Изгиб и прогиб. Понятие о деформации изгиба

Задача. Построить эпюры Q и M для статически неопределимой балки. Вычислим балки по формуле:

n = ΣR - Ш — 3 = 4 — 0 — 3 = 1

Балка один раз статически неопределима, значит одна из реакций является «лишней» неизвестной . За «лишнюю» неизвестную примем реакцию опоры В R В .

Статически определимая балка, которая получается из заданной путем удаления «лишней» связи называется основной системой (б).

Теперь эту систему следует представить эквивалентной заданной. Для этого загружаем основную систему заданной нагрузкой, а в точке В приложим «лишнюю» реакцию R В (рис.в ).

Однако для эквивалентности этого недостаточно , поскольку в такой балке точка В может перемещаться по вертикали , а в заданной балке (рис.а ) такого произойти не может. Поэтому добавляем условие , что прогиб т. В в основной системе должен быть равен 0 . Прогиб т. В складывается из прогиба от действующей нагрузки Δ F и от прогиба от «лишней» реакции Δ R .

Тогда составляем условие совместности перемещений :

Δ F + Δ R =0 (1)

Теперь остается вычислить эти перемещения (прогибы ).

Загружаем основную систему заданной нагрузкой (рис.г) и построим грузовую эпюру М F (рис. д ).

В т.В приложим и построим эп. (рис.е,ж ).

По формуле Симпсона определим прогиб от действующей нагрузки .

Теперь определим прогиб от действия «лишней» реакции R В , для этого загружаем основную систему R В (рис.з ) и строим эпюру моментов от ее действия М R (рис. и ).

Составляем и решаем уравнение (1) :

Построим эп. Q и М (рис. к,л ).

Строим эпюру Q.

Построим эпюру М методом характерных точек . Расставляем точки на балке — это точки начала и конца балки (D,A ), сосредоточенного момента (B ), а также отметим в качестве характерной точки середину равномерно распределенной нагрузки (K ) — это дополнительная точка для построения параболической кривой.

Определяем изгибающие моменты в точках. Правило знаков см. — .

Момент в т. В будем определять следующим образом. Сначала определим:

Точку К возьмем в середине участка с равномерно распределенной нагрузкой.

Строим эпюру M . Участок АВ параболическая кривая (правило «зонтика»), участок ВD прямая наклонная линия .

Для балки определить опорные реакции и построить эпюры изгибающих моментов (М ) и поперечных сил (Q ).

  1. Обозначаем опоры буквами А и В и направляем опорные реакции R А и R В .

Составляем уравнения равновесия .

Проверка

Записываем значения R А и R В на расчетную схему .

2. Построение эпюры поперечных сил методом сечений . Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения .

сеч. 1-1 ход слева .

Сечение проходит по участку с равномерно распределенной нагрузкой , отмечаем размер z 1 влево от сечения до начала участка . Длина участка 2 м. Правило знаков для Q — см.

Строим по найденным значением эпюру Q .

сеч. 2-2 ход справа .

Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z 2 вправо от сечения до начала участка. Длина участка 6 м.

Строим эпюру Q .

сеч. 3-3 ход справа .

сеч. 4-4 ход справа.

Строим эпюру Q .

3. Построение эпюры М методом характерных точек .

Характерная точка – точка, сколь-либо заметная на балке. Это точки А , В , С , D , а также точка К , в которой Q =0 и изгибающий момент имеет экстремум . Также в середине консоли поставим дополнительную точку Е , поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.

Итак, точки расставлены, приступаем к определению в них значений изгибающих моментов . Правило знаков — см. .

Участки NA, AD параболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных), участки DС, СВ прямые наклонные линии.

Момент в точке D следует определять как слева, так и справа от точки D . Сам момент в эти выражения не входит . В точке D получим два значения с разницей на величину m скачок на его величину.

Теперь следует определить момент в точке К (Q =0). Однако сначала определим положение точки К , обозначив расстояние от нее до начала участка неизвестным х .

Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)

Но поперечная сила в т. К равна 0 , а z 2 равняется неизвестному х .

Получаем уравнение:

Теперь, зная х , определим момент в точке К с правой стороны.

Строим эпюру М . Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».

Для заданной схемы консольной балки требуется построить эпюры поперечной силы Q и изгибающего момента M, выполнить проектировочный расчет, подобрав круглое сечение.

Материал — дерево, расчетное сопротивление материала R=10МПа, М=14кН·м,q=8кН/м

Строить эпюры в консольной балке с жесткой заделкой можно двумя способами — обычным, предварительно определив опорные реакции, и без определения опорных реакций, если рассматривать участки, идя от свободного конца балки и отбрасывая левую часть с заделкой. Построим эпюры обычным способом.

1. Определим опорные реакции .

Равномерно распределенную нагрузку q заменим условной силой Q= q·0,84=6,72 кН

В жесткой заделке три опорные реакции — вертикальная, горизонтальная и момент, в нашем случае горизонтальная реакция равна 0.

Найдем вертикальную реакцию опоры R A и опорный момент М A из уравнений равновесия.

На первых двух участках справа поперечная сила отсутствует. В начале участка с равномерно распределенной нагрузкой (справа) Q=0 , в заделеке — величине реакции R A.
3. Для построения составим выражения для их определения на участках. Эпюру моментов построим на волокнах, т.е. вниз.

(эпюра единичных моментов уже была построена ранее)

Решаем уравнение (1), сокращаем на EI

Статическая неопределимость раскрыта , значение «лишней» реакции найдено. Можно приступать к построению эпюр Q и M для статически неопределимой балки... Зарисовываем заданную схему балки и указываем величину реакции R b . В данной балке реакции в заделке можно не определять, если идти ходом справа.

Построение эпюры Q для статически неопределимой балки

Строим эпюру Q.

Построение эпюры М

Определим М в точке экстремума – в точке К . Сначала определим её положение. Обозначим расстояние до неё как неизвестное «х ». Тогда

Строим эпюру М.

Определение касательных напряжений в двутавровом сечении . Рассмотрим сечение двутавра. S x =96,9 см 3 ; Yх=2030 см 4 ; Q=200 кН

Для определения касательного напряжения применяется формула ,где Q — поперечная сила в сечении, S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение

Вычислим максимальное касательное напряжение:

Вычислим статический момент для верхней полки:

Теперь вычислим касательные напряжения:

Строим эпюру касательных напряжений:

Проектный и проверочный расчеты. Для балки с построенными эпюрами внутренних усилий подобрать сечение в виде двух швеллеров из условия прочности по нормальным напряжениям. Проверить прочность балки, используя условие прочности по касательным напряжениям и энергетический критерий прочности. Дано:

Покажем балку с построенными эпюрами Q и М

Согласно эпюре изгибающих моментов опасным является сечение С, в котором М С =М max =48,3кНм.

Условие прочности по нормальным напряжениям для данной балки имеет вид σ max =M C /W X ≤σ adm . Требуется подобрать сечение из двух швеллеров.

Определим необходимое расчетное значение осевого момента сопротивления сечения:

Для сечения в виде двух швеллеров согласно принимаем два швеллера №20а , момент инерции каждого швеллера I x =1670см 4 , тогда осевой момент сопротивления всего сечения:

Перенапряжение (недонапряжение) в опасных точках посчитаем по формуле: Тогда получим недонапряжение :

Теперь проверим прочность балки, исходя из условия прочности по касательным напряжениям. Согласно эпюре поперечных сил опасными являются сечения на участке ВС и сечение D. Как видно из эпюры, Q max =48,9 кН.

Условие прочности по касательным напряжениям имеет вид:

Для швеллера №20 а: статический момент площади S x 1 =95,9 см 3 , момент инерции сечения I x 1 =1670 см 4 , толщина стенки d 1 =5,2 мм, средняя толщина полки t 1 =9,7 мм, высота швеллера h 1 =20 см, ширина полки b 1 =8 см.

Для поперечного сечения из двух швеллеров:

S x = 2S x 1 =2·95,9=191,8 см 3 ,

I x =2I x 1 =2·1670=3340 см 4 ,

b=2d 1 =2·0,52=1,04 см.

Определяем значение максимального касательного напряжения:

τ max =48,9·10 3 ·191,8·10 −6 /3340·10 −8 ·1,04·10 −2 =27МПа.

Как видно, τ max <τ adm (27МПа<75МПа).

Следовательно, условие прочности выполняется.

Проверяем прочность балки по энергетическому критерию .

Из рассмотрения эпюр Q и М следует, что опасным является сечение С, в котором действуют M C =M max =48,3 кНм и Q C =Q max =48,9 кН.

Проведем анализ напряженного состояния в точках сечения С

Определим нормальные и касательные напряжения на нескольких уровнях (отмечены на схеме сечения)

Уровень 1-1: y 1-1 =h 1 /2=20/2=10см.

Нормальные и касательные напряжения:

Главные напряжения:

Уровень 2−2: y 2-2 =h 1 /2−t 1 =20/2−0,97=9,03см.


Главные напряжения:


Уровень 3−3: y 3-3 =h 1 /2−t 1 =20/2−0,97=9,03см.

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 4−4: y 4-4 =0.

(в середине нормальные напряжения равны нулю, касательные максимальны, их находили в проверке прочности по касательным напряжениям)

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 5−5:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 6−6:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 7−7:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

В соответствии с выполненными расчетами эпюры напряжений σ, τ, σ 1 , σ 3 , τ max и τ min представлены на рис.

Анализ этих эпюр показывает , что в сечении балки опасными являются точки на уровне 3-3 (или 5-5 ), в которых:

Используя энергетический критерий прочности, получим

Из сравнения эквивалентного и допускаемого напряжений следует, что условие прочности также выполняется

(135,3 МПа<150 МПа).

Неразрезная балка нагружена во всех пролетах. Построить эпюры Q и M для неразрезной балки.

1. Определяем степень статической неопределимости балки по формуле:

n= Соп -3= 5-3 =2, где Соп – число неизвестных реакций, 3 – число уравнений статики . Для решения данной балки требуется два дополнительных уравнения.

2. Обозначим номера опор с нулевой по порядку (0,1,2,3 )

3. Обозначим номера пролетов с первого по порядку (ι 1, ι 2, ι 3 )

4. Каждый пролет рассматриваем как простую балку и строим для каждой простой балки эпюры Q и M. То, что относится к простой балке , будем обозначать с индексом «0 », то, что относится к неразрезной балке, будем обозначать без этого индекса. Таким образом, — это поперечная сила и изгибающий момент для простой балки.

При прямом чистом изгибе бруса в его поперечных сечениях возникают только нормальные напряжения. Когда величина изгибающего момента М в сечении стержня меньше некоторого значения, эпюра, характеризующая распределение нормальных напряжений вдоль оси у поперечного сечения, перпендикулярной нейтральной оси (рис. 11.17, а), имеет вид, показанный на рис. 11.17, б. Наибольшие напряжения при этом равны По мере увеличения изгибающего момента М нормальные напряжения возрастают, пока наибольшие их значения (в волокнах, наиболее удаленных от нейтральной оси) становятся равными пределу текучести (рис. 11.17, в); при этом изгибающий момент равен опасному значению:

При увеличении изгибающего момента сверх опасного значения напряжения, равные пределу текучести возникают не только в волокнах, наиболее удаленных от нейтральной оси, но и в некоторой зоне поперечного сечения (рис. 11.17, г); в этой зоне материал находится в пластическом состоянии. В средней части сечения напряжения меньше предела текучести, т. е. материал в этой части находится еще в упругом состоянии.

При дальнейшем увеличении изгибающего момента пластическая зона распространяется в сторону нейтральной оси, а размеры упругой зоны уменьшаются.

При некотором предельном значении изгибающего момента , соответствующем полному исчерпанию несущей способности сечения стержня на изгиб, упругая зона исчезает, а зона пластического состояния занимает всю площадь поперечного сечения (рис. 11.17, д). При этом в сечении образуется так называемый пластический шарнир (или шарнир текучести).

В отличие от идеального шарнира, который не воспринимает момента, в пластическом шарнире действует постоянный момент Пластический шарнир является односторонним: он исчезает при действии на стержень моментов обратного (по отношению к ) знака или при разгрузке балки.

Для определения величины предельного изгибающего момента выделим в части поперечного сечения балки, расположенной над нейтральной осью, элементарную площадку отстоящую на расстоянии от нейтральной оси, а в части, расположенной под нейтральной осью, - площадку отстоящую на расстоянии от нейтральной оси (рис. 11.17, а).

Элементарная нормальная сила, действующая на площадку в предельном состоянии, равна а ее момент относительно нейтральной оси равен аналогично момент нормальной силы действующей на площадку равен Оба эти момента имеют одинаковые знаки. Величина предельного момента равна моменту всех элементарных сил относительно нейтральной оси:

где - статические моменты соответственно верхней и нижней частей поперечного сечения относительно нейтральной оси .

Сумму называют осевым пластическим моментом сопротивления и обозначают

(10.17)

Следовательно,

(11.17)

Продольная сила в поперечном сечении при изгибе равна нулю, а потому площадь сжатой зоны сечения равняется площади растянутой зоны. Таким образом, нейтральная ось в сечении, совпадающем с пластическим шарниром, делит это поперечное сечение на две равновеликие части. Следовательно, при несимметричном поперечном сечении нейтральная ось не проходит в предельном состоянии через центр тяжести сечения.

Определим по формуле (11.17) величину предельного момента для стержня прямоугольного сечения высотой h и шириной b:

Опасное значение момента при котором эпюра нормальных напряжений имеет вид, изображенный на рис. 11.17, в, для прямоугольного сечения определяется по формуле

Отношение

Для круглого сечения отношение а для двутаврового

Если изгибаемый брус является статически определимым, то после снятия нагрузки, вызвавшей в нем момент изгибающий момент в его поперечном сечении равняется нулю. Несмотря на это, нормальные напряжения в поперечном сечении не исчезают. На эпюру нормальных напряжений в пластической стадии (рис. 11.17, е) накладывается эпюра напряжений в упругой стадии (рис. 11.17, е), аналогичная эпюре, изображенной на рис. 11.17,б, так как при разгрузке (которую можно рассматривать как нагрузку моментом обратного знака) материал ведет себя как упругий.

Изгибающий момент М, соответствующий эпюре напряжений, показанный на рис. 11.17, е, по абсолютной величине равен так как только при этом условии в поперечном сечении бруса от действия момента и М суммарный момент равен нулю. Наибольшее напряжение на эпюре (рис. 11.17, е) определяется из выражения

Суммируя эпюры напряжений, показанные на рис. 11.17, д,е, получаем эпюру, изображенную на рис. 11.17, ж. Эта эпюра характеризует распределение напряжений после снятия нагрузки, вызывавшей момент При такой эпюре изгибающий момент в сечении (а также и продольная сила) равняется нулю.

Изложенная теория изгиба за пределом упругости используется не только в случае чистого изгиба, но и в случае поперечного изгиба, когда в поперечном сечении балки кроме изгибающего момента действует также поперечная сила.

Определим теперь предельное значение силы Р для статически определимой балки, изображенной на рис. 12.17, а. Эпюра изгибающих моментов для этой балки показана на рис. 12.17,б. Наибольший изгибающий момент возникает под грузом где он равен Предельное состояние, соответствующее полному исчерпанию несущей способности балки, достигается тогда, когда в сечении под грузом возникает пластический шарнир, в результате чего балка превращается в механизм (рис. 12.17, в).

При этом изгибающий момент в сечении под грузом равняется

Из условия находим [см. формулу (11.17)]

Теперь вычислим предельную нагрузку для статически неопределимой балки. Рассмотрим в качестве примера два раза статически неопределимую балку постоянного сечения, изображенную на рис. 13.17, а. Левый конец А балки жестко защемлен, а правый конец В закреплен против поворота и вертикального смещения.

Если напряжения в балке не превышают предела пропорциональности, то эпюра изгибающих моментов имеет вид, показанный на рис. 13.17, б. Она построена по результатам расчета балки обычными методами, например с помощью уравнений трех моментов. Наибольший изгибающий момент равный возникает в левом опорном сечении рассматриваемой балки. При значении нагрузки изгибающий момент в этом сечении достигает опасного значения вызывающего появление напряжений, равных пределу текучести, в волокнах балки, наиболее удаленных от нейтральной оси.

Увеличение нагрузки сверх указанной величины приводит к тому, что в левом опорном сечении А изгибающий момент становится равным предельному значению и в этом сечении появляется пластический шарнир. Однако несущая способность балки полностью еще не исчерпывается.

При дальнейшем возрастании нагрузки до некоторого значения пластические шарниры появляются также в сечениях В и С. В результате появления трех шарниров балка, вначале дважды статически неопределимая, становится геометрически изменяемой (превращается в механизм). Такое состояние рассматриваемой балки (когда в ней возникают три пластических шарнира) является предельным и соответствует полному исчерпанию ее несущей способности; дальнейшее увеличение нагрузки Р становится невозможным.

Величину предельной нагрузки можно установить без исследования работы балки в упругой стадии и выяснения последовательности образования пластических шарниров.

Значения изгибающих моментов в сечениях. А, В и С (в которых возникают пластические шарниры) в предельном состоянии равны соответственно и, следовательно, эпюра изгибающих моментов при предельном состоянии балки имеет вид, изображенный на рис. 13.17, в. Эту эпюру можно представить состоящей из двух эпюр: первая из них (рис. 13.17, г) представляет собой прямоугольник с ординатами и вызвана моментами приложенными по концам простой балки, лежащей на двух опорах (рис. 13.17, д); вторая эпюра (рис. 13.17, е) представляет собой треугольник с наибольшей ординатой и вызвана грузом действующим на простую балку (рис. 13.17, ж.

Известно, что сила Р, действующая на простую балку, вызывает в сечении под грузом изгибающий момент где а и - расстояния от груза до концов балки. В рассматриваемом случае (рис.

И, следовательно, момент под грузом

Но этот момент, как показано (рис. 13.17, е), равняется

Аналогичным образом устанавливаются предельные нагрузки для каждого пролета многопролетной статически неопределимой балки. В качестве примера рассмотрим четырежды статически неопределимую балку постоянного сечения, изображенную на рис. 14.17, а.

В предельном состоянии, соответствующем полному исчерпанию несущей способности балки в каждом ее пролете, эпюра изгибающих моментов имеет вид, показанный на рис. 14.17, б. Эту эпюру можно рассматривать состоящей из двух эпюр, построенных в предположении, что каждый пролет представляет собой простую балку, лежащую на двух опорах: одной эпюры (рис. 14.17, в), вызванной моментами действующими в опорных пластических шарнирах, и второй (рис. 14.17, г), вызванной предельными нагрузками, приложенными в пролетах.

Из рис. 14.17, г устанавливаем:

В этих выражениях

Полученное значение предельной нагрузки для каждого пролета балки не зависит от характера и величин нагрузок в остальных пролетах.

Из разобранного примера видно, что расчет статически неопределимой балки по несущей способности оказывается проще, чем расчет по упругой стадии.

Несколько иначе проводится расчет неразрезной балки по несущей способности в тех случаях, когда кроме характера нагрузки в каждом пролете задаются также соотношения между величинами нагрузок в разных пролетах. В этих случаях предельной нагрузкой считается такая, при которой происходит исчерпание несущей способности балки не во всех пролетах, а в одном из ее пролетов.

В качестве примера определим предельную нагрузку для уже рассмотренной четырехпролетной балки (рис. 14.17, а) при следующем заданном соотношении между нагрузками: Из этого соотношения следует, что в предельном состоянии

Используя полученные выражения предельных нагрузок каждого пролета, находим:


Мы начнем с простейшего случая, так называемого чистого изгиба.

Чистый изгиб есть частный случай изгиба, при котором в сечениях балки поперечная сила равна нулю. Чистый изгиб может иметь место только в том случае, когда собственный вес балки настолько мал, что его влиянием можно пренебречь. Для балок на двух опорах примеры нагрузок, вызывающих чистый

изгиб, представлены на рис. 88. На участках этих балок, где Q = 0 и, следовательно, М= const; имеет место чистый изгиб.

Усилия в любом сечении балки при чистом изгибе сводятся к паре сил, плоскость действия которой проходит через ось бал-ки, а момент постоянен.

Напряжения могут быть определены на основании следую-щих соображений.

1. Касательные составляющие усилий по элементарным пло-щадкам в поперечном сечении балки не могут быть приведены к паре сил, плоскость действия которой перпендикулярна к пло-скости сечения. Отсюда следует, что изгибающее усилие в сече-нии является результатом действия по элементарным площадкам

лишь нормальных усилий, а потому при чистом изгибе и напряжения сводятся только к нормальным.

2. Чтобы усилия по элементарным площадкам свелись только к паре сил, среди них должны быть как положительные, так и отрицательные. Поэтому должны существовать как растянутые, так и сжатые волокна балки.

3. Ввиду того, что усилия в различных сечениях одинаковы, то и напряжения в соответственных точках сечений одинаковы.

Рассмотрим какой-либо элемент вблизи поверхности (рис. 89, а). Так как по нижней его грани, совпадающей с по-верхностью балки, силы не приложены, то на ней нет и напря-жений. Поэтому и на верхней грани элемента нет напряжений, так как иначе элемент не находился бы и равновесии, Рассмат-ривая соседний с ним по высоте элемент (рис. 89,б), придем к

Такому же заключению и т. д. Отсюда следует, что по горизон-тальным граням любого элемента напряжения отсутствуют. Рас-сматривая элементы, входящие в состав горизонтального слоя, начиная с элемента у поверхности балки (рис. 90), придем к за-ключению, что и по боковым вертикальным граням любого эле-мента напряжения отсутствуют. Таким образом, напряженное состояние любого элемента (рис. 91,а), а в пределе и волокна, должно быть представлено так, как это показано на рис. 91,б, т. е. оно может быть либо осевым растяжением, либо осевым сжатием.

4. В силу симметрии приложения внешних сил сечение по середине длины балки после деформации должно остаться пло-ским и нормальным к оси балки (рис. 92, а). По этой же причине и сечения в четвертях длины балки тоже остаются плоскими и нормальными к оси балки (рис. 92,б), если только крайние се-чения балки при деформации остаются плоскими и нормальными к оси балки. Аналогичное заключение справедливо и для сечений в восьмых длины балки (рис. 92, в) и т. д. Следовательно, если при изгибе крайние сечения балки остаются плоскими, то и для любого сечения остается

справедли-вым утверждение, что оно после де-формации остается плоским и нор-мальным к оси изогнутой балки. Но в таком случае очевидно, что изменение удлинений волокон балки по ее высоте должно происходить не только непре-рывно, но и монотонно. Если назвать слоем совокупность волокон, имеющих одинаковые удлинения, то из сказан-ного следует, что растянутые и сжатые волокна балки должны располагаться по разные стороны от слоя, в котором удлинения волокон равны нулю. Бу-дем называть волокна, удлинения ко-торых равны нулю, нейтральными; слой, состоящий из нейтральных воло-кон, - нейтральным слоем; линию пе-ресечения нейтрального слоя с плоскостью поперечного сечения балки - нейтральной линией этого сечения. Тогда на основании предыдущих рассуждений можно утверждать, что при чистом изгибе балки в каждом ее сечении имеется нейтральная линия, которая делит это сечение на две части (зоны): зону растяну-тых волокон (растянутую зону) и зону сжатых волокон (сжа-тую зону). Соответственно с этим в точках растянутой зоны се-чения должны действовать нормальные растягивающие напря-жения, в точках сжатой зоны - сжимающие напряжения, а в точках нейтральной линии напряжения равны нулю.

Таким образом, при чистом изгибе балки постоянного се-чения:

1) в сечениях действуют только нормальные напряжения;

2) все сечение может быть разбито на две части (зоны) - растянутую и сжатую; границей зон является нейтральная линия сечения, в точках которой нормальные напряжения равны нулю;

3) любой продольный элемент балки (в пределе любое во-локно) подвергается осевому растяжению или сжатию, так что соседние волокна друг с другом не взаимодействуют;

4) если крайние сечения балки при деформации остаются плоскими и нормальными к оси, то и все ее поперечные сечения остаются плоскими и нормальными к оси изогнутой балки.

Напряженное состояние балки при чистом изгибе

Рас-смотрим элемент балки, подверженной чистому изгибу, заклю-ченный между сечениями m- m и n - n, которые отстоят одно от дру-гого на бесконечно малом расстоя-нии dx (рис. 93). Вследствие по-ложения (4) предыдущего пункта, сечения m- m и n - n, бывшие до деформации параллельными, после изгиба, оставаясь плоскими, будут составлять угол dQ и пересекаться по прямой, проходящей через точ-ку С, которая является центром кривизны нейтрального волокна NN. Тогда заключенная между ними часть АВ волокна, находящегося на расстоянии z от нейтрального во-локна (положительное направление оси z принимаем в сторону выпук-лости балки при изгибе), превра-тится после деформации в дугу А"В".Отрезок нейтрального волокна О1О2, превратившись в дугу О1О2 не изменит своей длины, тогда как волокно АВ получит удлинение:

до деформации

после деформации

где р - радиус кривизны нейтрального волокна.

Поэтому абсолютное удлинение отрезка АВ равно

и относительное удлинение

Так как согласно положению (3) волокно АВ подвергается осевому растяжению, то при упругой деформации

Отсюда видно, что нормальные напряжения по высоте балки распределяются по линейному закону (рис. 94). Так как равно-действующая всех усилий по всем элементарным площадкам се-чения должна равняться нулю, то

откуда, подставляя значение из (5.8), найдем

Но последний интеграл есть статический момент относительно оси Оу, перпендикулярной к плоскости действия изгибающих уси-лий.

Вследствие равен-ства его нулю эта ось должна проходить через центр тяжести О сечения. Тамим образом,нейтраль-ная линия сечения балки есть прямая уу, перпен-дикулярная к плоскости действия изгибающих усилий. Ее называют ней-тральной осью сечения балки. Тогда из (5.8) следует, что напряжения в точках, лежа-щих на одинаковом расстоянии от нейтральной оси, одинаковы.

Случай чистого изгиба, при котором изгибающие усилия действуют только в одной плоскости, вызывая изгиб только в этой плоскости, является плоским чистым изгибом. Если названная плоскость проходит через ось Oz, то момент элементарных уси-лий относительно этой оси должен быть равен нулю, т. е.

Подставляя сюда значение σ из (5.8), находим

Стоящий в левой части этого равенства интеграл, как изве-стно, является центробежным моментом инерции сеченияотноси-тельно осей у и z, так что

Оси, относительно которых центробежный момент инерции сечения равен нулю, называют главными осями инерции этого сечения. Если они, кроме того, проходят через центр тяжести сечения, то их можно назвать главными центральными осями инерции сечения. Таким образом, при плоском чистом изгибе направление плоскости действия изгибающих усилий и нейтраль-ная ось сечения являются главными центральными осями инер-ции последнего. Иными словами, для получения плоского чи-стого изгиба балки нагрузка к ней не может прикладываться произвольно: она должна сводиться к силам, действующим в плоскости, которая проходит через одну из главных центральных осей инерции сечений балки; при этом другая главная централь-ная ось инерции будет являться нейтральной осью сечения.

Как известно, в случае сечения, симметричного относительно какой-либо оси, ось симметрии является одной из главных цент-ральных осей инерции его. Следовательно, в этом частном случае мы заведомо получим чистый изгиб, приложив соответствующие анагрузки в плоскости, проходящей через продольную ось балки я ось симметрии ее сечения. Прямая, перпендикулярная к оси симметрии и проходящая через центр тяжести сечения, является при этом нейтральной осью этого сечения.

Установив положение нейтральной оси, нетрудно найти и ве-личину напряжения в любой точке сечения. В самом деле, так как сумма моментов элементарных усилий относительно нейт-ральной оси уу должна равняться изгибающему моменту, то

откуда, подставляя значение σ из (5.8), найдем

Так как интеграл является. моментом инерции сечения относительно оси уу, то

и из выражения (5.8) получим

Произведение ЕI У называют жесткостью балки при изгибе.

Наибольшее растягивающее и наибольшее по абсолютной величине сжимающее напряжения действуют в точках сечения, для которых абсолютная величина z наибольшая, т. е. в точках, наиболее удаленных от нейтральной оси. При обозначениях, рис. 95 имеем

Величину Jy/h1 называют моментом сопротивления сечения рас-тяжению и обозначают Wyр; аналогично, Jy/h2называют моментом сопротивления сечения сжатию

и обозначают Wyc,так что

и поэтому

Если нейтральная ось является, осью симметрии сечения, то h1 = h2 = h/2 и, следовательно, Wyp = Wyc, так что их различать нет надобности, и пользуются одним обозначением:

называя W y просто моментом сопротивления сечения.Следова-тельно, в случае сечения, симметричного относительно нейтраль-ной оси,

Все приведенные выше выводы получены на основании допу-щения, что поперечные сечения балки, при изгибе остаются пло-скими и нормальными к ее оси (гипотеза плоских сечений). Как было показано, это допущение справедливо только в том случае, когда крайние (концевые) сечения балки при изгибе остаются плоскими. С другой стороны, из гипотезы плоских сечений сле-дует, что элементарные усилия в таких сечениях должны распре-деляться по линейному закону. Поэтому для справедливости по-лученной теории плоского чистого изгиба необходимо, чтобы из-гибающие моменты на концах балки были приложены в виде элементарных сил, распределенных по высоте сечения по линей-ному закону (рис. 96), совпадающему с законом распределения напряжений по высоте сечения балки. Однако на основании принципа Сен-Венана можно утверждать, что изменение способа приложения изгибающих моментов на концах балки вызовет лишь местные деформации, влияние которых скажется лишь на некотором расстоянии от этих концов (приблизительно равном высоте сечения). Сечения же, находящиеся во всей остальной части длины балки, останутся плоскими. Следовательно, изложенная теория плоского чистого изгиба при любом способе приложения изгибающих моментов справедлива только в пределах средней части длины балки, находящейся от ее концов на расстояниях, при-близительно равных высоте сечения. Отсюда ясно, что эта тео-рия заведомо неприменима, если высота сечения превосходит половину длины или пролета балки.

При расчете изгибаемых элементов строительных конструкций на прочность применяется метод расчета по предельным состояниям.

В большинстве случаев основное значение при оценке прочности балок и рам имеют нормальные напряжения в поперечных сечениях. При этом наибольшие нормальные напряжения, действующие в крайних волокнах балки, не должны превышать некоторой допустимой для данного материала величины. В методе расчета по предельным состояниям эта величина принимается равной расчетному сопротивлению R, умноженному на коэффициент условий работы у с.

Условие прочности имеет следующий вид:

Значения R и у с для различных материалов приведены в СНиП по строительным конструкциям.

Для балок из пластичного материала, одинаково сопротивляющегося растяжению и сжатию, целесообразно использовать сечения с двумя осями симметрии. В этом случае условие прочности (7.33) с учетом формулы (7.19) записывается в виде

Иногда по конструктивным соображениям применяются балки с несимметричным сечением типа тавра, разнополочного двутавра и т.п. В этих случаях условие прочности (7.33) с учетом (7.17) записывается в виде

В формулах (7.34) и (7.35) W z и W HM - моменты сопротивления сечения относительно нейтральной оси Oz„ М нб - наибольший по абсолютной величине изгибающий момент от действия расчетных нагрузок, т.е. с учетом коэффициента надежности по нагрузке у^.

Сечение балки, в котором действует наибольший по абсолютной величине изгибающий момент, называется опасным сечением.

При расчете на прочность элементов конструкций, работающих на изгиб, решаются следующие задачи: проверка прочности балки; подбор сечения; определение несущей способности (грузоподъемности) балки, т.е. определение значений нагрузок, при которых наибольшие напряжения в опасном сечении балки не превышают значения y c R.

Решение первой задачи сводится к проверке выполнения условий прочности при известных нагрузках, форме и размерах сечения и свойствах материала.

Решение второй задачи сводится к определению размеров сечения заданной формы при известных нагрузках и свойствах материала. Вначале из условий прочности (7.34) или (7.35) определяется величина требуемого момента сопротивления

а затем устанавливаются размеры сечения.

Для прокатных профилей (двутавры, швеллеры) по величине момента сопротивления подбор сечения производится по сортаменту. Для непрокатных сечений устанавливаются характерные размеры сечения.

При решении задачи по определению грузоподъемности балки вначале из условий прочности (7.34) или (7.35) находится величина наибольшего расчетного изгибающего момента по формуле

Затем изгибающий момент в опасном сечении выражается через приложенные к балке нагрузки и из полученного выражения определяются соответствующие величины нагрузок. Например, для стальной двутавровой балки 130, изображенной на рис. 7.47, при R = 210 МПа, у с = 0,9, W z = 472 см 3 находим

По эпюре изгибающих моментов находим


Рис. 7.47

В балках, нагруженных большими по величине сосредоточенными силами, близко расположенными к опорам (рис. 7.48), изгибающий момент М нб может оказаться сравнительно небольшим, а поперечная сила 0 нб по абсолютной величине может быть значительной. В этих случаях необходимо производить проверку прочности балки по наибольшим касательным напряжениям т нб. Условие прочности по касательным напряжениям можно записать в виде

где R s - расчетное сопротивление материала балки при сдвиге. Значения R s для основных строительных материалов приведены в соответствующих разделах СНиП.

Касательные напряжения могут достигать значительной величины в стенках двутавровых балок, особенно в тонких стенках составных балок.

Расчет на прочность по касательным напряжениям может иметь решающее значение для деревянных балок, так как дерево плохо сопротивляется скалыванию вдоль волокон. Так, например, для сосны расчетное сопротивление растяжению и сжатию при изгибе R = 13 МПа, а при скалывании вдоль волокон R CK = 2,4 МПа. Такой расчет необходим также при оценке прочности элементов соединений составных балок - сварных швов, болтов, заклепок, шпонок и т.п.

Условие прочности на скалывание вдоль волокон для деревянной балки прямоугольного сечения с учетом формулы (7.27) можно записать в виде

Пример 7.15. Для балки, показанной на рис. 7.49, а, построим эпюры Q y и M v подберем сечение балки в виде стального прокатного двутавра и построим эпюры с х и т в сечениях с наибольшими Q y и M z . Коэффициент надежности по нагрузке y f = 1,2, расчетное сопротивление R = 210 МПа = 21 кН/см 2 , коэффициент условий работы у с = 1,0.

Расчет начинаем с определения опорных реакций:

Вычислим значения Q y и M z в характерных сечениях балки.



Поперечные силы в пределах каждого участка балки являются постоянными величинами и имеют скачки в сечениях под силой и на опоре В. Изгибающие моменты изменяются по линейному закону. Эпюры Q y и M z приведены на рис. 7.49, б, в.

Опасным является сечение в середине пролета балки, где изгибающий момент имеет наибольшее значение. Вычислим расчетное значение наибольшего изгибающего момента:

Требуемый момент сопротивления равен

По сортаменту принимаем сечение 127 и выписываем необходимые геометрические характеристики сечения (рис. 7.50, а):



Вычислим значения наибольших нормальных напряжений в опасном сечении балки и проверим ее прочность:

Прочность балки обеспечена.

Касательные напряжения имеют наибольшие значения на участке балки, где действует наибольшая по абсолютной величине поперечная сила (2 нб = 35 кН.

Расчетное значение поперечной силы

Вычислим значения касательных напряжений в стенке двутавра на уровне нейтральной оси и на уровне сопряжения стенки с полками:


Эпюры с х и х, в сечении л: = 2,4 м (справа) приведены на рис. 7.50, б, в.

Знак касательных напряжений принят отрицательным, как соответствующий знаку поперечной силы.

Пример 7.16. Для деревянной балки прямоугольного поперечного сечения (рис. 7.51, а) построим эпюры Q и M z , определим высоту сечения h из условия прочности, приняв R = = 14 МПа, уу= 1,4 и у с = 1,0, и проверим прочность балки на скалывание по нейтральному слою, приняв R CK = 2,4 МПа.

Определим опорные реакции:

Вычислим значения Q v и M z
в характерных сечениях балки.


В пределах второго участка поперечная сила обращается в нуль. Положение этого сечения находим из подобия треугольников на эпюре Q y:

Вычислим экстремальное значение изгибающего момента в этом сечении:

Эпюры Q y и M z приведены на рис. 7.51, б, в.

Опасным является сечение балки, где действует максимальный изгибающий момент. Вычислим расчетное значение изгибающего момента в этом сечении:

Требуемый момент сопротивления сечения

Выразим с помощью формулы (7.20) момент сопротивления через высоту сечения h и приравняем его требуемому моменту сопротивления:

Принимаем прямоугольное сечение 12x18 см. Вычислим геометрические характеристики сечения:

Определим наибольшие нормальные напряжения в опасном сечении балки и проверим ее прочность:

Условие прочности выполняется.

Для проверки прочности балки на скалывание вдоль волокон надо определить значения максимальных касательных напряжений в сечении с наибольшей по абсолютной величине поперечной силой 0 нб = 6 кН. Расчетное значение поперечной силы в этом сечении

Максимальные касательные напряжения в поперечном сечении действуют на уровне нейтральной оси. Согласно закону парности они действуют также в нейтральном слое, стремясь вызвать сдвиг одной части балки относительно другой части.

Используя формулу (7.27), вычислим значение т тах и проверим прочность балки на скалывание:

Условие прочности на скалывание выполняется.

Пример 7.17. Для деревянной балки круглого сечения (рис. 7.52, а) построим эпюры Q y n M z n определим из условия прочности необходимый диаметр сечения. В расчетах примем R = 14 МПа, уу = 1,4 и у с = 1,0.

Определим опорные реакции:

Вычислим значения Q и М 7 в характерных сечениях балки.


Эпюры Q y и M z приведены на рис. 7.52, б, в. Опасным является сечение на опоре В с наибольшим по абсолютной величине изгибающим моментом М нб = 4 кНм. Расчетное значение изгибающего момента в этом сечении

Вычислим требуемый момент сопротивления сечения:

Используя формулу (7.21) для момента сопротивления круглого сечения, найдем требуемый диаметр:

Примем D= 16 см и определим наибольшие нормальные напряжения в балке:


Пример 7.18. Определим грузоподъемность балки коробчатого сечения 120x180x10 мм, нагруженной согласно схеме на рис. 7.53, а. Построим эпюры с х и т в опасном сечении. Материал балки - сталь марки ВСтЗ, R = 210 МПа = 21 кН/см 2 , У/= U, Ус = °’ 9 -

Эпюры Q y и M z приведены на рис. 7.53, а.

Опасным является сечение балки вблизи заделки, где действует наибольший по абсолютной величине изгибающий момент М нб - Р1 = 3,2 Р.

Вычислим момент инерции и момент сопротивления коробчатого сечения:

Учитывая формулу (7.37) и полученное значение для Л/ нб, определим расчетное значение силы Р:

Нормативное значение силы

Наибольшие нормальные напряжения в балке от действия расчетной силы

Вычислим статический момент половины сечения ^1/2 и статический момент площади поперечного сечения полки S n относительно нейтральной оси:

Касательные напряжения на уровне нейтральной оси и на уровне сопряжения полки со стенками (рис. 7.53, б) равны:


Эпюры о х и т ух в сечении вблизи заделки приведены на рис. 7.53, в, г.

Для консольной балки, нагруженной распределенной нагрузкой интенсивностью кН/м и сосредоточенным моментом кН·м (рис. 3.12), требуется: построить эпюры перерезывающих сил и изгибающих моментов , подобрать балку круглого поперечного сечения при допускаемом нормальном напряжении кН/см2 и проверить прочность балки по касательным напряжениям при допускаемом касательном напряжении кН/см2. Размеры балки м; м; м.

Расчетная схема для задачи на прямой поперечный изгиб

Рис. 3.12

Решение задачи "прямой поперечный изгиб"

Определяем опорные реакции

Горизонтальная реакция в заделке равна нулю, поскольку внешние нагрузки в направлении оси z на балку не действуют.

Выбираем направления остальных реактивных усилий, возникающих в заделке: вертикальную реакцию направим, например, вниз, а момент – по ходу часовой стрелки. Их значения определяем из уравнений статики:

Составляя эти уравнения, считаем момент положительным при вращении против хода часовой стрелки, а проекцию силы положительной, если ее направление совпадает с положительным направлением оси y.

Из первого уравнения находим момент в заделке :

Из второго уравнения – вертикальную реакцию :

Полученные нами положительные значения для момента и вертикальной реакции в заделке свидетельствуют о том, что мы угадали их направления.

В соответствии с характером закрепления и нагружения балки, разбиваем ее длину на два участка. По границам каждого из этих участков наметим четыре поперечных сечения (см. рис. 3.12), в которых мы и будем методом сечений (РОЗУ) вычислять значения перерезывающих сил и изгибающих моментов.

Сечение 1. Отбросим мысленно правую часть балки. Заменим ее действие на оставшуюся левую часть перерезывающей силой и изгибающим моментом . Для удобства вычисления их значений закроем отброшенную нами правую часть балки листком бумаги, совмещая левый край листка с рассматриваемым сечением.

Напомним, что перерезывающая сила, возникающая в любом поперечном сечении, должна уравновесить все внешние силы (активные и реактивные), которые действуют на рассматриваемую (то есть видимую) нами часть балки. Поэтому перерезывающая сила должна быть равна алгебраической сумме всех сил, которые мы видим.

Приведем и правило знаков для перерезывающей силы: внешняя сила, действующая на рассматриваемую часть балки и стремящаяся «повернуть» эту часть относительно сечения по ходу часовой стрелки, вызывает в сечении положительную перерезывающую силу. Такая внешняя сила входит в алгебраическую сумму для определения со знаком «плюс».

В нашем случае мы видим только реакцию опоры , которая вращает видимую нами часть балки относительно первого сечения (относительно края листка бумаги) против хода часовой стрелки. Поэтому

кН.

Изгибающий момент в любом сечении должен уравновесить момент, создаваемый видимыми нами внешними усилиями, относительно рассматриваемого сечения. Следовательно, он равен алгебраической сумме моментов всех усилий, которые действуют на рассматриваемую нами часть балки, относительно рассматриваемого сечения (иными словами, относительно края листка бумаги). При этом внешняя нагрузка, изгибающая рассматриваемую часть балки выпуклостью вниз, вызывает в сечении положительный изгибающий момент. И момент, создаваемый такой нагрузкой, входит в алгебраическую сумму для определения со знаком «плюс».

Мы видим два усилия: реакцию и момент в заделке . Однако у силы плечо относительно сечения 1 равно нулю. Поэтому

кН·м.

Знак «плюс» нами взят потому, что реактивный момент изгибает видимую нами часть балки выпуклостью вниз.

Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь, в отличие от первого сечения, у силы появилось плечо: м. Поэтому

кН; кН·м.

Сечение 3. Закрывая правую часть балки, найдем

кН;

Сечение 4. Закроем листком левую часть балки. Тогда

кН·м.

кН·м.

.

По найденным значениям строим эпюры перерезывающих сил (рис. 3.12, б) и изгибающих моментов (рис. 3.12, в).

Под незагруженными участками эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по наклонной прямой вверх. Под опорной реакцией на эпюре имеется скачок вниз на величину этой реакции, то есть на 40 кН.

На эпюре изгибающих моментов мы видим излом под опорной реакцией . Угол излома направлен навстречу реакции опоры. Под распределенной нагрузкой q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. В сечении 6 на эпюре – экстремум, поскольку эпюра перерезывающей силы в этом месте проходит здесь через нулевое значение.

Определяем требуемый диаметр поперечного сечения балки

Условие прочности по нормальным напряжениям имеет вид:

,

где – момент сопротивления балки при изгибе. Для балки круглого поперечного сечения он равен:

.

Наибольший по абсолютному значению изгибающий момент возникает в третьем сечении балки: кН·см.

Тогда требуемый диаметр балки определяется по формуле

см.

Принимаем мм. Тогда

кН/см2 кН/см2.

«Перенапряжение» составляет

,

что допускается.

Проверяем прочность балки по наибольшим касательным напряжениям

Наибольшие касательные напряжения, возникающие в поперечном сечении балки круглого сечения, вычисляются по формуле

,

где – площадь поперечного сечения.

Согласно эпюре , наибольшее по алгебраической величине значение перерезывающей силы равно кН. Тогда

кН/см2 кН/см2,

то есть условие прочности и по касательным напряжениям выполняется, причем, с большим запасом.

Пример решения задачи "прямой поперечный изгиб" №2

Условие примера задачи на прямой поперечный изгиб

Для шарнирно опертой балки, нагруженной распределенной нагрузкой интенсивностью кН/м, сосредоточенной силой кН и сосредоточенным моментом кН·м (рис. 3.13), требуется построить эпюры перерезывающих сил и изгибающих моментов и подобрать балку двутаврового поперечного сечения при допускаемом нормальном напряжении кН/см2 и допускаемом касательном напряжении кН/см2. Пролет балки м.

Пример задачи на прямой изгиб – расчетная схема


Рис. 3.13

Решение примера задачи на прямой изгиб

Определяем опорные реакции

Для заданной шарнирно опертой балки необходимо найти три опорные реакции: , и . Поскольку на балку действуют только вертикальные нагрузки, перпендикулярные к ее оси, горизонтальная реакция неподвижной шарнирной опоры A равна нулю: .

Направления вертикальных реакций и выбираем произвольно. Направим, например, обе вертикальные реакции вверх. Для вычисления их значений составим два уравнения статики:

Напомним, что равнодействующая погонной нагрузки , равномерно распределенной на участке длиной l, равна , то есть равна площади эпюры этой нагрузки и приложена она в центре тяжести этой эпюры, то есть посредине длины.

;

кН.

Делаем проверку: .

Напомним, что силы, направление которых совпадает с положительным направлением оси y, проектируются (проецируются) на эту ось со знаком плюс:

то есть верно.

Строим эпюры перерезывающих сил и изгибающих моментов

Разбиваем длину балки на отдельные участки. Границами этих участков являются точки приложения сосредоточенных усилий (активных и/или реактивных), а также точки, соответствующие началу и окончанию действия распределенной нагрузки. Таких участков в нашей задаче получается три. По границам этих участков наметим шесть поперечных сечений, в которых мы и будем вычислять значения перерезывающих сил и изгибающих моментов (рис. 3.13, а).

Сечение 1. Отбросим мысленно правую часть балки. Для удобства вычисления перерезывающей силы и изгибающего момента , возникающих в этом сечении, закроем отброшенную нами часть балки листком бумаги, совмещая левый край листка бумаги с самим сечением.

Перерезывающая сила в сечении балки равна алгебраической сумме всех внешних сил (активных и реактивных), которые мы видим. В данном случае мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому

кН.

Знак «плюс» взят потому, что сила вращает видимую нами часть балки относительно первого сечения (края листка бумаги) по ходу часовой стрелки.

Изгибающий момент в сечении балки равен алгебраической сумме моментов всех усилий, которые мы видим, относительно рассматриваемого сечения (то есть относительно края листка бумаги). Мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Однако у силы плечо равно нулю. Равнодействующая погонной нагрузки также равна нулю. Поэтому

Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь мы видим реакцию и нагрузку q, действующую на участке длиной . Равнодействующая погонной нагрузки равна . Она приложена посредине участка длиной . Поэтому

Напомним, что при определении знака изгибающего момента мы мысленно освобождаем видимую нами часть балки от всех фактических опорных закреплений и представляем ее как бы защемленной в рассматриваемом сечении (то есть левый край листка бумаги нами мысленно представляется жесткой заделкой).

Сечение 3. Закроем правую часть. Получим

Сечение 4. Закрываем листком правую часть балки. Тогда

Теперь, для контроля правильности вычислений, закроем листком бумаги левую часть балки. Мы видим сосредоточенную силу P, реакцию правой опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому

кН·м.

То есть все верно.

Сечение 5. По-прежнему закроем левую часть балки. Будем иметь

кН;

кН·м.

Сечение 6. Опять закроем левую часть балки. Получим

кН;

По найденным значениям строим эпюры перерезывающих сил (рис. 3.13, б) и изгибающих моментов (рис. 3.13, в).

Убеждаемся в том, что под незагруженным участком эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по прямой, имеющей наклон вниз. На эпюре имеется три скачка: под реакцией – вверх на 37,5 кН, под реакцией – вверх на 132,5 кН и под силой P – вниз на 50 кН.

На эпюре изгибающих моментов мы видим изломы под сосредоточенной силой P и под опорными реакциями. Углы изломов направлены навстречу этим силам. Под распределенной нагрузкой интенсивностью q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. Под сосредоточенным моментом – скачок на 60 кН ·м, то есть на величину самого момента. В сечении 7 на эпюре – экстремум, поскольку эпюра перерезывающей силы для этого сечения проходит через нулевое значение (). Определим расстояние от сечения 7 до левой опоры.

Loading...Loading...