Конструктивные схемы зданий. Приемы конструктивных решений зданий Армирование плит при безригельном каркасе

Монолитные каркасы проектируют рамными или рамно-связевыми (с устройством монолитных диафрагм жесткости).

В зависимости от решения ригелей (балок) монолитные каркасно-ригельные системы могут быть двух типов: с главными и второстепенными балками в разных направлениях; с балками одинакового значения в двух или трех направлениях (с перекрытиями кессонного типа).

В первом типе каркаса второстепенные балки опираются на монолитно связанные с ними главные балки, а те, в свою очередь, - на колонны (см. рис. 5.3).Компоновка второстепенных и главных балок в плане может быть различной (при продольном или поперечном их расположении). При выборе направления главных балок учитывают назначение здания, пространственную жесткость каркаса и др. требования.

Пролеты главных балок 6-9 (12) м, высота поперечного сечения 1/8-1/15 от пролета, а ширина - 0,4-0,5 высоты.

В каждом пролете главной балки располагают от одной до трех второстепенных балок. По осям колонн также располагают второстепенные балки. Их пролеты - 5-7 м, высота поперечного сечения - 1/12-1/20 от пролета, ширина - 0,4-0,5 от высоты.

Пролеты монолитной плиты перекрытия равны шагу второстепенных балок и составляют 2-3 м, а толщина плиты, в зависимости от нагрузки, выбирается в пределах 1/25-1/40 пролета и чаще всего составляет 80-100 мм.

Фрагменты разрезов

Рис. 5.3. 1 - колонна; 2 - главная балка; 3 - второстепенная балка; 4 - монолитная плита перекрытия

Каркасы с частым расположением балок (1-2 м) в двух или трех направлениях с одинаковым шагом и высотой называют каркасами с кессонными перекрытиями (см. рис. 5.4).Их преимущества заключаются в сравнительно меньшей высоте перекрытия (балок) и высокой архитектурной выразительности потолков общественных зданий

Рис. 5.4. Монолитные железобетонные каркасы с перекрытиями кессонного типа: а - конструктивно-планировочные ячейки; б - фрагмент разреза

К числу перспективных можно отнести суперкаркасную систему этажерочного типа (рис. 5.5),при которой пространственная жесткость здания обеспечивается так называемым суперкаркасом, представляющим собой несколько коробчатых пилонов (стволов), соединенных между собой мощными ростверками в нескольких уровнях по высоте здания. На ростверки (как на полки этажерки) опираются многоэтажные каркасы, которые могут иметь различные планировочные и конструктивные решения. Каркасы этажерочного типа являются наиболее пер­спективными для зданий очень большой этажности (сверхвысотных).

Рис. 5.5. Конструктивная схема каркаса этажерочного типа: а - схема фасада; б - схема типового этажа; в - схема ростверка; 1 - коробчатый пилон; 2 - ростверк; 3 - каркасно-ригельная структура

Безригельные каркасы

Безригельный каркас - конструктивная система с плоскими перекрытиями, опирающимися непосредствен­но на колонны без вспомогательных балок-ригелей.

Безригельные каркасы в архитектурном отношении имеют значительные преимущества:

Плоские перекрытия имеют общую высоту в 2-3 раза меньшую, чем перекрытия в каркасно-ригельных системах;

Перекрытия с гладкими потолками способствуют применению свободной планировки и трансформации помещений путем устройства мобильных перегородок, не связанных жестко с перекрытиями;

Консольные участки перекрытий по периметру позволяют выполнять более сложные конфигурации фа­садных плоскостей, устраивать лоджии, террасы, веран­ды без дополнительных конструктивных элементов;

Наличие гладкого потолка позволяет отказаться от дорогостоящих подвесных потолков.

Безригельные каркасы имеют и технико-экономические преимущества: упрощается монтаж опалубки благодаря отсутствию ригелей (при монолитном способе производства), уменьшается площадь последующей обработки потолка и упрощаются отделка, прокладка под потолком трубопроводов, устройство теплоизоляции и т.д.

Наряду с отмеченными преимуществами безригельные системы имеют недостатки, препятствующие массовому их распространению в практике строительства: величины пролетов безбалочных перекрытий более ограничены, чем в традиционных ригельных системах; не во всех случаях изготовление плоских перекрытий дешевле и проще ригельных; усложнены расчет и оценка действи­тельной работы конструкций перекрытий.

Однако эти недостатки, в основном конструктивного характера, при дальнейшем совершенствовании систем могут быть устранены. Архитектурные качества безригельных систем все больше привлекают внимание архитекторов и конструкторов. Многочисленные поиски специалистов разных стран привели к различным конструктивным решениям. Многие варианты безригельного каркаса прошли экспериментальную проверку и вошли в строительную практику.

Несколько предложений по безригельным конструкциям разработаны в Украине. Среди них - грибовидный каркас, примененный в проектах различных типов общественных зданий (рис. 12.79).

Грибовидный каркас вписывается в структурную сетку на основе равностороннего треугольника со стороной 3,2 м и состоит из двух основных элементов: колонны и шестиугольной плиты перекрытия. Каждая плита опирается в центре на колонну, образуя своеобразный грибок. Примыкая друг к другу боковыми гранями, грибки объединяются в сотовую структуру и после сварки и замоно-личивания превращаются в единую пространственную систему. Благодаря частому шагу колонн и пространственной работе каркаса высота ребер плит доведена до 15 см, а вся толщина перекрытия с конструкцией пола составляет 20 см.

Из шестигранных элементов грибовидного каркаса можно создавать самые разнообразные архитектурно-конструктивные композиции. Несмотря на художественные достоинства, эта разновидность каркаса имеет серьезный планировочный недостаток, ограничивающий его применение. Частый шаг колонн, расположенных в шахматном порядке, затрудняет функциональное решение большинства типов зданий, особенно при широком корпусе.

Модификация этой системы привела к варианту каркаса, в котором, наряду с основными плитами перекрытий, опирающимися центрично на колонны, имеются пролетные плиты, опертые на основные (рис. 12.79 б). Введение пролетных плит перекрытий позволило резко увеличить размер треугольной планировочной сетки (с 3,2 до 6,6 м), что значительно улучшило архитектурные качества каркаса.

Рис. 12.79. Безригельный грибовидный каркас с плоскими перекрытиями (Украина): а - на треугольной сетке колонн со стороной 3,2 м; б - на треугольной сетке со стороной 6,6 м; 1 - колонна; 2 - надколонная (капительная) плита; 3 - пролетная плита; 4 - доборная фасадная плита

Каркас с консольно-ригельными плитами (рис. 12.80) запроектирован для планировочной сетки 6 х 6 м и включает три основные сборные железобетонные элемента - колонну на этаж, надколонную ребристую плиту, асимметрично опирающуюся на колонну и торец соседней плиты, а также плиту-вкладыш.

Преимущества каркаса: простота узлов соединений и монтажа элементов, возможность взаимного смещения рядов колонн, т.е. трансформации планировочной сетки, и возведения зданий сложной конфигурации.

Рис. 12.80. Каркас с консольно-ригельными асимметрично опертыми надколонными плитами (Украина): а - общая схема; б - схема раскладки плит перекрытий; 1 - надколонная плита; 2 - плита-вкладыш; 3 - разрезка в местах, близких к линиям нулевых моментов

Сборно-монолитная система КУБ-2,5 (каркас универсальный безригельный) позволяет строить жилые дома, здания общественного назначения в едином конструктивном ключе, по единой технологии изготовления и монтажа строительных конструкций. Система представляет собой связевый каркас, состоящий из многоэтажных неразрезных колонн прямоугольного сечения и сплошных плит перекрытий (рис. 12.82). КУБ-2,5 соответствует уровню прогрессивных современных индустриальных каркасных конструкций. Отличительная особенность системы - монтаж плит перекрытия на колонну и соединение плит перекрытий между собой производятся без поддерживающих элементов.

Конструкция стыков колонн исключает сварку, так как стык колонн сечением 400х400 мм предусматривает принудительный монтаж, при котором фиксирующий стержень нижнего торца колонны должен войти в патрубок верхнего торца нижней колонны.

Конструкции каркаса предполагают высоту этажей 2,8; 3,0; 3,3 м при основной сетке колонн 6x6м. При необходимости высоту этажа можно увеличить до 6 м, а шаг колонн - до 12 м.

Конструкции КУБ-2,5 применяются при возведении общественных зданий в 1-3 этажа большой пролетности с техподпольем и жилых зданий в 4-22 этажа.

Рис. 12.82. Сборно-монолитный безригельный каркас КУБ-2,5: а - монтажная схема; б - стык колонн; в - узел «колонна-плита»

Монолитные безригельные каркасы проектируют на основе квадратной или прямоугольной сетки колонн, при этом соотношение между большим и меньшим пролетами ограничивается как 4/3. Наиболее рациональна квадратная сетка колонн 6x6м.

В монолитных безригельных каркасах сплошная железобетонная плита опирается непосредственно на колонны с капителями (рис. 12.83). Капители обеспечивают жесткое сопряжение плиты с колоннами и прочность плиты на продавливание по периметру колонны, уменьшают расчетный пролет плиты. Капители колонн конструируют в виде усеченной пирамиды с углом наклона граней 45° или двойной усеченной пирамиды ломаного очертания.

Толщину монолитной плиты принимают из условия ее необходимой жесткости в пределах 1/32-1/35 от величины наибольшего пролета. Плиты армируют плоскими или рулонными сварными сетками. При этом пролетные из­гибающие моменты воспринимаются сетками, уложенными в нижней зоне, а опорные - в верхней зоне плиты.

Один из эффективных вариантов монолитного безригельного каркаса для зданий с мелкоячеистой планировочной структурой - вариант с узкими колоннами в виде коротких стенок-диафрагм без капителей (рис. 12.84).

Колонны такого вида позволяют использовать их в качестве ограждающих элементов при одновременном уменьшении пролетов плит и увеличении жесткости каркаса. Колонны могут быть не только плоскими, ориентируемыми на плане в разных направлениях, но и пространственными (рис. 12.84 б), логично вписывающимися в планировочную структуру здания.

Данная система является открытой, позволяет создавать разнообразные объемно-планировочные решения жилых, учебных, административных и других зданий со средними по величине пролетами - до 7,5 м.

Рис. 12.83. Монолитный безригельный каркас: а - капители колонн и их армирование; б - расположение рабочей арматуры в плите (план); в - фрагмент разреза каркаса с изображением армирования плиты; 1 - рабочая арматура; 2 -конструктивная арматура


Рис. 12.84. Монолитный безригельный каркас с колоннами в виде коротких стенок-диафрагм: а - фрагменты фасада и плана здания коридорного типа; б - возможные формы сечений колонн; в - формы колонн переменного сечения по высоте

Конструктивная система здания представляет собою совокупность взаимосвязанных несущих конструкций здания, обеспечивающих его прочность, пространственную жесткость и надежность в эксплуатации. Выбор конструктивной системы здания определяет статическую роль каждой из его конструкций. Материал конструкций и технику их возведения определяют при выборе строительной системы здания.

Несущие конструкции здания состоят из взаимосвязанных вертикальных и горизонтальныхэлементов.

Горизонтальные несущие конструкции - воспринимают все приходящиеся на них вертикальные нагрузки и поэтажно передают их вертикальным несущим конструкциям (стенам, колоннам). Вертикальные конструкции, в свою очередь, передают нагрузку на фундамент здания.

Системы перекрытий с древности проектировались из стереотипного подхода к компоновке балочной клетки, т.е. состояли из балок (ригелей) и настила, так конструктивно решаются и деревянные перекрытия. Затем появляются железобетонные ребристые плиты перекрытия, в которых этот подход уже слит в один конструктивный элемент. Появившиеся позднее плоские пустотные плиты перекрытий - являются значительным шагом в проектировании систем зданий нового типа.

В индустриальных жилых зданиях, сравнении с традиционными сооружениями, имевшими смешанные покрытия, включавшие фрагменты деревянных перекрытий, горизонтальные несущие конструкции впервые начинают выполнять роль диафрагм жесткости, кроме того, перекрытия воспринимают горизонтальные нагрузки и воздействия (ветровые, сейсмические и др.) и передают усилия от этих воздействий на вертикальные конструкции.

Передача горизонтальных нагрузок и воздействий осуществляется двояко: либо с распределением их на все вертикальные конструкции здания, либо на отдельные специальные вертикальные элементы жесткости (стены, диафрагмы жесткости, решетчатые ветровые связи или стволы жесткости). Индустриальный тип зданий предоставляет и промежуточные решения - передача нагрузки возможна с распределением горизонтальных нагрузок в различных пропорциях между элементами жесткости и конструкциями, работающими на восприятие вертикальных нагрузок.

Перекрытия - диафрагмы жесткости обеспечивают совместность горизонтальных перемещений вертикальных несущих конструкций от ветровых и сейсмических воздействий. Возможность совместности и выравнивания перемещений достигается жестким сопряжением горизонтальных несущих конструкций с вертикальными.

Как уже отмечалось ранее, при сокращении строительных объемов зданий, горизонтальные несущие конструкции жилых домов высотой более двух этажей в соответствии с требованиями противопожарных норм выполняются трудно сгораемыми или несгораемыми. Этим требованиям, а также требованиям экономической страты наиболее полно удовлетворяют железобетонные конструкции, что и определило их массовое применение в качестве горизонтальных несущих элементов всех типов зданий. Перекрытия обычно представляют собой железобетонную плиту - сборную, сборно-монолитную или монолитную.

Вертикальные несущие конструкции различают по виду конструкций, который служит определяющим признаком и для классификации конструктивных систем. На рис. 2 даны основные типологические признаки жилого дома, вертикальные несущие конструкции которого представляют собою сплошную вертикальную плоскость стен. При использовании колонн в качестве главных вертикальных несущих элементов конструкций уже на первом этапе индустриализации позволило получить четыре конструктивных схемы серийного жилого дома: с поперечным расположением ригелей; с продольным расположением ригелей; с перекрестным расположением ригелей; безригельное решение.

Индустриализация позволила не только с новой точки зрения взглянуть на работу перекрытий, но и значительно расширить типологию вертикальных несущих конструкций. При развитии серийного жилищного строительства отдельными группами выделяются следующие виды вертикальных несущих конструкций: фундамент блочный каркасный развертка

плоскостные (стены);

стержневые сплошного сечения (стойки каркаса);

объемно-пространственные(объемные блоки);

объемно-пространственные внутренние несущие конструкции на высоту зданий в виде тонкостенных стержней открытого или замкнутого профиля (стволы жесткости). Ствол жесткости обычно располагают в центральной части здания; во внутреннем пространстве ствола размещают лифтовые, вентиляционные шахты и другие коммуникации. В зданиях большой протяженности предусматривают несколько стволов жесткости;

объемно-пространственные внешние несущие конструкции на высоту здания в виде тонкостенной оболочки замкнутого профиля, образующей одновременно и наружную ограждающую конструкцию здания. В зависимости от архитектурного решения внешняя несущая оболочка может иметь призматическую, цилиндрическую, пирамидальную или другую форму.

Соответственно видам вертикальных несущих конструкций различают пять основных конструктивных систем зданий: каркасную, бескаркасную (стеновую), объемно-блочную, ствольную и оболочковую, иначе называемую периферийной

Выбор вертикальных несущих конструкций, характера распределения горизонтальных нагрузок и воздействий между ними - один из основных вопросов при компоновке конструктивной системы. Он также оказывает влияние на планировочное решение, архитектурную композицию и экономическую целесообразность проекта. В свою очередь на выбор системы оказывают влияние типологические особенности проектируемого здания, его этажность и инженерно-геологические условия строительства.

Каркасная система с пространственным рамным каркасом применяется преимущественно в строительстве многоэтажных сейсмостойких зданий, высотой более девяти этажей, а также в обычных условиях строительства при наличии соответствующей производственной базы. Каркасная система - основная в строительстве общественных и промышленных зданий. В жилищном строительстве объем ее применения ограничен не только по экономическим соображениям. Основа противопожарных требований при проектировании жилых зданий - последовательное создание вертикальных преград огню -брандмауэров. В сооружении каркасного типа создание брандмауэров велось по встраиванию между колоннами несгораемых вертикальных диафрагм жесткости. Таким образом, заранее ограничивались возможности пространственной планировки, основного преимущества каркасных систем.

Бескаркасная система - самая распространенная в жилищном строительстве, ее используют в зданиях различных планировочных типов высотой от одного до30 этажей.

Объемно-блочная система зданий в виде группы отдельных несущих столбов из установленных друг на друга объемных блоков применялась для жилых домов высотой до 12 этажей в обычных и сложных грунтовых условиях. Столбы объединялись друг с другом гибкими или жесткими связями.

Ствольную систему применяют в зданиях высотой более 16 этажей. Наиболее целесообразно применение ствольной системы для компактных в плане многоэтажных зданий, особенно в сейсмостойком строительстве, а также в условиях неравномерных деформаций основания (на просадочных грунтах, над горными выработками и т. п.).

Оболочковая система присуща уникальным высотным зданиям жилого, административного или многофункционального назначения.

Наряду с основными конструктивными системами широко применяют комбинированные, в которых вертикальные несущие конструкции компонуют из различных элементов - стержневых и плоскостных, стержневых и ствольных и т. п.

Система с неполным каркасом, основанная на сочетании несущих стен и каркаса, воспринимающих все вертикальные и горизонтальные нагрузки. Система применялась в двух вариантах: с несущими наружными стенами и внутренним каркасом либо с наружным каркасом и внутренними стенами. Первый вариант использовался при повышенных требованиях к свободе планировочных решений здания, второй - при целесообразности применения ненесущих легких конструкций наружных стен и при проектировании зданий средней и повышенной этажности.

Каркасно-диафрагмовая система основана на разделении статических функций между стеновыми (связевыми) и стержневыми элементами несущих конструкций. На стеновые элементы (вертикальные диафрагмы жесткости) передается всю или большую часть горизонтальных нагрузок и воздействий, на стержневые (каркас) - преимущественно вертикальные нагрузки. Система получила наиболее широкое применение в строительстве многоэтажных каркасно-панельных жилых домов в обычных условиях и в сейсмостойком строительстве.

Каркасно-ствольная система основана на разделении статических функций между каркасом, воспринимающим вертикальные нагрузки, и стволом, воспринимающим горизонтальные нагрузки и воздействия. Она применялась при проектировании высотных жилых зданий.

Каркасно-блочная система основана на сочетании каркаса и объемных блоков, причем последние могут получать применение в системе в качестве ненесущих или несущих конструкций. Ненесущие объемные блоки используют для поэтажного заполнения несущей решетки каркаса. Несущие устанавливают друг надруга в три-пять ярусов на горизонтальных несущих платформах (перекрытиях) каркаса, расположенных с шагом в три-пять этажей. Система применялась в зданиях выше 12 этажей.

Блочно-стеновая (блочно-панельная) система основана на сочетании несущих столбов из объемных блоков и несущих стен, поэтажно связанных друг с другом дисками перекрытий. Применялась в жилых зданиях высотой до 9 этажей в обычных грунтовых условиях.

Ствольно-стеновая система сочетает несущие стены и ствол с распределением вертикальных и горизонтальных нагрузок между этими элементами в различных соотношениях. Применялась при проектировании зданий выше 16 этажей.

Ствольно-оболочковая система включает в себя наружную несущую оболочку и несущий ствол внутри здания, работающих совместно на восприятие вертикальных и горизонтальных нагрузок. Совместность перемещений ствола и оболочки обеспечивается горизонтальными несущими конструкциями отдельных ростверковых этажей, расположенных по высоте здания. Система применялась при проектировании высотных зданий.

Каркасно-оболочковая система сочетает в себе наружную несущую оболочку здания с внутренним каркасом при работе оболочки на все виды нагрузок и воздействий, а каркаса - преимущественно на вертикальные нагрузки. Совместность горизонтальных перемещений оболочки и каркаса обеспечивается так же, как в зданиях оболочково-ствольной системы. Применялась при проектировании высотных зданий.

Понятие "конструктивная система" - обобщенная конструктивно-статическая характеристика здания, не зависящая от материала, из которого оно возводится, и способа возведения. Например, на основе бескаркасной конструктивной системы могло быть запроектировано здание со стенами деревянными рублеными, кирпичными, бетонными (крупноблочными, панельными или монолитными).

В свою очередь, каркасная система может быть осуществлена в деревянных, стальных или железобетонных конструкциях. Возникали варианты и при использовании различных материалов заполнения ячеек, образованных несущими элементами в каркасных или ствольных зданиях. Для этой цели использовались любые элементы - от мелкоразмерных до объемно-блочных.

Несущая часть оболочкового здания может представлять собой раскосную или безраскосную пространственную стальную ферму, монолитную железобетонную оболочку с регулярно расположенными проемами, сборно-монолитную железобетонную решетку и так далее. Многовариантными являлись и комбинированные конструктивные системы. Области и масштабы применения в строительстве отдельных конструктивных систем определялись назначением здания и его этажностью.

Наряду с основными и комбинированными в проектировании получают применение смешанные конструктивные системы, в которых сочетаются по высоте или протяженности здания двух или нескольких конструктивных систем. Такое решение обычно бывает продиктовано функциональными требованиями. Например, если требовалось выполнить переход от бескаркасной системы в верхних типовых этажах к каркасной системе на первых этажах, т.е. при необходимости устройства мелкоячеистой планировочной структуры типовых этажей над зальной планировочной структурой в нетиповых. Чаще всего эта необходимость возникает при устройстве крупных магазинов в первых этажах жилых домов.

Конструктивная схема представляет собой вариант конструктивной системы по признакам состава и типу размещения в пространстве основных несущих конструкций, например, в продольном или поперечном направлениях. Конструктивную схему, как и систему, выбирают на начальном этапе проектирования с учетом объемно-планировочных конструктивных и технологических требований. В жилых каркасных зданиях применяют четыре конструктивные схемы: с поперечными или продольными ригелями, перекрестным расположение ригелей и безригельную.

При выборе конструктивной схемы каркаса учитывают экономические и архитектурные требования: элементы каркаса не должны связывать планировочное решение; ригели каркаса не должны пересекать поверхность потолка в жилых комнатах и т. д. Поэтому каркас с поперечным расположением ригелей применяют в многоэтажных зданиях с регулярной планировочной структурой (в основном, общежития и гостиницы), совмещая шаг поперечных перегородок с шагом несущих конструкций. Каркас с продольным расположением ригелей применялся в жилых домах квартирного типа.

Безригельный (безбалочный) каркас в жилых зданиях использовался лишь при отсутствии в конкретном регионе соответствующей производственной базы и крупных домостроительных комбинатов, поскольку для сборного жилищного строительства такая схема - наименее надежная и наиболее дорогостоящая. Безригельный каркас преимущественно использовался при изготовлении монолитных и сборно-монолитных конструкций здания методом подъема этажей.

Строительная система - это комплексная характеристика конструктивного решения зданий по материалу и технологии возведения основных несущих конструкций.

Строительные системы зданий с несущими стенами из кирпича и мелких блоков из керамики, легкого бетона или естественного камня бывают традиционные и полносборные.

Традиционная система основана на возведении стен в технике ручной кладки, как это издревле выполнялось во всех традиционных сооружениях. Необходимо отметить, что в индустриальном сооружении собственно традиционными остаются лишь ограждающие конструкции, перекрытия и другие внутренние несущие конструкции - полностью идентичны полносборным сооружениям.

Полносборная система основывается на механизированном монтаже стен из крупных блоков или панелей, выполненных в заводских условиях из кирпича, каменных или керамических блоков. С вводом новых жилищных серий крупноблочная система почти повсеместно уступает место панельной.

Традиционная система (с деревянными перекрытиями), долгое время считавшаяся основным типом капитального гражданского здания средней и повышенной этажности - осталась в прошлом. Как это неоднократно подчеркивалось, "традиционными" назывались сооружения по сценарию пожара. Лишь для удобства классификации огромного многообразия индустриальных сооружений, в них выделяются традиционные здания, лишь по внешнему виду напоминающие прежние кирпичные сооружения, возводимые до конца 50-х годов.

К середине 80-х годов прошлого столетия на основе применения традиционной системы ограждающих конструкций возводилось около 30% объема строительства жилых и 80% - массовых общественных зданий. Разумеется, уровень индустриальности конструкций зданий "традиционной" строительной системы в целом достаточно высок благодаря массовому применению крупноразмерных сборных изделий перекрытий, лестниц, перегородок, фундаментов.

Индустриальная традиционная система обладала существенными архитектурными преимуществами. Благодаря малым размерам основного конструктивного элемента стены (кирпича, камня) эта система позволяет проектировать здания любой формы с различными высотами этажей и разнообразными по размерам и форме проемами.

Применение традиционной системы считалось наиболее целесообразным для зданий, доминирующих в застройке. Конструкции зданий со стенами ручной кладки надежны в эксплуатации - кирпич высокотехнологичного обжига не требовал устройства многодельной, недолговечной в эксплуатации штукатурки, была значительно повышена огнестойкость индустриальных кирпичных стен. При их проектировании использовались новые подходы к обеспечению долговечности и теплоустойчивости.

Наряду с архитектурными и эксплуатационными преимуществами ручная кладка стен является причиной основных технических и экономических недостатков каменных зданий: трудоемкость возведения и нестабильность прочностных характеристик кладки в зависимости от разных партий кирпича в случае незначительных отклонений в технологическом процессе на кирпичных заводах. Качество и прочность кладки зависели от сезона возведения и квалификации каменщика.

Крупноблочная строительная система применялась для возведения жилых зданий высотой до 22 этажей. Масса сборных элементов составляла 3-5 т. Установку крупных блоков осуществлялась по основному принципу возведения каменных стен - горизонтальными рядами, на растворе, с взаимной перевязкой швов.

Преимуществами крупноблочной строительной системы являются: простота техники возведения, обусловленная самоустойчивостью блоков при монтаже, возможностью широкого вменения системы в условиях различной сырьевой базы. Гибкая система номенклатуры блоков позволяла возводить различные типы жилых домов при ограниченном числе типоразмеров изделий. Эта система требовала меньших по сравнению с панельным и объемно-блочным домостроением капиталовложений в производственную базу из-за простоты и меньшей металлоемкости формовочного оборудования, а ограниченная масса сборных изделий позволяла использовать распространенное монтажное оборудование малой грузоподъемности.

Создание крупноблочной строительной системы стало первым этапом массовой индустриализации конструкций зданий с бетонными стенами. Крупноблочная система по сравнению с традиционной каменной дала снижение затрат труда на 10% и сроков строительства на 15-20%. По мере внедрения более индустриальной панельной системы постепенно уменьшается объем применения крупноблочной. Уже к середине 70-х годов прошлого столетия крупноблочная система в массовом жилищном строительстве занимает третье место по объему применения после панельной и традиционной каменной систем.

Панельная строительная система применяется при проектировании зданий высотой до 30 этажей в обычных грунтовых условиях и до 14 этажей в сейсмических районах. Внедрение панельной системы в жилищное строительство было начато в конце 1940-х годов одновременно в СССР и во Франции. В 1967 г. вступил в действие разработанный Госстроем СССР ГОСТ 11309-65 на все типы крупнопанельных домов, определяющий все требования к их качеству, устройству стыков и степени точности производства и монтажа изделий.

Стены таких зданий монтируют из бетонных панелей высотой в этаж, массой до 10 т и длиной в 1-3 конструктивно-планировочных шага.

Техническим преимуществом панельных конструкций является их значительная прочность и жесткость. Это определило широкое применение панельных конструкций для зданий повышенной этажности в сложных грунтовых условиях (на просадочных и вечномерзлых грунтах, над горными выработками). По той же причине панельные конструкции демонстрируют большую сейсмостойкость по сравнению с другими строительными системами.

В других экономически развитых странах объем панельного строительства растет также интенсивно, что объясняется высокой экономической эффективностью строительной системы. Однако, следует заметить, что ни одна страна к началу 80-х годов не имеет такой мощной индустриальной базы строительной отрасли, а к середине 80-х большинство западных стран затронуто серьезным экономическим кризисом.

Каркасно-панельная строительная система с несущим сборным железобетонным каркасом и наружными стенами из бетонных или небетонных панелей применяется в строительстве зданий высотой до 30 этажей. Внедрена в СССР наряду с панельной в конце 1940-х годов, до начала 90-х годов на ее основе ежегодно возводилось около 15% объема общественных зданий. В жилищном строительстве систему применяли в ограниченном объеме, поскольку она уступала панельной по технико-экономическим показателям.

Объемно-блочная строительная система также впервые была внедрена советскими строителями. Объемно-блочные здания возводят из крупных объемно-пространственных железобетонных элементов массой до 25 т, заключающих в себе жилую комнату или другой фрагмент здания. Объемные блоки, как правило, устанавливали друг на друга без перевязки швов.

Объемно-блочное строительство позволяет существенно снизить суммарные трудозатраты в строительстве (на 12-15% по сравнению с панельным) и получить прогрессивную структуру этих затрат. Если в панельном строительстве соотношение затрат труда на заводе и строительной площадке составляет в среднем 50 на 50%, то в объемно-блочном оно приближается от 80% заводского изготовления к 20% трудозатрат на стройплощадке. Из-за сложности технологического оборудования капиталовложения при создании заводов объемно-блочного домостроения на 15% больше по сравнению с заводами панельного домостроения.

Объемно-блочную систему применяют для строительства жилых домов высотой до 16 этажей в обычных и сложных грунтовых условиях и для жилых домов малой и средней этажности при сейсмичности 7-8 баллов. Наиболее эффективно объемно-блочное домостроение при значительной концентрации строительства, необходимости его осуществления в сжатые сроки, при дефиците рабочей силы.

Выбор той или иной конструктивной схемы здания зависит от его этажности, объемно-планировочной структуры, наличия стройматериалов и базы стройндустрии.

Конструктивная схема представляет собой вариант конструктивной системы по признакам состава и размещения в пространстве основных несущих конструкций – продольному, поперечному или др.

В каркасных зданиях применяют три конструктивные схемы (рис.3.4):

С продольным расположением ригелей;

С поперечным расположением ригелей;

Безригельная.

Каркас с продольным расположением ригеля применяют в жилых домах квартирного типа и массовых общественных зданиях сложной планировочной структуры, например, в зданиях школ.

Каркас с поперечным расположением ригеля применяют в многоэтажных зданиях с регулярной планировочной структурой

Рис. 3.4. Конструктивные схемы каркасных зданий:

а – с продольным расположением ригеля; б – с поперечным; в –

безригельная.

(общежития, гостиницы), совмещая шаг поперечных перегородок с шагом несущих конструкций.

Безригельный (безбалочный) каркас, в основном используют в многоэтажных промышленных зданиях, реже в общественных и жилых, в связи с отсутствием соответствующей производственной базы в сборном жилищном строительстве и относительно малой экономичностью такой схемы.

Преимущество безригельного каркаса используется в жилых и общественных зданиях при их возведении в сборно-монолитных конструкциях методом подъема перекрытий или этажей. При этом имеется возможность произвольной установки колонн в плане здания: их размещение определяется только статическими и архитектурными требованиями и может не подчиняться закономерностям модульной координации шагов и пролетов.

Варианты каркасной конструктивной схемы представлены на рис.3.5.

Рис.3.5.Варианты каркасной конструктивной схемы:

А – с полным; Б – с неполным; В – с безригельным каркасом; 1 – полный каркас с продольным расположением ригелей; 2 – то же, с поперечным; 3 – полный каркас с продольным расположением ригелей колонн (только у наружных стен) и большепролетными перекрытиями; 4 – неполный продольный каркас; 5 – то же, поперечный; 6 – безригельный каркас; К – колонна; Р – ригель; Дж – вертикальная диафрагма жесткости; НП – настил перекрытия, НР – настил-распорка; I – несущие стены; II – ненесущие стены.

При проектировании зданий наиболее распространенной бескаркасной системы используют следующие пять конструктивных схем (рис.3.6):

схема I – с перекрестным расположением внутренних несущих стен при малом шаге поперечных стен (3; 3,6 и 4,2 м). Применяют в проектировании многоэтажных зданий, в зданиях, строящихся в сложных грунтовых и в сейсмических условиях. Конструкции сборных перекрытий, применяемые в массовом строительстве, в зависимости от величины перекрываемого пролета условно делят на перекрытия малого (2,4-4,5 м) и большого (6-7,2 м). ;

Рис.3.6. Конструктивные схемы бескаркасных зданий:

I – перекрестно-стеновая; II и III – поперечно-стеновые; IV и V – продольно-стеновые; А – варианты с ненесущими или самонесущими продольными наружными стенами; Б – то же, с несущими; а – план стен; б – план перекрытий.

схема II – с чередующимися размерами (большим и малым) шага поперечных несущих стен и отдельными продольными стенами жесткости (схема со смешанным шагом стен). Схемы I-II позволяют более разнообразно решать планировку жилых зданий, размещать встроенные нежилые помещения в первых этажах, обеспечивают удовлетворительные планировочные решения детских учреждений и школ;

схема III – с редко расположенными поперечными несущими стенами и отдельными продольными стенами жесткости (с большим шагом стен). Имеет преимущества при применении полносборных конструкций;

схема IV – с продольными наружными и внутренними несущими стенами и редко расположенными поперечными стенами – диафрагмами жесткости (через 25-40). Применяют при проектировании жилых и общественных зданий малой, средней и повышенной этажности с каменными и крупноблочными конструкциями. В панельном строительстве применяют редко;

схема V - с продольными наружными несущими стенами и редко расположенными поперечными диафрагмами жесткости. Применяют в экспериментальном проектировании и строительстве жилых домов высотой 9-10 этажей. Обеспечивает свободу планировки квартир.

Одной из модификаций безригельного каркаса является сборно-монолитный рамный или рамно-связевый каркас с плоскими плитами перекрытий, включающий многоэтажные максимальной длиной 13 м колонны квадратного сечения 40x40 см, надколонные, межколонные панели перекрытия и панели-вставки единого размера в плане 2,8x2,8 м и единой толщины 160 и 200 мм, а также диафрагмы жесткости.

Каркас рассчитан на сооружение относительно простых в композиционном отношении зданий высотой до 9 этажей при рамной схеме и 16...20 этажей при рамно-связевой схеме с ячейками в плане 6x6; 6x3 м, а при введении металлических шпренгелей на ячейки 6x9; 6x12 м при высоте 3,0; 3,6 и 4,2 м при полной вертикальной нагрузке до 200 кПа и горизонтальной нагрузке от сейсмических воздействий до 9 баллов.

Фундаменты монолитные и сборные стаканного типа. Наружные ограждающие конструкции самонесущие и навесные из различных материалов или типовых индустриальных изделий других конструктивных систем. Лестницы преимущественно из наборных ступеней по стальным косоурам. Стыки элементов каркаса замоноличиваются, образуя рамную систему, ригелями которой служат перекрытия.

Монтаж конструкций ведется в следующем порядке: монтируют и замоноличивают в стаканах колонны; монтируют надколонные панели с высокой точностью, от которой зависит качество монтажа всего перекрытия; на надколонные панели устанавливают межколонные панели. Затем монтируют панели-вставки. После выверки, рихтовки и фиксации перекрытия устанавливают арматуру в швах замоноличивания и производят замоноличивание швов между панелями и стыками панелей с колоннами по всему перекрытию.

Каркас рассчитывают на действие вертикальной и горизонтальной нагрузок методом заменяющих рам в двух направлениях. При этом в качестве ригеля рамы принимают плиту шириной, равной шагу колонн перпендикулярного направления.

При расчете системы на действие горизонтальных сил в обоих направлениях принимают полную расчетную нагрузку, изгибающие моменты от которой вводят полной величиной в расчетные сочетания. При расчете системы на действие вертикальных сил учитывают работу каркаса в двух стадиях: монтажной и эксплуатационной. В стадии монтажа принимают шарнирное опирание панелей перекрытия в местах специальных монтажных устройств, кроме надколонных панелей, которые жестко соединены с колонной. В эксплуатационной стадии производят расчет рам на полную вертикальную нагрузку в двух направлениях. Расчетные изгибающие моменты распределяют в определенном соотношении между пролетами и надколонными полосами.

Силовые воздействия на колонны в уровне низа панели перекрытия определяют по формулам, учитывающим двухстадийную работу конструкции. Элементы конструктивной системы готовят из бетона класса В25 и армируют арматурой из стали классов А-I; A-II и A-III.

Характерной особенностью системы является узел сопряжения надколонной панели с колонной. Для эффективной передачи нагрузки с панелей на колонну в колонне организуется подрезка по периметру в уровне перекрытия с оголенными четырьмя угловыми стержнями. Воротник надколонной панели в виде уголковой стали с помощью монтажных деталей и сварки соединяется со стержнями.

Узел соединения панелей перекрытия типа стыка Передерия, в котором в скобообразные выпуски арматуры пропускается и замоноличивается продольная арматура 0 12-А-П. Для эффективной передачи вертикальной нагрузки в панелях предусматриваются продольные треугольные пазы, образующие с бетоном замоноличивания шва (шириной 200 мм) своего рода шпонку, хорошо работающую на срез.

Указанная конструктивная система рассчитана на применение в районах со слаборазвитой индустрией сборного железобетона для зданий различного назначения при относительно низких требованиях к показателю индустриальности (степени заводской готовности) системы. Принципиальные решения сборно-монолитного безригельного каркаса.

Технико-экономические показатели системы характеризуются несколько более низким расходом металла, чем каркасно-панельные системы для тех же параметров ячеек, но более высоким расходом бетона и значительной построечной трудоемкостью.

ИРКУТСКИМ государственный университет путей сообщения

8. Корн Г. К., Корн Т. К. Справочник по математике для научных работников и инженеров. М. : Наука, 1973. 831 с.

9. Ван дер Варден. Алгебра. М. : Наука, 1979. 623 с.

10. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. Т. 1. М. ; СПб.: Физматлит, 2001. 679 с.

11. Березин И. С., Жидков Н. П. Методы вычислений. Т. 2. М. : ГИФМЛ, 1960. 620 с.

12. Крейн М. Г., Неймарк М. А. Метод симметрических и эрмитовых форм в теории отделения корней алгебраических уравнений. Харьков: ГТТИ, 1936. 39 с.

УДК 699.841 Щербин Сергей Анатольевич,

к. т. н., доцент, декан факультета технической кибернетики, Ангарская государственная техническая академия, e-mail: [email protected]

Чигринская Лариса Сергеевна, старший преподаватель кафедры промышленного и гражданского строительства, Ангарская государственная техническая академия, e-mail: [email protected]

МОДЕЛИРОВАНИЕ УСИЛЕНИЯ НАДКОЛОННОГО СТЫКА

БЕЗРИГЕЛЬНОГО КАРКАСА

S.A. Shcherbin, L.S. Chygrynskaya

BEAMLESS FRAMEWORKS ABOVE COLUMN JOINT STRENGTHENING MODELING

Аннотация. В статье рассмотрены различные варианты усиления надколонного стыка безбалочного перекрытия. Выполнено моделирование усиленных стыков в среде SCAD, проведен анализ и сравнение данных численного расчета с целью выбора наиболее рационального варианта усиления.

Ключевые слова: моделирование, усиление, надколонный стык; безригельный каркас, безбалочное перекрытие.

Abstract. Various options of strengthening above-column the joint of beamless flat slabs are considered. Analysis and comparison of the numerical calculation data in the SCAD program are executed.

Keywords: modeling in SCAD, strengthening, beamless flat slab, stress and deformation distribution.

За первое десятилетие XXI века в России претерпели существенное изменение многие нормы и правила в области строительства.

В результате большое количество как эксплуатируемых, так и недостроенных зданий, запроектированных по прежним нормам, не удовлетворяют современным требованиям.

Сложившаяся ситуация требует оценки несущей способности и пригодности к нормальной эксплуатации конструкций существующих зданий, а также поиска новых вариантов усиления применяющихся в строительстве конструктивных си-

стем (КС).

В России широкое распространение получили системы с безригельным каркасом, характеризующиеся быстротой возведения, архитектурной выразительностью и свободной внутренней планировкой помещений с одновременным обеспечением прочности, надежности и устойчивости здания .

По проблемам использования КС с безри-гельным каркасом в строительной практике имеется большое количество научных публикаций, однако очень ограниченна информация об экспериментальных исследованиях работы таких систем под нагрузкой, отсутствуют четкие рекомендации по обеспечению пространственной жесткости здания . Кроме того, известным КС присущи значительные недостатки - сложная технология и, соответственно, трудоемкость выполнения стыков между плитами и надколонного стыка, что зачастую приводит к уменьшению надежности системы.

Поэтому актуальным представляется экспериментальное исследование напряженно-деформированного состояния безбалочного перекрытия с целью поиска эффективных вариантов повышения надежности и сейсмостойкости зданий.

В результате натурных испытаний конструктивной ячейки безбалочного перекрытия, встроенной в систему каркаса КУБ-1, было выявлено неравномерное распределение прогибов

Современные технологии. Математика. Механика и машиностроение

и нарушение регулярности полей напряжении перекрытия в зонах сопряжения надколонных панелей со стойками каркаса и, соответственно, недостаточная и разная жесткость надколонных стыков .

Обозначенные проблемы косвенно свидетельствуют о нарушении технологии производства работ по устройству стыков в условиях стройплощадки, поскольку в каркасе системы КУБ-1 все сопряжения конструктивных элементов должны обладать одинаковой жесткостью.

Соответственно, на следующем этапе работы возникла необходимость разработки новых технических решений по усилению надколонного стыка безригельных каркасов.

Согласно проектной документации на строительство зданий и сооружений по серии КУБ, безкапительный стык плит перекрытия с колоннами (рис. 1) выполняется сваркой специальных металлических элементов с последующим замоноли-чиванием монтажных узлов. Отверстие в надко-лонной плите обрамляется прокатным уголком.

Были разработаны несколько вариантов модифицированного надколонного стыка (рис. 2). В 1-м варианте (рис. 2, а) предполагается устройство металлической обоймы из прокатного уголка поверху и понизу надколонного стыка (возможно обойму устраивать только поверху - вариант 1*). Уголки крепятся к закладным деталям плиты сваркой, а к колонне анкерными болтами или шпильками. Во 2-м варианте (рис. 2, б) усиление существующего узла осуществляется добавлением стержней горизонтальной арматуры, уложенных во взаимно перпендикулярных направлениях поверху плиты и проходящих сквозь колонну. В 3-м варианте (рис. 2, в) подразумевается устройство верхней обоймы, состоящей из прокатных уголков, имеющих анкеровку от колонны на плиту.

Для сравнения эффективности представленных вариантов усиления с точки зрения разгрузки узла путем снижения воспринимаемых усилий было выполнено компьютерное моделирование и расчет по прочности и по деформациям надколон-ных стыков с помощью вычислительного комплекса SCAD на постоянную и временную равномерно распределенную нагрузку. Изополя напряжений, возникающих в надколонной части плиты, с учетом усиления по 1 -му варианту и без него изображены на рис. 3, 4. Полученные значения прогибов плиты в надколонной и консольной частях, нормальных и касательных напряжений, возникающих в надколонном стыке поверху и понизу безбалочного перекрытия, приведены в табл. 1.

Монт а жн о я "пр их дать, а"

Монтажная сборка 5 случае/ растягибающих усилий

Рис. 1. Стык надколонной плиты перекрытия с колонной: 1 - закладная деталь, соединяющая стержень колонны с закладной деталью надколонной плиты; 2 - бетонная монолитная заделка

Рис. 2. Варианты усиления надколонного стыка

Рис. 3. Изополя напряжений N (т/м) в надколонной части плиты серийного узла (без усиления)

Рис. 4. Изополя напряжений N (т/м) в надколонной части плиты узла, усиленного по варианту 1

Т а б л и ц а 1

Сравнение способов усиления надколонного стыка

Параметр Узел

без усиления 1 1* 2 3

2нч, мм -0,28 -0,17 -0,21 -0,23 -0,19

Zк, мм -0,74 -0,51 -0,59 -0,64 -0,61

дт нч, верх г/м2 " 137-161 135-159 137-160 116-136 133-156

ДТ нч, низ т/м2 -144-168 -147-170 -137-160 -134-155 -137-160

нч, верх т/м2 225264 147173 169200 187220 218254

нч, низ 1\у. т/м2 -237-276 -158-184 -197-228 -212-245 -210-245

дт нч, верх т/м2 " 67 44 62 57 48

дт нч, низ т/м2 -67 -49 -44 -56 -44

Тхунч, т/м2 ±(85-100) ±(14-17) ±(28-37) ±(70-82) ±(74-87)

/р. аРм т -1,05 -0,79 -0,86 -0,91 -0,86

О р.арм т +0,43 +0,26 +0,34 -0,35 -0,27

ОД, т 0 0 -0,07 -0,02 -0,03

Примечания:

гТИЧ гуКЧ

Z , Z - вертикальное смещение плиты в надколонной и консольной частях;

Усилия взяты при загружении «собственный вес + временная нагрузка»;

Для стали С245 Я = 240 МПа = 24465 т/м2;

Ыхт - напряжения в материале в надколонной части плиты (верх плиты - растяжение; низ плиты - сжатие);

- ^ арм - продольное усилие в рабочей арматуре колонны;

Ор-арм - перерезывающее усилие, действующее на рабочую арматуру колонны;

Усилие во введенной закладной детали в теле плиты перекрытия;

В узлах 1 и 1* уголок усиления смоделирован пластиной, т. е. только одной полкой уголка.

Анализируя данные табл. 1, можно отметить следующее:

Усилия (№■ арм и имеют наименьшие абсолютные значения для варианта 1 усиления. Соответственно, его применение позволит повысить степень статической неопределимости кон-

струкции и приведет к перераспределению усилий при загружении безбалочной плиты, образованию пластических шарниров и снижению вертикальной нагрузки на колонну;

Наибольшее снижение деформаций ^нч, Zкч) и, следовательно, уменьшение напряжений в материале плиты (М„ N, N Txy) также наблюдается для варианта 1.

Данные для сравнения способов усиления по силовым факторам, возникающим в элементах усиления (табл. 2), могут быть использованы для обоснованного подбора размеров усиливающих элементов, снижения материалоемкости и затрат на усиление надколонного стыка.

Т а б л и ц а 2 Сравнения вариантов по силовым факторам

в элементах усиления

Параметр Узел, элемент усиления

1, обойма из уголка поверху и понизу плиты 1*, обойма из уголка поверху плиты 2, арматурные стержни 3, обойма из уголка с анкеров-кой

Z, мм -0,15 -0,17 - -

N, т - - 1,14 1,22

N/, т/м2 1003-1765 1369-2160 - -

N/, т/м2 1007-1772 1373-2167 - -

Qz, т - - -0,17 +0,39

My, т-м - - ±0,01 ±0,02

Соответственно, по результатам сравнения вариантов из соображений эффективности снижения силовых факторов в надколонной части и трудоемкости выполнения элементов усиления наиболее предпочтителен вариант 1. Применение такого способа усиления приведет к увеличению жесткости горизонтального диска перекрытия и повышению сейсмостойкости конструктивной системы безригельного каркаса.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Чигринская Л. С., Бержинская Л. П. Анализ использования безригельного каркаса в сейсмических районах // Строительный комплекс России: наука, образование, практика: материалы междунар. науч.-практ. конф. Улан-Удэ: Изд-во ВСГТУ, 2008. С. 60-63.

2. Руководство по проектированию железобетонных конструкций с безбалочными перекрытиями. М. : Стройиздат, 1979. 65 с.

3. Руководство по расчету статически неопределимых железобетонных конструкций. М. : Стройиздат, 1975. 189 с.

4. Чигринская Л. С., Киселев Д. В., Щербин С. А. Изучение работы конструктивной ячейки безбалочного перекрытия системы КУБ-1 // Вестник ТГАСУ. 2012. № 4 (37). С. 128-143.

УДК 622.235:622.274.36.063.23 Тюпин Владимир Николаевич,

д. т. н., профессор каф. БЖД и ЗС, ЗабИЖТИрГУПС, тел. 89144408282, e-mail:[email protected]

Святецкий Виктор Станиславович,

генеральный директор ОАО «Приаргунское производственное горно-химическое объединение»,

тел. 83024525110

МЕТОДИКА ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ БВР ПРИ ОТРАБОТКЕ МАЛОМОЩНЫХ УРАНОВЫХ РУДНЫХ ТЕЛ С ЦЕЛЬЮ СНИЖЕНИЯ РАЗУБОЖИВАНИЯ

V.N. Tyupin, V.S. Sviatetsky

METHODS OF BORING-BLASTING RATINGS DETERMINATION IN THE LOW-POWERED URANIUM ORE-BODIES MINING FOR THE PURPOSE OF INCREASING THE USEFUL COMPONENT IN THE BULK

Аннотация. Приведены механизм и зоны действия взрыва скважинных зарядов ВВ в трещиноватом горном массиве, зависимости для определения параметров ВВР при камерных вариантах систем отработки маломощных урановых рудных тел. Применение камерных вариантов отработки позволит увеличить производительность

добычи и снизить разубоживание руд по сравнению с нисходящей слоевой выемкой с твердеющей закладкой.

Ключевые слова: маломощные рудные тела, камерные системы разработки, механизм зоны действия взрыва, параметры БВР, разубожива-ние.

Loading...Loading...