Дан алгоритм нахождения корней квадратного уравнения. Составим алгоритм решения квадратного уравнения

1.Найти дискриминант D по формуле D= -4ac .

2.Если D<0, то квадратное уравнение не имеет корней.

3.Если D=0, то уравнение имеет один корень:

4.Если D>0, то уравнение имеет два корня:

Теперь приступим к решению нашего уравнения 3 -10х+3=0,

где =3, b=-10 а с=3.

Находим дискриминант:

D= -4*3*3=64

Поскольку D>0, то у данного уравнения два корня. Находим их:

; .

Таким образом, корнями многочлена f(x)=3 -10+3 будут являться числа 3 и .

Схема Горнера

Схема Горнера (или правило Горнера, метод Горнера) - алгоритм вычисления значения многочлена, записанного в виде суммы полиномов (одночленов), при заданном значении переменной. Она, в свою очередь, и помогает нам выяснить, является ли число корнем данного многочлена или нет.

Для начала рассмотрим как делится многочлен f(x )на двучлен g(x) .

Это можно записать следующим образом: f(x):g(x)=n(x), где f(x)- делимое, g(x)- делитель а n(x)- частное.

Но в случае, когда f(x) не делится нацело на g(x) имеет место общая запись выражения

При это степень r(x)< deg s(x), в таком случае можно сказать, что делится на с остатком .

Рассмотрим деление многочлена на двучлен. Пусть

,

Получаем

Где r- число т.к. степень r должна быть меньше степени (x-c).

Умножим s(x) на и получим

Таким образом, при делении на двучлен можно определять коэффициенты частного по полученным формулам. Подобный способ определения коэффициентов и называется схемой Горнера.

...
+ ...
c ... r

Теперь рассмотрим несколько примеров применения схемы Горнера.

Пример . Выполнить деление многочлена f(x)= на x+3.

Решение. В начале необходимо записать (x+3) в виде (x- (-3)), поскольку в самой схеме будет участвовать именно -3.В верхней строке мы будем записывать коэффициенты, в нижней- результат действий.


f(x )=(x-2)(1 )+16.

Нахождение корней по схеме Горнера. Виды корней

По схеме Горнера можно находить целочисленные корни многочлена f(x ). Рассмотрим это на примере.

Пример . Найти все целочисленные корни многочлена f(x )= , при помощи схемы Горнера.

Решение. Коэффициенты данного многочлена- целые числа. Коэффициент перед старшей степенью(в нашем случае перед ) равен одному. Поэтому, целочисленные корни многочлена мы будем искать среди делителей свободного члена (у нас это 15), это числа:

Начнем проверку с числа 1.

Таблица №1

-21 -20
+ -18 -38
-18 -38

Из полученной таблицы видно, что при =1 многочлен многочлена f(x )= , мы получили остаток r=192, а не 0, из этого следует, что единица не является корнем. Поэтому продолжим проверку при =-1. Для этого мы не будем создавать новую таблицу, а продолжим в старой, а уже не нужные данные зачеркнем.

Таблица №2

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22

Как мы видим из таблицы, в последней ячейке получился нуль, а это значит, что r=0. Следовательно? число -1 является корнем данного многочлена. Поделив наш многочлен многочлена f(x )= на ()=x+1 мы получили многочлен

f(x )=(x+1)(),

коэффициенты для которого мы взяли из третей стоки таблицы № 2.

Также мы можем сделать равносильную запись

(x+1)(). Пометим его (1)

Теперь необходимо продолжить поиск целочисленных корней, но только сейчас мы уже будем искать корни многочлена . Искать эти корни мы будем среди свободного члена многочлена, числа 45.

Еще раз проверим число -1.

Таблица №3

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22

Таким образом, число -1 является корнем многочлена , его можно записать в виде

С учетом равенства (2) мы можем записать равенство (1) в следующем виде

Теперь ищем корни для многочлена , опять же среди делителей свободного члена. Вновь проверим число -1.

Таблица №4

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22
+ -1 -45
-1 -1 -21

По таблице мы видим, что число -1 является корнем многочлена .

С учетом (3*) мы можем переписать равенство (2*) как:

Теперь будем искать корень для . Вновь смотрим делители свободного члена. Начнем проверку вновь с числа -1.

Таблица №5

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22
+ -1 -45
-1 -1 -21
+ -1
-1 -2 -19

У нас получился остаток не равный нулю, а это значит, что число -1 не является корнем для многочлена . Проверим следующее число 1.

Таблица №6

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22
+ -1 -45
-1 -1 -21
+ -1
-1 -2 -19
+ -21
-21

И мы видим, что опять не подходит, остаток r(x)= 24.Берем новое число.

Проверим число 3.

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22
+ -1 -45
-1 -1 -21
+ -1
-1 -2 -19
+ -21
-21
+ -45
-15

Таблица №7

r(x)= 0, это значит, что число 3 является корнем многочлена , этот многочлен мы можем записать как:

=(x-3)()

Учитывая получившееся выражение, мы можем записать равенство (5) в следующем виде:

(x-3)() (6)

Проверим теперь для многочлена

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22
+ -1 -45
-1 -1 -21
+ -1
-1 -2 -19
+ -21
-21
+ -45
-15
+

Таблица №8

Исходя из таблицы, мы видим, что число 3 это корень многочлена . Теперь запишем следующее:

Запишем равенство (5*), с учетом получившегося выражения, следующим образом:

(x-3)()= = .

Найдем корень для двучлена среди делителей свободного члена.

Возьмем число 5

Таблица №9

-21 -20
+ -18 -38
-18 -38
+ -1 -1 -2 -69 -45
-1 -22
+ -1 -24 -45
-1 -22
+ -1 -45
-1 -1 -21
+ -1
-1 -2 -19
+ -21
-21
+ -45
-15
+
+ -5
-5

r(x)=0, следовательно, 5 является корнем двучлена .

Таким образом, мы можем записать

Решением данного примера будет являться таблица№8.

Как видно из таблицы, числа -1;3;5 – корни многочлена.

Теперь перейдем непосредственно к видам корней .

1- корень третьей степени, поскольку скобка (x+1) находится в третьей степени;

3- корень второй степени, скобка(x-3) во второй степени;

5- корень первой степени или, другими словами, простой.

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

В термине «квадратное уравнение» ключевым является слово «квадратное». Это значит, что в уравнении обязательно должна присутствовать переменная (тот самый икс) в квадрате, и при этом не должно быть иксов в третьей (и большей) степени.

Решение многих уравнений сводится к решению именно квадратных уравнений.

Давай научимся определять, что перед нами квадратное уравнение, а не какое-нибудь другое.

Пример 1.

Избавимся от знаменателя и домножим каждый член уравнения на

Перенесем все в левую часть и расположим члены в порядке убывания степеней икса

Теперь можно с уверенностью сказать, что данное уравнение является квадратным!

Пример 2.

Домножим левую и правую часть на:

Это уравнение, хотя в нем изначально был, не является квадратным!

Пример 3.

Домножим все на:

Страшно? Четвертая и вторая степени… Однако, если произвести замену, то мы увидим, что перед нами простое квадратное уравнение:

Пример 4.

Вроде бы есть, но давай посмотрим внимательнее. Перенесем все в левую часть:

Видишь, сократился - и теперь это простое линейное уравнение!

Теперь попробуй сам определить, какие из следующий уравнений являются квадратными, а какие нет:

Примеры:

Ответы:

  1. квадратное;
  2. квадратное;
  3. не квадратное;
  4. не квадратное;
  5. не квадратное;
  6. квадратное;
  7. не квадратное;
  8. квадратное.

Математики условно делят все квадратные уравнения на вида:

  • Полные квадратные уравнения - уравнения, в которых коэффициенты и, а также свободный член с не равны нулю (как в примере). Кроме того, среди полных квадратных уравнений выделяют приведенные - это уравнения, в которых коэффициент (уравнение из примера один является не только полным, но еще и приведенным!)
  • Неполные квадратные уравнения - уравнения, в которых коэффициент и или свободный член с равны нулю:

    Неполные они, потому что в них не хватает какого-то элемента. Но в уравнении всегда должен присутствовать икс в квадрате!!! Иначе это будет уже не квадратное, а какое-то другое уравнение.

Зачем придумали такое деление? Казалось бы, есть икс в квадрате, и ладно. Такое деление обусловлено методами решения. Рассмотрим каждый из них подробнее.

Решение неполных квадратных уравнений

Для начала остановимся на решении неполных квадратных уравнений - они гораздо проще!

Неполные квадратные уравнения бывают типов:

  1. , в этом уравнении коэффициент равен.
  2. , в этом уравнении свободный член равен.
  3. , в этом уравнении коэффициент и свободный член равны.

1. и. Поскольку мы знаем, как извлекать квадратный корень, то давайте выразим из этого уравнения

Выражение может быть как отрицательным, так и положительным. Число, возведенное в квадрат, не может быть отрицательным, ведь при перемножении двух отрицательных или двух положительных чисел - результатом всегда будет положительное число, так что: если, то уравнение не имеет решений.

А если, то получаем два корня. Эти формулы не нужно запоминать. Главное, ты должен знать и помнить всегда, что не может быть меньше.

Давай попробуем решить несколько примеров.

Пример 5:

Решите уравнение

Теперь осталось извлечь корень из левой и правой части. Ведь ты помнишь как извлекать корни?

Ответ:

Никогда не забывай про корни с отрицательным знаком!!!

Пример 6:

Решите уравнение

Ответ:

Пример 7:

Решите уравнение

Ой! Квадрат числа не может быть отрицательным, а значит у уравнения

нет корней!

Для таких уравнений, в которых нет корней, математики придумали специальный значок - (пустое множество). И ответ можно записать так:

Ответ:

Таким образом, данное квадратное уравнение имеет два корня. Здесь нет никаких ограничений, так как корень мы не извлекали.
Пример 8:

Решите уравнение

Вынесем общий множитель за скобки:

Таким образом,

У этого уравнения два корня.

Ответ:

Самый простой тип неполных квадратных уравнений (хотя они все простые, не так ли?). Очевидно, что данное уравнение всегда имеет только один корень:

Здесь обойдемся без примеров.

Решение полных квадратных уравнений

Напоминаем, что полное квадратное уравнение, это уравнение вида уравнение где

Решение полных квадратных уравнений немного сложнее (совсем чуть-чуть), чем приведенных.

Запомни, любое квадратное уравнение можно решить с помощью дискриминанта! Даже неполное.

Остальные способы помогут сделать это быстрее, но если у тебя возникают проблемы с квадратными уравнениями, для начала освой решение с помощью дискриминанта.

1. Решение квадратных уравнений с помощью дискриминанта.

Решение квадратных уравнений этим способом очень простое, главное запомнить последовательность действий и пару формул.

Если, то уравнение имеет корняНужно особое внимание обратить на шаг. Дискриминант () указывает нам на количество корней уравнения.

  • Если, то формула на шаге сократится до. Таким образом, уравнение будет иметь всего корень.
  • Если, то мы не сможем извлечь корень из дискриминанта на шаге. Это указывает на то, что уравнение не имеет корней.

Вернемся к нашим уравнениям и рассмотрим несколько примеров.

Пример 9:

Решите уравнение

Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

А значит уравнение имеет два корня.

Шаг 3.

Ответ:

Пример 10:

Решите уравнение

Уравнение представлено в стандартном виде, поэтому Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

А значит уравнение имеет один корень.

Ответ:

Пример 11:

Решите уравнение

Уравнение представлено в стандартном виде, поэтому Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

Азначит мы не сможем извлечь корень из дискриминанта. Корней уравнения не существует.

Теперь мы знаем, как правильно записывать такие ответы.

Ответ: Корней нет

2. Решение квадратных уравнений с помощью теоремы Виета.

Если ты помнишь, то есть такой тип уравнений, которые называются приведенными (когда коэффициент а равен):

Такие уравнения очень просто решать, используя теорему Виета:

Сумма корней приведенного квадратного уравнения равна, а произведение корней равно.

Пример 12:

Решите уравнение

Это уравнение подходит для решения с использованием теоремы Виета, т.к. .

Сумма корней уравнения равна, т.е. получаем первое уравнение:

А произведение равно:

Составим и решим систему:

  • и. Сумма равна;
  • и. Сумма равна;
  • и. Сумма равна.

и являются решением системы:

Ответ: ; .

Пример 13:

Решите уравнение

Ответ:

Пример 14:

Решите уравнение

Уравнение приведенное, а значит:

Ответ:

КВАДРАТНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

Что такое квадратное уравнение?

Другими словами, квадратное уравнение - это уравнение вида, где - неизвестное, - некоторые числа, причем.

Число называют старшим или первым коэффициентом квадратного уравнения, - вторым коэффициентом , а - свободным членом .

Почему? Потому что если, уравнение сразу станет линейным, т.к. пропадет.

При этом и могут быть равны нулю. В этом стулчае уравнение называют неполным. Если же все слагаемые на месте, то есть, уравнение - полное.

Решения различных типов квадратных уравнений

Методы решения неполных квадратных уравнений:

Для начала разберем методы решений неполных квадратных уравнений - они проще.

Можно выделить типа таких уравнений:

I. , в этом уравнении коэффициент и свободный член равны.

II. , в этом уравнении коэффициент равен.

III. , в этом уравнении свободный член равен.

Теперь рассмотрим решение каждого из этих подтипов.

Очевидно, что данное уравнение всегда имеет только один корень:

Число, возведенное в квадрат, не может быть отрицательным, ведь при перемножении двух отрицательных или двух положительных чисел результатом всегда будет положительное число. Поэтому:

если, то уравнение не имеет решений;

если, имеем учаем два корня

Эти формулы не нужно запоминать. Главное помнить, что не может быть меньше.

Примеры:

Решения:

Ответ:

Никогда не забывай про корни с отрицательным знаком!

Квадрат числа не может быть отрицательным, а значит у уравнения

нет корней.

Чтобы коротко записать, что у задачи нет решений, используем значок пустого множества.

Ответ:

Итак, это уравнение имеет два корня: и.

Ответ:

Вынесем общим множитель за скобки:

Произведение равно нулю, если хотя бы один из множителей равен нулю. А это значит, что уравнение имеет решение, когда:

Итак, данное квадратное уравнение имеет два корня: и.

Пример:

Решите уравнение.

Решение:

Разложим левую часть уравнения на множители и найдем корни:

Ответ:

Методы решения полных квадратных уравнений:

1. Дискриминант

Решать квадратные уравнения этим способом легко, главное запомнить последовательность действий и пару формул. Запомни, любое квадратное уравнение можно решить с помощью дискриминанта! Даже неполное.

Ты заметил корень из дискриминанта в формуле для корней? Но ведь дискриминант может быть отрицательным. Что делать? Нужно особое внимание обратить на шаг 2. Дискриминант указывает нам на количество корней уравнения.

  • Если, то уравнение имеет корня:
  • Если, то уравнение имеет одинаковых корня, а по сути, один корень:

    Такие корни называются двукратными.

  • Если, то корень из дискриминанта не извлекается. Это указывает на то, что уравнение не имеет корней.

Почему возможно разное количество корней? Обратимся к геометрическому смыслу квадратного уравнения. График функции является параболой:

В частном случае, которым является квадратное уравнение, . А это значит, что корни квадратного уравнения, это точки пересечения с осью абсцисс (ось). Парабола может вообще не пересекать ось, либо пересекать ее в одной (когда вершина параболы лежит на оси) или двух точках.

Кроме того, за направление ветвей параболы отвечает коэффициент. Если, то ветви параболы направлены вверх, а если - то вниз.

Примеры:

Решения:

Ответ:

Ответ: .

Ответ:

А значит, решений нет.

Ответ: .

2. Теорема Виета

Использовать теорему Виета очень легко: нужно всего лишь подобрать такую пару чисел, произведение которых равно свободному члену уравнения, а сумма - второму коэффициенту, взятому с обратным знаком.

Важно помнить, что теорему Виета можно применять только в приведенных квадратных уравнениях ().

Рассмотрим несколько примеров:

Пример №1:

Решите уравнение.

Решение:

Это уравнение подходит для решения с использованием теоремы Виета, т.к. . Остальные коэффициенты: ; .

Сумма корней уравнения равна:

А произведение равно:

Подберем такие пары чисел, произведение которых равно, и проверим, равна ли их сумма:

  • и. Сумма равна;
  • и. Сумма равна;
  • и. Сумма равна.

и являются решением системы:

Таким образом, и - корни нашего уравнения.

Ответ: ; .

Пример №2:

Решение:

Подберем такие пары чисел, которые в произведении дают, а затем проверим, равна ли их сумма:

и: в сумме дают.

и: в сумме дают. Чтобы получить, достаточно просто поменять знаки предполагаемых корней: и, ведь произведение.

Ответ:

Пример №3:

Решение:

Свободный член уравнения отрицательный, а значит и произведение корней - отрицательное число. Это возможно только если один из корней отрицательный, а другой - положительный. Поэтому сумма корней равна разности их модулей .

Подберем такие пары чисел, которые в произведении дают, и разность которых равна:

и: их разность равна - не подходит;

и: - не подходит;

и: - не подходит;

и: - подходит. Остается только вспомнить, что один из корней отрицательный. Так как их сумма должна равняться, то отрицательным должен быть меньший по модулю корень: . Проверяем:

Ответ:

Пример №4:

Решите уравнение.

Решение:

Уравнение приведенное, а значит:

Свободный член отрицателен, а значит и произведение корней отрицательно. А это возможно только тогда, когда один корень уравнения отрицателен, а другой положителен.

Подберем такие пары чисел, произведение которых равно, а затем определим, какой корней должен иметь отрицательный знак:

Очевидно, что под первое условие подходят только корни и:

Ответ:

Пример №5:

Решите уравнение.

Решение:

Уравнение приведенное, а значит:

Сумма корней отрицательна, а это значит что, по крайней мере, один из корней отрицателен. Но поскольку их произведение положительно, то значит оба корня со знаком минус.

Подберем такие пары чисел, произведение которых равно:

Очевидно, что корнями являются числа и.

Ответ:

Согласись, это очень удобно - придумывать корни устно, вместо того, чтобы считать этот противный дискриминант. Старайся использовать теорему Виета как можно чаще.

Но теорема Виета нужна для того, чтобы облегчить и ускорить нахождение корней. Чтобы тебе было выгодно ее использовать, ты должен довести действия до автоматизма. А для этого порешай-ка еще пяток примеров. Но не жульничай: дискриминант использовать нельзя! Только теорему Виета:

Решения заданий для самостоятельной работы:

Задание 1. {{x}^{2}}-8x+12=0

По теореме Виета:

Как обычно, начинаем подбор с произведения:

Не подходит, так как сумма;

: сумма - то что надо.

Ответ: ; .

Задание 2.

И снова наша любимая теорема Виета : в сумме должно получиться, а произведение равно.

Но так как должно быть не, а, меняем знаки корней: и (в сумме).

Ответ: ; .

Задание 3.

Хм… А где тут что?

Надо перенести все слагаемые в одну часть:

Сумма корней равна, произведение.

Так, стоп! Уравнение-то не приведенное. Но теорема Виета применима только в приведенных уравнениях. Так что сперва нужно уравнение привести. Если привести не получается, бросай эту затею и решай другим способом (например, через дискриминант). Напомню, что привести квадратное уравнение - значит сделать старший коэффициент равным:

Отлично. Тогда сумма корней равна, а произведение.

Тут подобрать проще простого: ведь - простое число (извини за тавтологию).

Ответ: ; .

Задание 4.

Свободный член отрицательный. Что в этом особенного? А то, что корни будут разных знаков. И теперь во время подбора проверяем не сумму корней, а разность их модулей: эта разность равна, а произведение.

Итак, корни равны и, но один из них с минусом. Теорема Виета говорит нам, что сумма корней равна второму коэффициенту с обратным знаком, то есть. Значит, минус будет у меньшего корня: и, так как.

Ответ: ; .

Задание 5.

Что нужно сделать первым делом? Правильно, привести уравнение:

Снова: подбираем множители числа, и их разность должна равняться:

Корни равны и, но один из них с минусом. Какой? Их сумма должна быть равна, значит, с минусом будет больший корень.

Ответ: ; .

Подведу итог:
  1. Теорема Виета используется только в приведенных квадратных уравнениях.
  2. Используя теорему Виета можно найти корни подбором, устно.
  3. Если уравнение не приводится или не нашлось ни одной подходящей пары множителей свободного члена, значит целых корней нет, и нужно решать другим способом (например, через дискриминант).

3. Метод выделения полного квадрата

Если все слагаемые, содержащие неизвестное, представить в виде слагаемых из формул сокращенного умножения - квадрата суммы или разности - то после замены переменных можно представить уравнение в виде неполного квадратного уравнения типа.

Например:

Пример 1:

Решите уравнение: .

Решение:

Ответ:

Пример 2:

Решите уравнение: .

Решение:

Ответ:

В общем виде преобразование будет выглядеть так:

Отсюда следует: .

Ничего не напоминает? Это же дискриминант! Вот именно, формулу дискриминанта так и получили.

КВАДРАТНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

Квадратное уравнение - это уравнение вида, где - неизвестное, - коэффициенты квадратного уравнения, - свободный член.

Полное квадратное уравнение - уравнение, в котором коэффициенты, не равны нулю.

Приведенное квадратное уравнение - уравнение, в котором коэффициент, то есть: .

Неполное квадратное уравнение - уравнение, в котором коэффициент и или свободный член с равны нулю:

  • если коэффициент, уравнение имеет вид: ,
  • если свободный член, уравнение имеет вид: ,
  • если и, уравнение имеет вид: .

1. Алгоритм решения неполных квадратных уравнений

1.1. Неполное квадратное уравнение вида, где, :

1) Выразим неизвестное: ,

2) Проверяем знак выражения:

  • если, то уравнение не имеет решений,
  • если, то уравнение имеет два корня.

1.2. Неполное квадратное уравнение вида, где, :

1) Вынесем общим множитель за скобки: ,

2) Произведение равно нулю, если хотя бы один из множителей равен нулю. Следовательно, уравнение имеет два корня:

1.3. Неполное квадратное уравнение вида, где:

Данное уравнение всегда имеет только один корень: .

2. Алгоритм решения полных квадратных уравнений вида где

2.1. Решение с помощью дискриминанта

1) Приведем уравнение к стандартному виду: ,

2) Вычислим дискриминант по формуле: , который указывает на количество корней уравнения:

3) Найдем корни уравнения:

  • если, то уравнение имеет корня, которые находятся по формуле:
  • если, то уравнение имеет корень, который находится по формуле:
  • если, то уравнение не имеет корней.

2.2. Решение с помощью теоремы Виета

Сумма корней приведенного квадратного уравнения (уравнения вида, где) равна, а произведение корней равно, т.е. , а.

2.3. Решение методом выделения полного квадрата

Если квадратное уравнение вида имеет корни, то его можно записать в виде: .

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Слайд 2

Квадратные уравненияцикл уроков алгебры в 8 классепо учебнику А.Г. Мордковича

Учитель МБОУ Грушевской ООШ Киреева Т.А.

Слайд 3

Цели: ввести понятия квадратного уравнения, корня квадратного уравнения; показать решения квадратных уравнений; формировать умение решать квадратные уравнения; показать способ решения полных квадратных уравнений с использованием формулы корней квадратного уравнения.

Слайд 4

Слайд 5

Немного из истории Квадратные уравнения в ДревнемВавилоне. Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей веры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения.

Слайд 6

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводя только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Слайд 7

Определение 1. Квадратным уравнением называют уравнение вида где коэффициенты а, в, с – любые действительные числа, причем Многочлен называют квадратным трехчленом. а – первый, или старший коэффициент в – второй коэффициент с – свободный член

Слайд 8

Определение 2. Квадратное уравнение называют приведенным, если его старший коэффициент равен 1; квадратное уравнение называют неприведенным, если старший коэффициент отличен от 1. Пример. 2 - 5 + 3 = 0 - неприведенное квадратное уравнение - приведенное квадратное уравнение

Слайд 9

Определение 3. Полное квадратное уравнение – это квадратное уравнение, в котором присутствуют все три слагаемых. а + вх + с = 0 Неполное квадратное уравнение – это уравнение, в котором присутствуют не все три слагаемых; это уравнение, у которого хотя бы один из коэффициентов в, с равен нулю.

Слайд 10

Способы решения неполных квадратных уравнений.

Слайд 11

Решить задания № 24.16 (a,б) Решите уравнение: или Ответ. или Ответ.

Слайд 12

Определение 4 Корнем квадратного уравнения Называют всякое значение переменной х, при котором квадратный трёхчлен Обращается в нуль; такое значение переменной х называют также корнем квадратного трехчлена Решить квадратное уравнение – значит найти все его корни или установить, что корней нет.

Слайд 13

Дискриминант квадратного уравнения D 0 D=0 Уравнение не имеет корней Уравнение имеет два корня Уравнение имеет один корень Формулы корней квадратного уравнения

Слайд 14

D>0 квадратное уравнение имеет два корня, которые находятся по формулам Пример. Решить уравнение Решение. а = 3, в = 8, с = -11, Ответ: 1; -3

Слайд 15

Алгоритм решения квадратного уравнения 1. Вычислить дискриминант D по формуле D= 2. Если D 0, то квадратное уравнение имеет два корня.

Программирование в Lazarus для школьников.

Занятие № 12.

Решение квадратного уравнения.

Матыцин Игорь Владимирович

Учитель математики и информатики

МБОУ СОШ с. Девица

Цель: написать программу для решения квадратного уравнения, при любых вводных данных.

Девица 2013.

Квадратное уравнение является одним из самых распространенных уравнений школьного курса. Хотя оно решается достаточно легко, иногда требуется проверить ответы. Для этого можно использовать простую программу. Ее написание не займет много времени.

Начать нужно с самого квадратного уравнения. Из курса алгебры мы знаем, что квадратным уравнением называется уравнение вида ax 2 + bx + c =0, где x – переменная, a , b и с – некоторые числа, причем a .

Из определения видно, что в уравнении меняются только коэффициенты a , b и c . Вот эти параметры мы и будем вводить в нашу программу, а для этого создадим три поля ввода из компонентов.

Рис 14.1 Поля ввода для коэффициентов.

Так же из определения следует, что a . В этом случае уравнение не будет квадратным. И это условие мы будем проверять в первую очередь. Создадим кнопку «Решить» и ее разработчике событий при помощи оператора if проверим условие a . И если a =0 сообщим что наше уравнение не квадратное. Вот обработчик событий для кнопки: procedure TForm1.Button1Click(Sender: TObject); var a,b,c:real; begin a:=strtofloat(edit1.Text); b:=strtofloat(edit2.Text); c:=strtofloat(edit3.Text); if a=0 then Label4.Caption:="Уравнение не является квадратным"; end;

Рис. 14.2 Проверка на существование уравнения.

Теперь необходимо описать, что будет происходить, если же уравнение квадратное. Это тоже будет в том же операторе if после слова else и при использовании составного оператора.

Если уравнение квадратное, то будем сразу его решать по формуле дискриминанта и корней квадратного уравнения.

Дискриминант найдем по формуле: D := b * b – 4* a * c ;

Если дискриминант меньше нуля то уравнение не имеет решений. Это опишется так:

If d then label 4. Caption :=’Уравнение не имеет решений’ else

А после else пойдет непосредственный поиск корней уравнения по формулам:

X1:=(-b+sqrt(D))/2*a;

X2:=(-b-sqrt(D))/2*a;

Вот полный код оператора if :

if a=0 then Label4.Caption:="Уравнение не является квадратным" else

begin

D:=b*b-4*a*c;

if d

begin

X1:=(-b+sqrt(D))/2*a;

X2:=(-b-sqrt(D))/2*a;

Label4.Caption:="X1="+floattostr(x1)+" X2="+floattostr(x2);

end;

end;

Рис. 14.3 Рабочее окне программы квадратное уравнение.

Квадратным уравнением называют уравнение вида a*x^2 +b*x+c=0, где a,b,c некоторые произвольные вещественные (действительные) числа, а x - переменная. Причем число а=0.

Числа a,b,c называются коэффициентами. Число а - называется старшим коэффициентом, число b коэффициентом при х, а число с называют свободным членом.

Решение квадратных уравнений

Решить квадратное уравнение - это значит найти все его корни либо же установить тот факт, что квадратное уравнение корней не имеет. Корнем квадратного уравнения a*x^2 +b*x+c=0 называют любое значение переменной х, такое, что квадратный трехчлен a*x^2 +b*x+c обращается в нуль. Иногда такого значение х называют корнем квадратного трехчлена.

Существует несколько способов решения квадратных уравнений. Рассмотри один из них - самый универсальный. С его помощью можно решить любое квадратное уравнение.

Формулы решения квадратных уравнений

Формула корней квадратного уравнения a*x^2 +b*x+c=0.

x=(-b±√D)/(2*a), где D =b^2-4*a*c.

Данная формула получается, если решить уравнение a*x^2 +b*x+c=0 в общем виде, с помощью выделения квадрата двучлена.

В формуле корней квадратного уравнения выражение D (b^2-4*a*c) называется дискриминантом квадратного уравнения a*x^2 +b*x+c=0. Такое название пришло из латинского языка, в переводе «различитель». В зависимости от того, какое значение имеет дискриминант, квадратное уравнение будет иметь два или один корень, либо не иметь корней вообще.

Если дискриминант больше нуля, то квадратное уравнение имеет два корня. (x=(-b±√D)/(2*a))

Если дискриминант равен нулю, то квадратное уравнение имеет один корень. (x=(-b/(2*a))

Если дискриминант отрицателен, то квадратное уравнение не имеет корней.

Общий алгоритм решения квадратного уравнения

Исходя из вышесказанного, сформулируем общий алгоритм решения квадратного уравнения a*x^2 +b*x+c=0 по формуле:

1. Найти значение дискриминанта по формуле D =b^2-4*a*c.

2. В зависимости от значения дискриминанта вычислить корни по формулам:

D<0, корней нет.

D=0, x=(-b/(2*a)

D>0, x=(-b+√D)/(2*a), x=(-b-√D)/(2*a)

Данный алгоритм универсален и подходит для решения любых квадратных уравнений. Полных и не полных, приведенных и неприведенных.

Loading...Loading...