мм это условие выполняется. Шероховатость поверхности отверстия не должна превышать 10 -5 d.

Толщина диафрагмы Е должна находиться в пределах до 0,05D толщина определяется из условия отсутствия деформации под воздействием Δр в при известном пределе текучести материала.

Длина цилиндрической части отверстия диафрагмы должна находиться в пределах от 0,005D до 0,02D, если толщина превышает последнюю цифру, то со стороны выходного торца делается коническая поверхность с углом конусности 45 ± 15°.

Рис. 1. :

а - через отдельные отверстия; б - из кольцевых камер (угловые методы); в - через отверстия во фланцах (фланцевый метод при l1 = l2 = 25,4 мм, трехрадиусный - при l1 = D и l2 = 0,5D)

Отбор давлений р1 и р2 при угловом способе осуществляется либо через отдельные цилиндрические отверстия (рис. 1, а), либо из двух кольцевых камер, каждая из которых соединяется с внутренней полостью трубопровода кольцевой щелью или группой равномерно распределенных по окружности отверстий (рис. 1, б). Конструкция отборных устройств для диафрагм и сопл одинакова. Сужающие устройства с кольцевыми камерами более удобны в эксплуатации, особенно при наличии местных возмущений потока, так как кольцевые камеры обеспечивают выравнивание давления по окружности трубы, что позволяет более точно измерять перепад давления при сокращенных прямых участках трубопровода.?

При фланцевом и трехрадиусном способах отбора давления перепад измеряется через отдельные цилиндрические отверстия, расположенные на расстоянии в первом случае l1 = l2 = 25,4 мм, а во втором l1 = D и l2 = 0,5D от плоскостей диафрагмы (рис. 1, в). Коэффициент истечения С зависит от способа отбора давления.

При установке сужающих устройств необходимо соблюдать ряд условий, влияющих на погрешность измерений.

Сужающее устройство в трубопроводе должно располагаться перпендикулярно оси трубопровода. Для диафрагм неперпендикулярность не должна превышать 1°. Ось сужающего устройства должна совпадать с осью трубопровода.

Участок трубопровода длиной 2D до и после сужающего устройства должен быть цилиндрическим, гладким, на нем не должно быть никаких уступов, а также заметных глазу наростов и неровностей от заклепок, сварочных швов и т.п.

Важным условием является необходимость обеспечения установившегося течения потока перед входом в сужающее устройство и после него. Такой поток обеспечивается наличием прямых участков трубопровода определенной длины до и после сужающего устройства. На этих участках не должны устанавливаться никакие устройства, которые могут исказить гидродинамику потока на входе или выходе сужающего устройства. Длина этих участков должна быть такой, чтобы искажения потока, вносимые коленами, вентилями, тройниками, смогли сгладиться до подхода потока к сужающему устройству. При этом необходимо иметь в виду, что более существенное значение имеют искажения потока перед сужающим устройством и значительно меньшее - за ним, поэтому задвижки и вентили, особенно регулирующие, рекомендуется устанавливать после СУ. Длина L K прямого участка перед сужающим устройством зависит от относительного диаметра

Диаметра трубопровода D и вида местного сопротивления, расположенного до прямого участка, L K1 /D = а к + b к ск, где а к, b к, с к - постоянные коэффициенты, зависящие от вида местного сопротивления. Их величина и наименьшие значения L K1 /D для девяти типов местных сопротивлений приведены в табл. 1.

Таблица 1. Наименьшие относительные длины линейного участка до диафрагмы

Наименование местного

сопротивления

Коэффициенты

Задвижка, равнопроходный шаровой кран

Пробковый кран

Запорный кран, вентиль

Заслонка

Конфузор

Симметричное резкое сужение

Диффузор

Симметричное резкое расширение

Одиночное колено

Допускается сокращение длины линейного участка после СУ вдвое, но при этом дополнительная погрешность к коэффициенту истечения составит ±0,5 %.

Необходимо, чтобы контролируемая среда заполняла все поперечное сечение трубопровода, причем фазовое состояние вещества не должно изменяться при прохождении через сужающее устройство. Конденсат, пыль, газы или осадки, выделяющиеся из контролируемой среды, не должны скапливаться вблизи сужающего устройства.

Дифманометр подключается к сужающему устройству двумя соединительными линиями (импульсными трубками ) внутренним диаметром не менее 8 мм. Допускается длина соединительных линий до 50 м, однако из-за возможности возникновения большой динамической погрешности не рекомендуется использовать линии длиной более 15 м.

Для правильного измерения расхода перепад давления на входе дифманометра должен быть равен перепаду давления, развиваемому сужающим устройством, т.е. перепад от сужающего устройства к дифманометру должен передаваться без искажения.

Это возможно в случае, если давление, создаваемое столбом среды в обеих соединительных трубках, будет одинаковым. В реальных условиях это равенство может нарушаться. Например, при измерении расхода газа причиной этого может быть скапливание конденсата в неодинаковом количестве в соединительных линиях, а при измерении расхода жидкости, наоборот, скапливание выделяющихся газовых пузырьков. Во избежание этого соединительные линии должны быть либо вертикальными, либо наклонными с уклоном не менее 1:10, причем на концах наклонных участков должны быть конденсато- или газосборники. Кроме того, обе импульсные трубки следует располагать рядом, чтобы избежать неодинакового нагрева или охлаждения их, что может привести к неодинаковой плотности заполняющей их жидкости и, следовательно, к дополнительной погрешности. При измерении расхода пара важно обеспечить равенство и постоянство уровней конденсата в обеих импульсных трубках, что достигается применением уравнительных сосудов.

К одному сужающему устройству может быть подключено несколько дифманометров. При этом допускается подключение соединительных линий одного дифманометра к соединительным линиям другого.

При измерении расхода жидкости дифманометр рекомендуется устанавливать ниже сужающего устройства 1, что исключает попадание в соединительные линии и дифманометр газа, который может выделиться из протекающей жидкости (рис. 2, а).



Рис. 2. Схема соединительных линий при измерении расхода жидкости с установкой дифманометра ниже (а) и выше (6) сужающего устройства :

1 - сужающее устройство; 2 - запорные вентили; 3 - продувочный вентиль; 4 - газосборники; 5 - разделительные сосуды

Для горизонтальных и наклонных трубопроводов соединительные линии должны подключаться через запорные вентили 2 к нижней половине трубы (но не в самой нижней части) во избежание попадания в линии газа или осадков из трубопровода. Если дифманометр все же устанавливается выше сужающего устройства (рис. 2, б), то в наивысших точках соединительных линий необходимо устанавливать газосборники 4 с продувочными вентилями. Если соединительная линия состоит из отдельных участков (например, при обходе какого-либо препятствия), то газосборники устанавливаются в наивысшей точке каждого участка. При установке дифманометра выше сужающего устройства трубки вблизи последнего прокладываются с Сообразным изгибом, опускающимся ниже трубопровода не менее чем на 0,7 м для уменьшения возможности попадания газа из трубы в соединительные линии. Продувка соединительных линий осуществляется через вентили 3.?

При измерении расхода агрессивных сред в соединительных линиях возможно ближе к сужающему устройству устанавливаются разделительные сосуды 5. Соединительные линии между разделительным сосудом и дифманометром, частично и сам сосуд заполнены нейтральной жидкостью, плотность которой больше плотности измеряемой агрессивной среды. Остальная часть сосуда и линии до сужающего устройства заполнены контролируемой средой. Следовательно, поверхность раздела контролируемой среды и разделительной жидкости находится внутри сосуда, причем уровни раздела в обоих сосудах должны быть одинаковыми.

Разделительная жидкость выбирается таким образом, чтобы она химически не взаимодействовала с контролируемой средой, не смешивалась с ней, не давала отложений и не была агрессивной по отношению к материалу сосудов, соединительных линий и дифманометра. Чаще всего в качестве разделительной жидкости используются вода, минеральные масла, глицерин, водоглицериновые смеси.

При измерении расхода газа дифманометр рекомендуется устанавливать выше сужающего устройства, чтобы конденсат, образовавшийся в соединительных линиях, мог стекать в трубопровод (рис. 3, а).



Рис. 3. Схема соединительных линий при измерении расхода газа с установкой дифманометра выше (а) и ниже (б) сужающего устройства :

1 - сужающее устройство; 2 - запорные вентили; 5 - продувочный вентиль; 4 - конденсатосборник

Соединительные линии нужно подключать через запорные вентили 2 к верхней половине сужающего устройства, их прокладку желательно производить вертикально. Если вертикальная прокладка соединительных линий невозможна, то их следует прокладывать с наклоном в сторону трубопровода или конденсатосборников 4. Подобные требования должны выполняться и при расположении дифманометра ниже сужающего устройства (рис. 3, б). При измерении расхода агрессивного газа в соединительные линии должны включаться разделительные сосуды.

При измерении расхода перегретого водяного пара неизолированные соединительные линии оказываются заполненными конденсатом. Уровень конденсата и его температура в обеих линиях должны быть одинаковыми при любом расходе.

Для стабилизации верхних уровней конденсата в обеих соединительных линиях вблизи сужающего устройства устанавливаются уравнительные конденсационные сосуды . Назначение уравнительных сосудов можно пояснить с помощью рис. 4.



Рис. 4. :

а-в - стадии измерения разности давлений

Предположим, что при отсутствии уравнительных сосудов и некотором расходе пара уровень конденсата в обеих импульсных трубках одинаков. При увеличении расхода на сужающем устройстве увеличивается перепад давления, заставляющий нижнюю мембранную коробку сжиматься, а верхнюю растягиваться (рис. 4, б). Из-за изменения объемов коробок в нижнюю, «плюсовую» камеру дифманометра будет затекать конденсат из «плюсовой» импульсной трубки, что приведет к понижению уровня в ней на величину h. Из верхней, «минусовой» камеры дифманометра конденсат будет выталкиваться в импульсную трубку и в паропровод, но высота столба конденсата останется неизменной. Образовавшаяся разница уровней конденсата создает перепад давления, уменьшающий перепад давления в сужающем устройстве. Таким образом, показания расходомера будут заниженными. Нетрудно заметить, что абсолютная погрешность измерения будет расти с увеличением изменений расхода.

Очевидно, что погрешность можно снизить уменьшением h. Для этого на концах импульсных трубок устанавливают уравнительные конденсационные сосуды (рис. 5) - горизонтально расположенные цилиндры большого сечения. Так как сечение этих сосудов велико, вытекание из них конденсата мало изменит его уровень, так что перепад, измеряемый дифманометром, можно считать равным перепаду в сужающем устройстве.

При измерении расхода пара дифманометр следует располагать ниже сужающего устройства 1 и уравнительных сосудов 2 (рис. 5, а) для облегчения удаления воздуха из соединительных линий.




Рис. 5. Схема соединительных линий при измерении расхода пара с установкой дифманометра ниже (а) и выше (б) сужающего устройства :

1 - сужающее устройство; 2 - уравнительные сосуды; 3, 4 - запорные и продувочные вентили; 5 - газосборник

Допускается дифманометр располагать выше сужающего устройства, но в верхней точке соединительных линий в этом случае необходимо устанавливать газосборники 5 (рис. 5, б), позиции 3,4 - запорные и продувочные вентили.

Введение

Автоматизация технологических процессов является одним из решающих факторов повышения производительности и улучшения условий труда. Все существующие и строящиеся промышленные объекты в той или иной степени оснащаются средствами автоматизации.

Проектами наиболее сложных производств, особенно в чёрной металлургии, нефтепереработке, химии и нефтехимии, на объектах производства минеральных удобрений, энергетики и в других отраслях промышленности, предусматривается комплексная автоматизация ряда технологических процессов.

Средства автоматизации применяются также на объектах жилищного строительства и социально-бытового назначения в системах кондиционирования воздуха, дымоудаления, энергоснабжения.

Автоматизация технологического процесса в деревообработке, является также перспективной. Например, автоматизация сушильной камеры, где качество изделия зависит от точного и своевременного регулирования основных параметров.

Задание на курсовое проектирование

Дана лесосушильная камера периодического действия , загружаемая материалом, который перемещается вилочным погрузчиком. Процесс сушки в ней протекает переодично.

Для расчёта САР регулируемым параметром служит температура сушильного агента давление пара.

Статические и динамические характеристики объекта автоматизации

Для заданного объекта необходимо:

    Разработать функциональную схему автоматизации, выбрать приборы и средства автоматизации, составить спецификации на приборы и средства автоматизации.

    Произвести инженерный расчёт системы автоматического регулирования для заданного параметра.

    Разработать принципиальную схему автоматического регулирования для заданного параметра

    Разработать общий вид щита

    Разработать принципиальную схему питания с расчётом и выбором аппаратов управления и защиты.

Функциональная схема автоматизации

При проектировании систем автоматизации технологических процессов в лесной и деревообрабатывающей промышленности все технические решения по автоматизации станков, агрегатов или отдельных участков технологического процесса отображается на схемах автоматизации.

Схемы автоматизации являются основным техническим документом, который определяет структуру и функциональные связи между технологическим процессом, приборами, средствами контроля и управления и отражает характер автоматизации технологических процессов.

При разработке схем автоматизации технологических процессов необходимо решить следующие основные задачи:

    сбор и первичная обработка информации;

    представление информации диспетчеру;

    контроль отклонений технологических параметров;

    автоматическое и дистанционное управление;

Расчёт сужающего устройства.

Данные для расчета сужающего устройства.

Внутренний диаметр трубопровода D 20 , мм

Абсолютное давление p, МПа

Массовый максимальный расход пара, Q м max , кг/ч

Материал диафрагмы

До диафрагмы имеется

Смешив. потоки

Материал трубопровода

Температура пара t, °C

Средний расход пара Q ср (0,5¸0,7)Q м. max = 0,68Q м. max , кг/ч

Минимальный расход Q min =(0,25¸0,33)Q м = 0,31 Q м кг/ч

Допустимая потеря давления р` п.д.. = (0,05¸0,1)р = 0,085 р, кПа

2. Динамическая вязкость пара:

    Поправочный множитель на расширение металла К t:

Внутренний диаметр трубопровода: D = D 20 К t = 150 1,0029 = 150,435 мм

    В зависимости от максимального контролируемого расхода пара Q м max выбирается ближайшее большее число из чисел ряда Q пр:

Q м max = 7000 Þ Q пр = 8000 кг/ч

Выбранное число является верхним пределом измерения по шкале дифманометра-расходомера или измерительного прибора:

    Определяем расчётную допустимую потерю давления:

р` п.д. = 0,085 × 0,784 =0,067 МПа = 67 кПа

    Определим вспомогательную величину:

    По вычисленному значению С и заданной величине р п.д найдём по номограмме искомое значение Dр н и приближённое значение m:

Dр н = 100 кПа

Re гр сопла = 10,5 · 10 4

    Определим поправочный множитель e на расширение пара по номограмме представленной в методическом пособии:

;

10. Вычисляем вспомогательную величину ma:

11. Определяем модуль m и коэффициент расхода a по величине ma:

12. Определяем потерю давления на диафрагме по формуле:

    Определяем по найденному значению m расчётный диаметр отверстия сужающего устройства в рабочих условиях:

    По найденному размеру d с учётом коэффициента линейного расширения материала диафрагмы Kt:

    Производится проверка расчёта:

    Определяем погрешность расчёта:

Необходимо внести исправления в расчёт, т. к. δ > 0,2 %. Принимаем внутренний диаметр трубопровода d = 73 мм и повторяем расчёт:

Расчёт и выбор регулирующего органа.

Регулирующие органы являются основной частью регуляторов. Они предназначены для изменения расхода вещества, отводимого или подводимого к объекту регулирования. РО представляют собой переменные гидравлические сопротивления, устанавливаемые в трубопроводе. Дросселирование протекающего потока осуществляется при изменении проходного сечения дроссельного органа с помощью затвора. Регулирующие клапаны работают нормально, если пределы регулирования составляют от 10% до 90% от значения коэффициента пропускной спосоности клапана. Чем больше рабочий ход затвора, тем более плавно происходит регулирование.

Исходные данные для расчёта

Внутренний диаметр паропровода D, мм

Абсолютное давление пара на входе р 0 , кПа

Максимальный расход пара G макс. , кг/ч

Длина трубопровода до РО, L1, м

Местные сопротивления до РО:

Резкие повороты (n1 поворотов под углом a)

Конфузор под углом

Минимальный расход пара G мин, кг/ч

Длина паропровода после РО, L2, м

Абсолютное давление на выходе р к, кПа

Трубы паропровода – Сварные с коррозией

Давление р 2 после РО: р 2 = р 1 -(0,3¸0,4) (р 0 -р) = р 1 -0,32(р 0 -р);

    Расчёт плотности перегретого пара по таблице представленной в методическом пособии:

ρ = 3,756 кг/м 3

Динамическая вязкость пара:

    Определим число Рейнольдса, отнесённое к диаметру трубопровода при G min . Расчёт можно продолжить при условии Rе ³ 2000.

    Определим коэффициент трения l для данного R e:

    Определим суммарную длину трубопровода:

    Определим среднюю скорость в паропроводе при G max:

    Определим потери давления на трение в кПа в прямых участках паропровода при G max:

    Определяем потери давления в местных сопротивлениях при G max.

Loading...Loading...