Строение алканов. Международная номенклатура алканов

Нагревание натриевой соли уксусной кислоты (ацетата натрия) с избытком щелочи приводит к отщеплению карбоксильной группы и образованию метана:

СН3СОNа + NаОН СН4 + Nа2С03

Если вместо ацетата натрия взять пропионат натрия, то образуется этан, из бутаноата натрия - пропан и т. д.

RСН2СОNа +NаОН -> RСН3 + Nа2С03

5. Синтез Вюрца. При взаимодействии галогеналканов с щелочным металлом натрием образуются предельные углеводороды и галогенид щелочного металла, например:

Действие щелочного металла на смесь галогенуглеводородов (например, бромэтана и бромметана) приведет к образованию смеси алканов (этана, пропана и бутана).

Реакция, на которой основан синтез Вюрца, хорошо протекает только с галогеналканами, в молекулах которых атом галогена присоединен к первичному атому углерода.

6. Гидролиз карбидов. При обработке некоторых карбидов, содержащих углерод в степени окисления -4 (например, карбида алюминия), водой образуется метан:

Аl4С3 + 12Н20 = ЗСН4 + 4Аl(ОН)3 Физические свойства

Первые четыре представителя гомологического ряда метана - газы. Простейший из них - метан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который надо звонить по телефону 04, определяется запахом меркаптанов - серусодер-жащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах, для того чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).

Углеводороды состава от С5Н12 до С15Н32 - жидкости, более тяжелые углеводороды - твердые вещества.

Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Химические свойства

1. Реакции замещения. Наиболее характерными для ал-канов являются реакции свободнорадикального замещения, в ходе которых атом водорода замещается на атом галогена или какую-либо группу.

Приведем уравнения наиболее характерных реакций.

Галогенирование:

СН4 + С12 -> СН3Сl + HCl

В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

СН3Сl + С12 -> HCl + СН2Сl2
дихлорметан хлористый метилен

СН2Сl2 + Сl2 -> HCl + CHCl3
трихлорметан хлороформ

СНСl3 + Сl2 -> HCl + ССl4
тетрахлорметан четыреххлористый углерод

Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.

2. Дегидрирование (отщепление водорода). При пропускании алканов над катализатором (Pt, Ni, А1203, Сг2O3) при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:

СН3-СН3 -> СН2=СН2 + Н2

3. Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться. Горение предельных углеводородов - это свободнора-дикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива.

СН4 + 2O2 -> С02 + 2Н2O + 880кДж

В общем виде реакцию горения алканов можно записать следующим образом:


Реакции термического расщепления лежат в основе промышленного процесса - крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.

При нагревании метана до температуры 1000 °С начинается пиролиз метана - разложение на простые вещества. При нагревании до температуры 1500 °С возможно образование ацетилена.

4. Изомеризация. При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:


5. Ароматизация. Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных:

В чем причина того, что алканы вступают в реакции, протекающие по свободнорадикальному механизму? Все атомы углерода в молекулах алканов находятся в состоянии sр 3 -гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С-С (углерод-углерод) связей и слабополярных С-Н (углерод-водород) связей. В них нет участков с повышенной и пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних воздействий (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, так как связи в молекулах алканов не разрываются по гетеролитическому механизму.

Наиболее характерными реакциями алканов являются реакции свободнорадикального замещения. В ходе этих реакций атом водорода замещается на атом галогена или какую-либо группу.

Кинетику и механизм свободнорадикальных цепных реакций, т. е. реакций, протекающих под действием свободных радикалов - частиц, имеющих неспаренные электроны, - изучал замечательный русский химик Н. Н. Семенов. Именно за эти исследования ему была присуждена Нобелевская премия по химии .

Обычно механизм реакции свободнорадикального замещения представляют тремя основными стадиями:

1. Инициирование (зарождение цепи, образование свободных радикалов под действием источника энергии - ультрафиолетового света, нагревания).

2. Развитие цепи (цепь последовательных взаимодействий свободных радикалов и неактивных молекул, в результате которых образуются новые радикалы и новые молекулы).

3. Обрыв цепи (объединение свободных радикалов в неактивные молекулы (рекомбинация), «гибель» радикалов, прекращение развития цепи реакций).

Научные исследования Н.Н. Семенова

Семенов Николай Николаевич

(1896 - 1986)


Советский физик и физикохимик, академик. Лауреат Нобелевской премии (1956). Научные исследования относятся к учению о химических процессах, катализе, цепных реакциях, теории теплового взрыва и горении газовых смесей.

Рассмотрим этот механизм на примере реакции хлорирования метана:

СН4 + Сl2 -> СН3Сl + НСl

Инициирование цепи происходит в результате того, что под действием ультрафиолетового облучения или при нагревании происходит гомолитический разрыв связи Сl-Сl и молекула хлора распадается на атомы:

Сl: Сl -> Сl· + Сl·

Образовавшиеся свободные радикалы атакуют молекулы метана, отрывая у них атом водорода:

СН4 + Сl· -> СН3· + НСl

и превращая в радикалы СН3·, которые, в свою очередь, сталкиваясь с молекулами хлора, разрушают их с образованием новых радикалов:

СН3· + Сl2 -> СН3Сl + Сl· и т. д.

Происходит развитие цепи.

Наряду с образованием радикалов происходит их «гибель» в результате процесса рекомбинации - образования неактивной молекулы из двух радикалов:

СН3· + Сl· -> СН3Сl

Сl· + Сl· -> Сl2

СН3· + СН3· -> СН3-СН3

Интересно отметить, что при рекомбинации выделяется ровно столько энергии, сколько необходимо для разрушения только что образовавшейся связи. В связи с этим рекомбинация возможна только в том случае, если в соударении двух радикалов участвует третья частица (другая молекула, стенка реакционного сосуда), которая забирает на себя избыток энергии. Это дает возможность регулировать и даже останавливать свободнорадикальные цепные реакции.

Обратите внимание на последний пример реакции рекомбинации - образование молекулы этана. Этот пример показывает, что реакция с участием органических соединений представляет собой достаточно сложный процесс, в результате которого, наряду с основным продуктом реакции, очень часто образуются побочные продукты, что приводит к необходимости разрабатывать сложные и дорогостоящие методики очистки и выделения целевых веществ.

В реакционной смеси, полученной при хлорировании метана, наряду с хлорметаном (СН3Сl) и хлороводородом, будут содержаться: дихлорметан (СН2Сl2), трихлорметан (СНСl3), тетрахлорметан (ССl4), этан и продукты его хлорирования.

Теперь попытаемся рассмотреть реакцию галогенирования (например, бромирования) более сложного органического соединения - пропана.

Если в случае хлорирования метана возможно только одно моно-хлорпроизводное, то в этой реакции может образоваться уже два монобромпроизводных:


Видно, что в первом случае происходит замещение атома водорода при первичном атоме углерода, а во втором - при вторичном. Одинаковы ли скорости этих реакций? Оказывается, что в конечной смеси преобладает продукт замещения атома водорода, который находится при вторичном углероде, т. е. 2-бромпропан (СН3-СНВг-СН3). Давайте попытаемся объяснить это.

Для того чтобы это сделать, нам придется воспользоваться представлением об устойчивости промежуточных частиц. Вы обратили внимание, что при описании механизма реакции хлорирования метана мы упомянули радикал метил - СН3·? Этот радикал является промежуточной частицей между метаном СН4 и хлорметаном СН3Сl. Промежуточной частицей между пропаном и 1-бромпропаном является радикал с неспаренным электроном при первичном углероде, а между пропаном и 2-бромпропаном - при вторичном.

Радикал с неспаренным электроном при вторичном атоме углерода (б) является более устойчивым по сравнению со свободным радикалом с неспаренным электроном при первичном атоме углерода (а). Он и образуется в большем количестве. По этой причине основным продуктом реакции бромирования пропана является 2-бром-пропан - соединение, образование которого протекает через более устойчивую промежуточную частицу.

Приведем несколько примеров свободнорадикальных реакций:

Реакция нитрования (реакция Коновалова)

Реакция применяется для получения нитросоединений - растворителей, исходных веществ для многих синтезов.

Каталитическое окисление алканов кислородом

Эти реакции являются основой важнейших промышленных процессов получения альдегидов, кетонов, спиртов непосредственно из предельных углеводородов, например:

СН4 + [О] -> СН3ОН

Применение

Предельные углеводороды, в особенности метан, находят очень широкое применение в промышленности (схема 2). Они являются простым и достаточно дешевым топливом, сырьем для получения большого количества важнейших соединений.

Соединения, полученные из метана, самого дешевого углеводородного сырья, применяют для получения множества других веществ и материалов. Метан используют как источник водорода в синтезе аммиака, а также для получения синтез-газа (смесь СО и Н2), применяемого для промышленного синтеза углеводородов, спиртов, альдегидов и других органических соединений.

Углеводороды более высококипящих фракций нефти используются как горючее для дизельных, турбореактивных двигателей, как основа смазочных масел, как сырье для производства синтетических жиров и т. д.

Приведем несколько промышленно значимых реакций, протекающих с участием метана. Метан используют для получения хлороформа, нитрометана, кислородсодержащих производных. Спирты, альдегиды, карбоновые кислоты могут образовываться при непосредственном взаимодействии алканов с кислородом в зависимости от условий проведения реакций (катализатора, температуры, давления):

Как вы уже знаете, углеводороды состава от С5Н12 до С11Н24 входят в бензиновую фракцию нефти и применяются в основном как горючее для двигателей внутреннего сгорания. Известно, что наиболее ценными компонентами бензина являются изомерные углеводороды, так как они обладают максимальной детонационной устойчивостью.

Углеводороды при контакте с кислородом воздуха медленно образуют с ним соединения - перекиси. Это медленно протекающая свободнорадикальная реакция, инициатором которой является молекула кислорода:

Обратите внимание на то, что гидропероксидная группа образуется при вторичных атомах углерода, которых больше всего в линейных, или нормальных, углеводородах.

При резком повышении давления и температуры, происходящем в конце такта сжатия, начинается разложение этих перекисных соединений с образованием большого числа свободных радикалов, которые «запускают» свободнорадикальную цепную реакцию горения раньше, чем это необходимо. Поршень еще идет вверх, а продукты горения бензина, которые уже успели образоваться в результате преждевременного поджига смеси, толкают его вниз. Это приводит к резкому уменьшению мощности двигателя, его износу.

Таким образом, основной причиной детонации является наличие перекисных соединений, способность образовывать которые максимальна у линейных углеводородов.

Наименьшей детонационной устойчивостью среди углеводородов бензиновой фракции (С5Н14 - С11Н24) обладает к-гептан. Наиболее устойчив (т. е. в наименьшей степени образует перекиси) так называемый изооктан (2,2,4-триметилпентан).

Общепринятой характеристикой детонационной устойчивости бензина является октановое число. Октановое число 92 (например, бензин А-92) означает, что данный бензин обладает теми же свойствами, что и смесь, состоящая из 92% изооктана и 8% гептана.

В заключение можно добавить, что использование высокооктанового бензина дает возможность повысить степень сжатия (давление в конце такта сжатия), что приводит к повышению мощности и КПД двигателя внутреннего сгорания.

Нахождение в природе и получение

На сегодняшнем уроке вы познакомились с таким понятием, как алканы, а также узнали о его химическом составе и методах получения. Поэтому давайте сейчас более подробно остановимся на теме нахождения алканов в природе и узнаем, как и где алканы нашли применение.

Главными источниками для получения алканов являются природный газ и нефть. Они составляют основную часть продуктов от нефтипереботки. Распространенный, в залежах осадочных пород метан, также является газовым гидратом алканов.

Основной составляющей природного газа является метан, но в его составе присутствует и небольшая доля этана, пропана и бутана. Метан можно обнаружить в выделениях угольных пластов, болот и в попутных нефтяных газах.

Также анканы можно получить методом коксования каменного угля. В природе встречаются и так называемые твердые алканы – озокериты, которые представлены в виде залежей горного воска. Озокерит можно обнаружить в восковых покрытиях растений или их семян, а также в составе пчелиного воска.

Промышленное выделение алканов берется из природных источников, которые к счастью пока неисчерпаемые. Их получают методом каталитического гидрирования оксидов углерода. Также метан можно получить в лабораторных условиях, используя метод нагревания ацетата натрия с твердой щелочью или гидролизом некоторых карбидов. Но и также алканы можно получить способом декарбоксилирования карбоновых кислот и при их электролизе.

Применение алканов

Алканы на бытовом уровне, широко применяются во многих сферах деятельности человека. Ведь очень сложно представить нашу жизнь без природного газа. И ни для кого не будет секретом, что основой природного газа является метан, из которого производят технический углерод, используемый при производстве топографических красок и шин. Холодильник, который есть в доме у каждого, также работает благодаря соединениям алканов, применяющихся в качестве хладагентов. А полученный из метана ацетилен используют для сварки и резки металлов.

Теперь вы уже знаете, что алканы используются как топливо. Они присутствуют в составе бензина, керосина, солярового масла и мазута. Кроме этого, они есть и в составе смазочных масел, вазелина и парафина.

В качестве растворителя и для синтеза различных полимеров, широкое применение нашел циклогексан. А в наркозе используют циклопропан. Сквалан, как высококачественное смазочное масло, является компонентом многих фармацевтических и косметических препаратов. Алканы являются сырьем, с помощью которого получают такие органические соединения, как спирт, альдегиды и кислоты.

Парафин является смесью высших алканов, а так как он нетоксичен, то широко используется в пищевой промышленности. Его применяют для пропитки упаковок для молочной продукции, соков, круп и так далее, но в том числе и при изготовлении жевательных резинок. А разогретый парафин используют в медицине при парафинолечении.

Помимо выше сказанного, парафином пропитаны головки спичек, для их лучшего горения, карандаши и из него изготавливают свечи.

С помощью окисления парафина получают кислородосодержащие продукты, в основном органические кислоты. При смешении жидких углеводоpодов с определенным числом атомов углерода получают вазелин, который нашел широкое применение как парфюмерии и косметологии, так и в медицине. Его применяют для приготовления различных мазей, кремов и гелей. А также используют для тепловых процедур в медицине.

Практические задания

1. Запишите общую формулу углеводородов гомологического ряда алканов.

2. Напишите формулы возможных изомеров гексана и назовите их по систематической номенклатуре.

3. Что такое крекинг? Какие виды крекинга вы знаете?

4. Напишите формулы возможных продуктов крекинга гексана.

5. Расшифруйте следующую цепочку превращений. Назовите соединения А, Б и В.

6. Приведите структурную формулу углеводорода С5Н12, образующего при бромировании только одно монобром-производное.

7. На полное сгорание 0,1 моль алкана неизвестного строения израсходовано 11,2 л кислорода (при н. у.). Какова структурная формула алкана?

8. Какова структурная формула газообразного предельного углеводорода, если 11 г этого газа занимают объем 5,6 л (при н. у.)?

9. Вспомните, что вам известно о применении метана, и объясните, почему утечка бытового газа может быть обнаружена по запаху, хотя его составляющие запаха не имеют.

10*. Какие соединения могут быть получены каталитическим окислением метана в различных условиях? Напишите уравнения соответствующих реакций.

11*. Продукты полного сгорания (в избытке кислорода) 10,08 л (н. у.) смеси этана и пропана пропустили через избыток известковой воды. При этом образовалось 120 г осадка. Определите объемный состав исходной смеси.

12*. Плотность по этану смеси двух алканов равна 1,808. При бромировании этой смеси выделено только две пары изомерных монобромалканов. Суммарная масса более легких изомеров в продуктах реакции равна суммарной массе более тяжелых изомеров. Определите объемную долю более тяжелого алкана в исходной смеси.

Алканами называют насыщенные углеводороды. В их молекулах атомы имеют одинарные связи. Структура определяется формулой CnH2n+2. Рассмотрим алканы: химические свойства, виды, применение.

В структуре углерода есть четыре орбиты, по которым вращаются атомы. Орбитали обладают одинаковой формой, энергией.

Обратите внимание! Углы между ними составляют 109 градусов и 28 минут, они направлены на вершины тетраэдра.

Простая углеродная связь позволяет алкановым молекулам свободно вращаться, в результате чего структуры приобретают различные формы, образуя вершины при атомах углерода.

Все алкановые соединения разделяются на две основные группы:

  1. Углеводороды алифатического соединения. Такие структуры обладают линейным соединением. Общая формула выглядит таким образом: CnH2n+2. Значение n равно или больше единицы, означает количество углеродных атомов.
  2. Циклоалканы циклической структуры. Химические свойства циклических алканов значительно отличаются от свойств линейных соединений. Формула циклоалканов в некоторой степени делает их схожими с углеводородами, обладающими тройной атомной связью, то есть с алкинами.

Виды алканов

Существует несколько видов алкановых соединений, каждой из которых имеет свою формулу, строение, химические свойства и алкильный заместитель. Таблица содержит гомологический ряд

Название алканов

Общая формула насыщенных углеводородов — CnH2n+2. Изменяя значение n, получают соединение с простой межатомной связью.

Полезное видео: алканы — строение молекул, физические свойства

Разновидности алканов, варианты реакций

В естественных условиях алканы являются химически инертными соединения. Углеводороды не реагируют на контактирование с концентратом азотной и серной кислоты, щелочью и перманганатом калия.

Одинарные молекулярные связи определяют реакции, характерные для алканов. Алкановые цепочки отличаются неполярной и слабо поляризуемой связью. Она несколько длиннее, нежели С-Н.

Общая формула алканов

Реакция замещения

Парафиновые вещества отличаются незначительной химической активностью. Объясняется это повышенной прочностью цепной связи, которую непросто разорвать. Для разрушения используют гомологический механизм, в котором принимают участие свободные радикалы.

Для алканов более естественны реакции замещения. Они не реагируют на молекулы воды и заряженные ионы. При замещении происходит замена водородных частиц галогеновыми и прочими активными элементами. Среди подобных процессов выделяют галогенирование, нитрирование и сульфохлорирование. Такие реакции используют для образования алкановых производных.

Свободнорадикальное замещение происходит в три основных этапа:

  1. Появление цепочки, на основе которой создаются свободные радикалы. В качестве катализаторов используют нагревание и ультрафиолетовый свет.
  2. Развитие цепочки, в структуре которой происходят взаимодействия активных и неактивных частиц. Так формируются молекулы и радикальные частицы.
  3. В завершение цепочка обрывается. Активные элементы создают новые комбинации или вовсе исчезают. Цепная реакция завершается.

Галогенирование

Процесс осуществляется по радикальному типу. Галогенирование происходит под воздействием ультрафиолета и температурного нагрева углеводородной и галогеновой смеси.

Весь процесс происходит по правилу Марковникова. Суть его заключается в том, что первым галогенированию подвергается атом водорода, принадлежащий гидрированному углероду. Процесс начинается с третичного атома и заканчивается первичным углеродом.

Сульфохлорирование

Другое название – реакция Рида. Осуществляется она методом свободнорадикального замещения. Таким образом, алканы реагируют на действие комбинации серного диоксида и хлора под воздействием ультрафиолетового излучения.

Реакция начинается с активизации цепного механизма. В это время из хлора выделяются два радикала. Действие одного направлено на алкан, в результате формируется молекула хлорводорода и алкильный элемент. Другой радикал соединяется с диоксидом серы, создавая сложную комбинацию. Для равновесия из другой молекулы отбирают один атом хлора. В итоге получают сульфонилхлорид алкана. Это вещество используют для выработки поверхностно-активных компонентов.

Сульфохлорирование

Нитрование

Процесс нитрования подразумевает соединение насыщенных углеродов с газообразным оксидом четырехвалентного азота и азотной кислотой, доведенной до 10% раствора. Для протекания реакции потребуется низкий уровень давления и высокая температура, приблизительно 104 градуса. В результате нитрования получают нитроалканы.

Отщепление

Посредством отделения атомов проводят реакции дегидрирования. Молекулярная частица метана полностью разлагается под влиянием температуры.

Дегидрирование

Если от углеродной решетки парафина (кроме метана) отделить атом водорода, образуются непредельные соединения. Эти реакции осуществляются в условиях значительных температурных режимов (400-600 градусов). Также используются различные металлические катализаторы.

Получение алканов происходит путем проведения гидрирования непредельных углеводородов.

Процесс разложения

При влиянии температур во время алкановых реакций могут происходить разрывы молекулярных связей, выделение активных радикалов. Эти процессы известны под названием пиролиз и крекинг.

При нагревании реакционного компонента до 500 градусов, молекулы начинают разлагаться, а на их месте формируются сложные радикальные алкильные смеси. Таким способом получают алканы и алкены в промышленности.

Окисление

Это химические реакции, основанные на отдаче электронов. Для парафинов характерно автоокисление. В процессе используется окисление насыщенных углеводородов свободными радикалами. Алкановые соединения в жидком состоянии преобразуются в гидроперекись. Сначала парафин вступает в реакцию с кислородом. Образуются активные радикалы. Затем происходит реакция алкильной частицы со второй молекулой кислорода. Формируется перекисный радикал, который в последствие взаимодействует с алкановой молекулой. В результате процесса выделяется гидроперекись.

Реакция окисления алканов

Применение алканов

Углеродные соединения имеют широкое применение практически во всех основных сферах человеческой жизни. Некоторые из видов соединений являются незаменимыми для определенных отраслей производства и комфортного существования современного человека.

Газообразные алканы – основа ценного топлива. Главным компонентом большинства газов является метан.

Метан обладает способностью создавать и выделять большое количество тепла. Поэтому его в значительных объемах применяют в промышленности, для потребления в бытовых условиях. При смешивании бутана и пропана получают хорошее бытовое топливо.

Метан используют при производстве таких продуктов:

  • метанол;
  • растворители;
  • фреон;
  • типографская краска;
  • топливо;
  • синтез-газ;
  • ацетилен;
  • формальдегид;
  • муравьиная кислота;
  • пластмасса.

Применение метана

Жидкие углеводороды предназначены для создания топлива для двигателей и ракет, растворителей.

Высшие углеводороды, где количество атомов углерода превышает 20, участвуют в производстве смазочных веществ, лакокрасочной продукции, мыла и моющих средств.

Комбинация жирных углеводородов, в которых менее 15 атомов Н, являет собой вазелиновое масло. Эта безвкусная прозрачная жидкость применяется в косметике, в создании парфюмов, в медицинских целях.

Вазелин – результат соединения твердых и жирных алканов с количеством атомов углерода меньше 25. Вещество участвует в создании медицинских мазей.

Парафин, полученный в результате комбинирования твердых алканов, является твердой безвкусной массой, белого цвета и без аромата. Из вещества производят свечи, пропитывающую субстанцию для упаковочной бумаги и спичек. Также парафин популярен при осуществлении тепловых процедур в косметологии и медицине.

Обратите внимание! На основе алкановых смесей также делают синтетические волокна, пластмассы, моющую химию и каучук.

Галогенопроизводные алкановые соединения выполняют функции растворителей, хладагентов, а также основного вещества для дальнейшего синтеза.

Полезное видео: алканы — химические свойства

Вывод

Алканы являются ациклическими углеводородными соединениями, обладающими линейной или разветвленной структурой. Между атомами установлена одинарная связь, которая не поддается разрушению. Реакции алканов, основанные на замещении молекул, свойственные этому виду соединений. Гомологический ряд имеет общую структурную формулу CnH2n+2. Углеводороды относятся к насыщенному классу, поскольку содержат максимально допустимое количество атомов водорода.

Нелишне будет начать с определения понятия алканов. Это насыщенные либо предельные Также можно сказать, что это углероды, в которых соединение атомов C осуществляется посредством простых связей. Общая формула имеет вид: CnH₂n+ 2.

Известно, что соотношение количества атомов H и C в их молекулах максимально, если сравнивать с другими классами. Ввиду того что все валентности заняты либо C, либо H, химические свойства алканов выражены недостаточно ярко, поэтому их вторым названием выступает словосочетание предельные либо насыщенные углеводороды.

Также существует более древнее наименование, которое лучше всего отражает их относительную химинертность - парафины, что в переводе означает «лишенные сродства».

Итак, тема нашего сегодняшнего разговора: «Алканы: гомологический ряд, номенклатура, строение, изомерия». Также будут представлены данные касательно их физических свойств.

Алканы: строение, номенклатура

В них атомы C пребывают в таком состоянии, как sp3-гибридизация. В связи с этим молекулу алканов можно продемонстрировать в качестве набора тетраэдрических структур C, которые связаны не только между собой, но и с H.

Между атомами C и H присутствуют прочные, весьма малополярные s-связи. Атомы же вокруг простых связей всегда вращаются, ввиду чего молекулы алканов принимают разнообразные формы, причем длина связи, угол между ними - постоянные величины. Формы, которые трансформируются друг в друга из-за вращения молекулы, происходящего вокруг σ-связей, принято называть ее конформациями.

В процессе отрыва атома H от рассматриваемой молекулы сформировываются 1-валентные частицы, называемые углеводородными радикалами. Они появляются в результате соединений не только но и неорганических. Если отнять 2 атома водорода от молекулы предельного углеводорода, то получатся 2-валентные радикалы.

Таким образом, номенклатура алканов может быть:

  • радиальной (старый вариант);
  • заместительной (международная, систематическая). Она предложена ИЮПАК.

Особенности радиальной номенклатуры

В первом случае номенклатура алканов характеризуется следующим:

  1. Рассмотрение углеводородов в качестве производных метана, у которого замещен 1 либо несколько атомов H радикалами.
  2. Высокая степень удобства в случае с не очень сложными соединениями.

Особенности заместительной номенклатуры

Заместительная номенклатура алканов имеет следующие особенности:

  1. Основа для названия - 1 углеродная цепь, остальные же молекулярные фрагменты рассматриваются в качестве заместителей.
  2. При наличии нескольких идентичных радикалов перед их наименованием указывается число (строго прописью), а радикальные номера разделяются запятыми.

Химия: номенклатура алканов

Для удобства информация представлена в виде таблицы.

Название вещества

Основа названия (корень)

Молекулярная формула

Название углеродного заместителя

Формула углеродного заместителя

Вышеуказанная номенклатура алканов включает названия, которые сложились исторически (первые 4 члена ряда предельных углеводородов).

Наименования неразвернутых алканов с 5 и более атомами C образованы от греческих числительных, которые отражают данное число атомов C. Так, суффикс -ан говорит о том, что вещество из ряда насыщенных соединений.

При составлении названий развернутых алканов в роли основной цепи выбирается та, которая содержит максимальное количество атомов C. Она нумеруется так, чтобы заместители были с наименьшим номером. В случае двух и более цепей одинаковой длины главной становится та, которая содержит наибольшее количество заместителей.

Изомерия алканов

В качестве углеводорода-родоначальника их ряда выступает метан CH₄. С каждым последующим представителем метанового ряда наблюдается отличие от предыдущего на метиленовую группу - CH₂. Данная закономерность прослеживается во всем ряду алканов.

Немецкий ученый Шиль выдвинул предложение назвать этот ряд гомологическим. В переводе с греческого означает «сходный, подобный».

Таким образом, гомологический ряд - набор родственных органических соединений, имеющих однотипную структуру с близкими химсвойствами. Гомологи - члены данного ряда. Гомологическая разность - метиленовая группа, на которую отличаются 2 соседних гомолога.

Как уже упоминалось ранее, состав любого насыщенного углеводорода может быть выражен посредством общей формулы CnH₂n + 2. Так, следующим за метаном членом гомологического ряда является этан - C₂H₆. Чтобы вывести его структуру из метановой, необходимо заменить 1 атом H на CH₃ (рисунок ниже).

Структура каждого последующего гомолога может быть выведена из предыдущего таким же образом. В итоге из этана образуется пропан - C₃H₈.

Что такое изомеры?

Это вещества, которые имеют идентичный качественный и количественный молекулярный состав (идентичную молекулярную формулу), однако различное химическое строение, а также обладающие разными химсвойствами.

Вышерассмотренные углеводороды отличаются по такому параметру, как температура кипения: -0,5° - бутан, -10° - изобутан. Данный вид изомерии именуется как изомерия углеродистого скелета, она относится к структурному типу.

Число структурных изомеров растет быстрыми темпами с увеличением количества углеродных атомов. Таким образом, C₁₀H₂₂ будет соответствовать 75 изомерам (не включая пространственные), а для C₁₅H₃₂ уже известны 4347 изомеров, для C₂₀H₄₂ - 366 319.

Итак, уже стало понятно, что такое алканы, гомологический ряд, изомерия, номенклатура. Теперь стоит перейти к правилам составления названий по ИЮПАК.

Номенклатура ИЮПАК: правила образования названий

Во-первых, необходимо отыскать в углеводородной структуре углеродную цепь, которая наиболее длинна и содержит максимальное количество заместителей. Затем требуется пронумеровать атомы C цепи, начиная с конца, к которому ближе всего расположен заместитель.

Во-вторых, основа - название неразветвленного насыщенного углеводорода, которому по количеству атомов C соответствует самая главная цепь.

В-третьих, перед основой необходимо указать номера локантов, возле которых расположены заместители. За ними записываются через дефис названия заместителей.

В-четвертых, в случае наличия идентичных заместителей при разных атомах C локанты объединяются, при этом перед названием появляется умножающая приставка: ди - для двух идентичных заместителей, три - для трех, тетра - четырех, пента - для пяти и т. д. Цифры должны быть отделены друг от друга запятой, а от слов - дефисом.

Если один и тот же атом C содержится сразу два заместителя, локант тоже записывается дважды.

Согласно этим правилам и формируется международная номенклатура алканов.

Проекции Ньюмена

Этот американский ученый предложил для графической демонстрации конформаций специальные проекционные формулы - проекции Ньюмена. Они соответствуют формам А и Б и представлены на рисунке ниже.

В первом случае это А-заслоненная конформация, а во втором - Б-заторможенная. В позиции А атомы H располагаются на минимальном расстоянии друг от друга. Данной форме соответствует самое большое значение энергии, ввиду того что отталкивание между ними наибольшее. Это энергетически невыгодное состояние, вследствие чего молекула стремится покинуть его и перейти к более устойчивому положению Б. Здесь атомы H максимально удалены друг от друга. Так, энергетическая разница этих положений - 12 кДж/моль, благодаря чему свободное вращение вокруг оси в молекуле этана, которая соединяет метильные группы, получается неравномерным. После попадания в энергетически выгодное положение молекула там задерживается, другими словами, «тормозится». Именно поэтому оно и называется заторможенным. Результат - 10 тыс. молекул этана пребывают в заторможенной форме конформации при условии комнатной температуры. Только одна имеет другую форму - заслоненную.

Получение предельных углеводородов

Из статьи уже стало известно, что это алканы (строение, номенклатура их подробно описаны ранее). Будет нелишне рассмотреть способы их получения. Они выделяются из таких природных источников, как нефть, природный, каменный уголь. Применяются также и синтетические методы. Например, H₂ 2H₂:

  1. Процесс гидрирования CnH₂n (алкены)→ CnH₂n+2 (алканы)← CnH₂n-2 (алкины).
  2. Из смеси монооксида C и H - синтез-газа: nCO+(2n+1)H₂→ CnH₂n+2+nH₂O.
  3. Из карбоновых кислот (их солей): электролиз на аноде, на катоде:
  • электролиз Кольбе: 2RCOONa+2H₂O→R-R+2CO₂+H₂+2NaOH;
  • реакция Дюма (сплав со щелочью): CH₃COONa+NaOH (t)→CH₄+Na₂CO₃.
  1. Крекинг нефти: CnH₂n+2 (450-700°)→ CmH₂m+2+ Cn-mH₂(n-m).
  2. Газификация топлива (твердого): C+2H₂→CH₄.
  3. Синтез сложных алканов (галогенопроизводных), которые имеют меньшее количество атомов C: 2CH₃Cl (хлорметан) +2Na →CH₃- CH₃ (этан) +2NaCl.
  4. Разложение водой метанидов (карбидов металлов): Al₄C₃+12H₂O→4Al(OH₃)↓+3CH₄.

Физические свойства предельных углеводородов

Для удобства данные сгруппированы в таблицу.

Формула

Алкан

Температура плавления в °С

Температура кипения в °С

Плотность, г/мл

0,415 при t = -165°С

0,561 при t= -100°C

0,583 при t = -45°C

0,579 при t =0°C

2-Метилпропан

0,557 при t = -25°C

2,2-Диметил-пропан

2-Метилбутан

2-Метилпентан

2,2,3,3-Тетра-метилбутан

2,2,4-Триметил-пентан

н-C₁₀H₂₂

н-C₁₁H₂₄

н-Ундекан

н-C₁₂H₂₆

н-Додекан

н-C₁₃H₂₈

н-Тридекан

н-C₁₄H₃₀

н-Тетрадекан

н-C₁₅H₃₂

н-Пентадекан

н-C₁₆H₃₄

н-Гексадекан

н-C₂₀H₄₂

н-Эйкозан

н-C₃₀H₆₂

н-Триаконтан

1 мм рт. ст

н-C₄₀H₈₂

н-Тетраконтан

3 мм рт. ст.

н-C₅₀H₁₀₂

н-Пентаконтан

15 мм рт. ст.

н-C₆₀H₁₂₂

н-Гексаконтан

н-C₇₀H₁₄₂

н-Гептаконтан

н-C₁₀₀H₂₀₂

Заключение

В статье было рассмотрено такое понятие, как алканы (строение, номенклатура, изомерия, гомологический ряд и пр.). Немного рассказано об особенностиях радиальной и заместительной номенклатур. Описаны способы получения алканов.

Кроме того, в статье подробно перечислена вся номенклатура алканов (тест может помочь усвоить полученную информацию).

Одним из первых типов химических соединений, изучаемых в школьной программе по органической химии, являются алканы. Они относятся к группе предельных (иначе - алифатических) углеводородов. В их молекулах присутствуют только одинарные связи. Атомам углерода свойственна sp³-гибридизация.

Гомологами называют химические вещества, которые имеют общие свойства и химическое строение, но при этом отличающиеся на одну или несколько CH2-групп.

В случае с метаном CH4 можно привести общую формулу для алканов: CnH (2n+2), где n - это количество атомов углерода в соединении.

Приведём таблицу алканов, в которых n находится в пределах от 1 до 10.

Изомерия алканов

Изомерами называют те вещества, молекулярная формула которых совпадает, однако строение или структура отличается.

Для класса алканов характерны 2 типа изомерии: углеродного скелета и оптическая изомерия.

Приведём пример структурного изомера (т. е. вещества, отличающимся лишь строением углеродного скелета) для бутана C4H10.

Оптическими изомерами называют такие 2 вещества, молекулы которых имеют похожую структуру, но не могут быть совмещены в пространстве. Явление оптической или зеркальной изомерии возникает у алканов, начиная с гептана C7H16.

Чтобы дать алкану правильное название, необходимо воспользоваться номенклатурой ИЮПАК . Для этого использоваться следующая последовательность действий:

По приведённому выше плану попробуем дать название следующему алкану.

В обычных условиях неразветвленные алканы с CH4 до C4H10 - это газообразные вещества, начиная с С5Н12 и до C13H28 - жидкие и обладающие специфическим запахом, все последующие - твёрдые. Получается, что с увеличением длины углеродной цепи растут температуры кипения и плавления . Чем сильнее разветвлена структура алкана, тем при более низкой температуре он кипит и плавится.

Газообразные алканы не обладают цветом. А также все представители этого класса не могут растворяться в воде.

Алканы, имеющие агрегатное состояние газа, могут гореть , при этом пламя будет либо бесцветным, либо обладать бледно-голубым оттенком.

Химические свойства

В обычных условиях алканы достаточно малоактивны. Это объясняется прочностью σ-связей между атомами C-C и C-H. Поэтому необходимо обеспечить специальные условия (например, довольно высокую температуру или свет), чтобы проведение химической реакции стало возможным.

Реакции замещения

К реакциям этого типа относятся галогенирование и нитрование. Галогенирование (взаимодействие с Cl2 или Br2) происходит при нагревании или же под воздействием света. Во время реакции, протекающей последовательно, образуются галогеналканы.

Для примера можно записать реакцию хлорирования этана.

Бромирование будет проходить аналогичным образом.

Нитрование - это реакция со слабым (10%) раствором HNO3 или с оксидом азота (IV) NO2. Условия для проведения реакций - температура 140 °C и давление.

C3H8 + HNO3 = C3H7NO2 + H2O.

В результате образуются два продукта - вода и аминокислота.

Реакции разложения

При проведении реакций разложения всегда требуется обеспечивать высокую температуру. Это необходимо для разрыва связей между атомами углерода и водорода .

Так, при проведении крекинга потребуется температура в интервале от 700 до 1000 °C . Во время реакции разрушаются -С-С- связи, образуется новый алкан и алкен:

C8H18 = C4H10 + C4H8

Исключение - крекинг метана и этана. В результате этих реакций выделяется водород и образуется алкин ацетилен. Обязательным условием является нагревание до 1500 °C.

C2H4 = C2H2 + H2

Если превысить температуру в 1000 °C, можно добиться пиролиза с полным разрывом связей в соединении:

Во время пиролиза пропила был получен углерод C, а также выделился водород H2.

Реакции дегидрирования

Дегидрирование (отщепление водорода) происходит по-разному для различных алканов. Условия проведения реакции - температура в пределах от 400 до 600 °C, а также присутствие катализатора, в роли которого могут выступать никель или платина.

Из соединения, в углеродном скелете которого 2 или 3 атома C, образуется алкен:

C2H6 = C2H4 + H2.

Если в цепи молекулы 4-5 атомов углерода, то после дегидрирования получится алкадиен и водород.

C5H12 = C4H8 + 2H2.

Начиная с гексана, во время реакции образуется бензол или производные от него вещества.

C6H14 = C6H6 + 4H2

Следует также упомянуть реакцию конверсии, проводящуюся для метана при температуре 800 °C и в присутствии никеля:

CH4 + H2O = CO + 3H2

Для других алканов конверсия нехарактерна.

Окисление и горение

Если алкан, нагретый до температуры не более 200 °C, будет взаимодействовать с кислородом в присутствии катализатора, то в зависимости от прочих условий проведения реакции будут различаться получаемые продукты: это могут быть представители классов альдегидов, карбоновых кислот, спиртов или кетонов.

В случае полного окисления алкан сгорает до конечных продуктов - воды и CO2:

C9H20 + 14O2 = 9CO2 + 10H2O

Если во время окисления количество кислорода оказалось недостаточным, конечным продуктом вместо углекислого газа станет уголь или CO.

Проведение изомеризации

Если обеспечить температуру около 100-200 градусов, для неразветвленных алканов становится возможна реакция перегруппировки. Второе обязательное условие для проведения изомеризации - присутствие катализатора AlCl3. В таком случае происходит изменение структуры молекул вещества и образуется его изомер.

Значительную долю алканов получают, выделяя их из природного сырья . Чаще всего перерабатывают природный газ, главным компонентом, которого является метан или же подвергают крекингу и ректификации нефть.

А также следует вспомнить о химических свойствах алкенов. В 10 классе одним из первых лабораторных способов, изучаемых на уроках химии, является гидрирование непредельных углеводородов.

C3H6 + H2 = C3H8

Например, в результате присоединения водорода к пропилену получается единственный продукт - пропан.

При помощи реакции Вюрца из моногалогеналканов получают алканы, в структурной цепи которых число углеродных атомов удвоено:

2CH4H9Br + 2Na = C8H18 + 2NaBr.

Ещё один способ получения - взаимодействие соли карбоновой кислоты со щёлочью при нагревании:

C2H5COONa + NaOH = Na2CO3 + C2H6.

Кроме того, метан иногда получают в электрической дуге (C + 2H2 = CH4) или при взаимодействии карбида алюминия с водой:

Al4C3 + 12H2O = 3CH4 + 4Al (OH)3.

Алканы широко применяются в промышленности в качестве низкого по стоимости топлива. А также их используют как сырьё для синтеза других органических веществ. С этой целью обычно применяют метан, необходимый для и синтез-газа. Некоторые другие предельные углеводороды используют, чтобы получать синтетические жиры, а также как основу для смазочных материалов.

Для наилучшего понимания темы «Алканы» создан не один видеоурок, в котором подробно рассмотрены такие темы, как структура вещества, изомеры и номенклатура, а также показаны механизмы химических реакций.

Углеводороды представляют собой простейшие органические соединения. Их составляют углерод и водород. Соединения этих двух элементов называются предельными углеводородами или алканами. Их состав выражается общей для алканов формулой CnH2n+2, где n - количество атомов углерода.

Алканы - международное наименование данных соединений . Также эти соединения называют парафинами и насыщенными углеводородами. Связь в молекулах алканов простая (или одинарная). Остальные валентности насыщены атомами водорода. Все алканы насыщены водородом до предела, его атомы находятся в состоянии sp3-гибридизации.

Гомологический ряд предельных углеводородов

Первым в гомологическом ряду насыщенных углеводородов стоит метан. Его формула CH4. Окончание -ан в наименовании предельных углеводородов являет отличительным признаком. Далее в соответствии с приведенной формулой в гомологическом ряду располагаются этан - C2H6, пропан C3H8, бутан - C4H10.

С пятого алкана в гомологическом ряду названия соединений образуются следующим образом: греческое число, указывающее число атомов углеводорода в молекуле + окончание -ан. Так, по-гречески число 5 - пэндэ, соответственно за бутаном идет пентан - C5H12. Далее - гексан C6H14. гептан - C7H16, октан - C8H18, нонан - C9H20, декан - C10H22 и т. д.

Физические свойства алканов заметно изменяются в гомологическом ряду: увеличивается температура плавления, кипения, увеличивается плотность. Метан, этан, пропан, бутан при обычных условиях, т. е. при температуре равной примерно 22 градуса тепла по Цельсию, являются газами, с пентана по гексадекан включительно - жидкостями, с гептадекана - твердыми веществами. Начиная с бутана, у алканов есть изомеры.

Существуют таблицы, отражающие изменения в гомологическом ряду алканов , которые наглядно отражают их физические свойства.

Номенклатура насыщенных углеводородов, их производные

Если происходит отрыв атома водорода от молекулы углеводорода, то образуются одновалентные частицы, которые называют радикалами (R). Название радикалу дает то углеводород, из которого этот радикал произведен, при этом окончание -ан меняется на окончание -ил. Например, из метана при отрыве атома водорода образуется радикал метил, из этана - этил, из пропана - пропил и т. д.

Радикалы также образуются и неорганическими соединениям. Например, отняв у азотной кислоты гидроксильную группу ОН, можно получить одновалентный радикал -NO2, который называется нитрогруппой.

При отрыве от молекулы алкана двух атомов водорода образуется двухвалентные радикалы, названия которых также образуются из названия соответствующих углеводородов, но окончание меняется на:

  • илиен, в том случае, если атомы водорода оторваны от одного атома углерода,
  • илен, в том случае, если от двух атомы водорода оторваны от двух соседних атомов углерода.

Алканы: химические свойства

Рассмотрим реакции, характерные для алканов. Всем алканам присущи общие химические свойства. Данные вещества являются малоактивными.

Все известные реакции с участием углеводородов подразделяются на два вида:

  • разрыв связи С-Н (примером может служить реакция замещения);
  • разрыв связи С-С (крекинг, образование отдельных частей).

Очень активны в момент образования радикалы. Сами по себе они существуют доли секунды. Радикалы легко вступают в реакции между собой. Их неспаренные электроны образуют новую ковалентную связь. Пример: CH3 + CH3 → C2H6

Радикалы легко вступают в реакции с молекулами органических веществ. Они либо присоединяются к ним, либо отрывают от них атом с неспаренным электроном, в результате чего появляются новые радикалы, которые, в свою очередь, могут вступать в реакции с другими молекулами. При такой цепной реакции получаются макромолекулы, которые перестают расти только тогда, когда оборвется цепь (пример: соединение двух радикалов)

Реакции свободных радикалов объясняют многие важные химические процессы, такие как:

  • Взрывы;
  • Окисления;
  • Крекинг нефти;
  • Полимеризацию непредельных соединений.

Подробно можно рассмотреть химические свойства насыщенных углеводородов на примере метана. Выше мы уже рассматривали строение молекулы алкана. Атомы углерода находятся в молекуле метана в состоянии sp3-гибридизации, и образуется достаточно прочная связь. Метан представляет собой газ баз запаха и цвета. Он легче воздуха. В воде малорастворим.

Алканы могут гореть. Горит метан синеватым бледным пламенем. При этом результатом реакции будут оксид углерода и вода. При смешивании с воздухом, а также в смеси с кислородом, особенно если соотношение объемов будет 1:2, данные углеводород образует взрывчатые смеси, из-за чего он крайне опасен для применения в быту и шахтах. Если метан сгорает не полностью, то образуется сажа. В промышленности ее таким образом и получают.

Из метана получают формальдегид и метиловый спирт путем его окисления в присутствии катализаторов. Если же метан сильно нагреть, то он распадается по формуле CH4 → C + 2H2

Распад метана можно осуществить до промежуточного продукта в специально оборудованных печах. Промежуточным продуктом будет ацетилен. Формула реакции 2CH4 → C2H2 + 3H2. Выделение ацетилена из метана сокращает расходы производства почти в два раза.

Также из метана получают водород, производя конверсию метана с водяным паром. Характерными для метана являются реакции замещения. Так, при обычной температуре, на свету галогены (Cl, Br) по стадиям вытесняют водород из молекулы метана. Таким образом образуются вещества, называемые галогенопроизводными. Атомы хлора , замещая в молекуле углеводорода атомы водорода, образуют смесь разных соединений.

В такой смеси присутствуют хлорметан (CH3 Cl или хлористый метил), дихлорметан (CH2Cl2или хлористый метилен), трихлорметан (CHCl3 или хлороформ), тетрахлорметан (CCl4 или четыреххлористый углерод).

Любое из этих соединений может быть выделено из смеси. В производстве важное значение отводится хлороформу и тетрахлорметану, в силу того, что они являются растворителями органических соединений (жиров, смол, каучука). Галогенопроизводные метана образуются по цепному свободнорадикальному механизму.

Свет воздействует на молекулы хлора, вследствие чего они распадаются на неорганические радикалы, которые отрывают атом водорода с одним электроном от молекулы метана. При этом образуется HCl и метил. Метил реагирует с молекулой хлора, в результате чего получается галогенопроизводное и радикал хлора. Далее радикал хлора продолжает цепную реакцию.

При обычной температуре метан обладает достаточной стойкостью к щелочам, кислотам, многим окислителям. Исключение - азотная кислота. В реакции с ней образуется нитрометан и вода.

Реакции присоединения для метана не характерны, т. к. все валентности в его молекуле насыщены.

Реакции, в которых участвуют углеводороды могут проходить не только с расщеплением связи С-Н, но и с разрывом связи С-С. Такие превращения происходят при наличии высоких температур и катализаторов. К таким реакциям относятся дегидрогенизация и крекинг.

Из насыщенных углеводородов путем окисления получают кислоты - уксусную (из бутана), жирные кислоты (из парафина).

Получение метана

В природе метан распространен достаточно широко. Он - главная составная часть большинства горючих природных и искусственных газов. Он выделяется из каменноугольных пластов в рудниках, со дна болот. Природные газы (что очень заметно в попутных газах нефтяных месторождений) содержат не только метан, но и другие алканы. Применение этих веществ разнообразно. Они используются как топливо, на различных производствах, в медицине и технике.

В условиях лаборатории данный газ выделяют при нагревании смеси ацетат натрия + гидроксид натрия, а также реакцией карбида алюминия и воды. Также метан получают из простых веществ. Для этого обязательными условиями являются нагрев и катализатор. Промышленное значение имеет получение метана синтезом на основе водяного пара.

Метан и его гомологи могут быть получены при прокаливании солей соответствующих органических кислот с щелочами. Еще одним способом получения алканов является реакция Вюрца, при которой нагреваются моногалогенопроизводные с металлическим натрием.

Loading...Loading...