Устойчивость сжатых стержней критическое напряжение формула эйлера. Формула эйлера для определения критической силы

Л е к ц и я 7

УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ

Понятие об устойчивости сжатого стержня. Формула Эйлера. Зависимость критической силы от способа закрепления стержня. Пределы применимости формулы Эйлера. Формула Ясинского. Расчет на устойчивость.

Понятие об устойчивости сжатого стержня

Рассмотрим стержень с прямой осью, нагруженный продольной сжимающей силой F. В зависимости от величины силы и параметров стержня (материал, длина, форма и размеры поперечного сечения) его прямолинейная форма равновесия может быть устойчивой или не устойчивой.

Д ля определения вида равновесия стержня подействуем на него небольшой поперечной нагрузкой Q. В результате стержень перейдет в новое положение равновесия с изогнутой осью. Если после прекращения действия поперечной нагрузки стержень возвращается в исходное (прямолинейное) положение, то прямолинейная форма равновесия является устойчивой (рис 7.1а). В том случае, когда после прекращения действия поперечной силы Q стержень не возвращается в первоначальное положение, прямолинейная форма равновесия является неустойчивой (рис 7.1б).

Таким образом, устойчивостью называется способность стержня после некоторого отклонения от первоначального положения в результате действия какой-либо возмущающей нагрузки самопроизвольно возвращаться в исходное положение при прекращении действия этой нагрузки. Наименьшая продольная сжимающая сила, при которой прямолинейная форма равновесия стержня становится неустойчивой, называется критической силой.

Рассмотренная схема работы центрального сжатого стержня носит теоретический характер. На практике сжимающая сила может действовать с некоторым эксцентриситетом, а стержень может иметь некоторую (хотя бы и небольшую) начальную кривизну. Поэтому с самого начала продольного нагружения стержня наблюдается его изгиб. Исследования показывают, что пока сжимающая сила меньше критической силы, прогибы стержня будут небольшими. При приближении силы к критическому значению прогибы начинают неограниченно возрастать. Этот критерий (неограниченный рост прогибов при ограниченном росте сжимающей силы) и принимается за критерий потери устойчивости.

Потеря устойчивости упругого равновесия имеет место не только при сжатии стержня, но и при его кручении, изгибе и более сложных видах деформации.

Формула Эйлера

Рассмотрим стержень с прямой осью, закрепленный посредством двух шарнирных опор (рис 7.2). Примем, что действующая на стержень продольная сжимающая сила достигла критического значения, и стержень изогнулся в плоскости наименьшей жесткости. Плоскость наименьшей жесткости расположена перпендикулярно к той главной центральной оси сечения, относительно которой осевой момент инерции сечения имеет минимальное значение.

(7.1)

где М – изгибающий момент; I min – минимальный момент инерции сечения.

Из рис. 7.2 находим изгибающий момент

(7.2)

На рис. 7.2 изгибающий момент, обусловленный действием критической силы, положителен, а прогиб – отрицателен. С целью согласования принятых знаков в зависимости (7.2) поставлен знак минус.

Подставляя (7.2) в (7.1), для определения функции прогиба получаем дифференциальное уравнение

(7.3)

(7.4)

Из курса высшей математики известно, что решение уравнения (7.3) имеет вид

где A, B – постоянные интегрирования.

Для определения постоянных интегрирования в (7.5) используем краевые условия

Для изогнутого стержня коэффициенты A и B не могут одновременно быть равными нулю (иначе стержень не будет изогнутым). Поэтому

Приравнивая (7.6) и (7.4), находим

(7.7)

Практическое значение имеет наименьшее, отличное от нуля, значение критической силы. Поэтому, подставив в (7.7) n=1, окончательно будем иметь

(7.8)

Зависимость (7.8) называется формулой Эйлера.

Зависимость критической силы

от способа закрепления стержня

Формула (7.8) получена для случая закрепления стержня посредством двух шарнирных опор, расположенных на его краях. При других способах закрепления стержня для определения критической силы используется обобщенная формула Эйлера

(7.9)

где μ – коэффициент приведения длины, учитывающий способ закрепления стержня.

Наиболее распространенные способы закрепления стержня и соответствующие им коэффициенты приведения длины показаны на рис. 7.3.

Пределы применимости формулы Эйлера. Формула Ясинского

П ри выводе формулы Эйлера было использовано условие, что в момент потери устойчивости выполняется закон Гука. Напряжение в стержне в момент потери устойчивости равно


где
- гибкость стержня; A – площадь поперечного сечения стержня.

В момент потери устойчивости закон Гука будет выполняться при условии

где σ пц – предел пропорциональности материала стержня;
- первая предельная гибкость стержня. Для стали Ст3 λ пр1 = 100.

Таким образом, формула Эйлера справедлива при выполнении условия (7.10).

Если гибкость стержня расположена в интервале
то стержень будет терять устойчивость в области упруго-пластических деформаций и формулу Эйлера использовать нельзя. В этом случае критическая сила определяется по экспериментальной формуле Ясинского

где a, b – экспериментальные коэффициенты. Для стали Ст3 a = 310 Мпа, b = 1,14 Мпа.

Вторая предельная гибкость стержня определяется по формуле

где σ т – предел текучести материала стержня. Для стали Ст3 λ пр2 = 60.

При выполнении условия λ ≤ λ пр2 критическое напряжение (по Ясинскому) будет превышать предел текучести материала стержня. Поэтому в этом случае для определения критической силы используется соотношение

(7.12)

В качестве примера на рис. 7.4 показана зависимость критического напряжения от гибкости стержня для стали Ст3.

Расчет на устойчивость

Расчет на устойчивость выполняется с использованием условия устойчивости


(7.13)

Допускаемое напряжение при расчете на устойчивость;

- коэффициент запаса устойчивости.

Допускаемое напряжение при расчете на устойчивость находится по допускаемому напряжению при расчете на сжатие

(7.14)

где φ – коэффициент продольного изгиба (или снижения основного допускаемого напряжения). Данный коэффициент изменяется в пределах 0 ≤ φ ≤ 1.

Учитывая, что для пластичных материалов

из формул (7.13) и (7.14) следует

(7.15)

Значения коэффициента продольного изгиба в зависимости от материала и гибкости стержня приводятся в справочной литературе.

Наиболее интересен проектный расчет из условия устойчивости. При данном виде расчета известны: расчетная схема (коэффициент μ), внешняя сжимающая сила F, материал (допускаемое напряжение [σ]) и длина l стержня, форма его поперечного сечения. Необходимо определить размеры поперечного сечения.

Трудность заключается в том, что неизвестно по какой формуле определять критическое напряжение, т.к. без размеров поперечного сечения нельзя определить гибкость стержня. Поэтому расчет выполняется методом последовательных приближений:

1) Принимаем начальное значение = 0,5. Определяем площадь поперечного сечения

2) По площади находим размеры поперечного сечения.

3) Используя полученные размеры поперечного сечения, вычисляем гибкость стержня, а по гибкости – конечное значение коэффициента продольного изгиба .

4) При несовпадении значений и выполняем второе приближение. Начальное значение φ во втором приближении принимаем равным
. И так далее.

Расчеты повторяем до тех пор, пока начальное и конечное значения коэффициента φ будут отличаться не более чем на 5%. В качестве ответа принимаем значения размеров, полученных в последнем приближении.

Для нахождения критических напряжений надо вычислить критическую силу , т. е. наименьшую осевую сжимающую силу, способную удержать в равновесии слегка искривленный сжатый стержень.

Эту задачу впервые решил академик Петербургской Академии наук Л. Эйлер в 1744 году.

Заметим, что самая постановка задачи иная, чем во всех ранее рассмотренных отделах курса. Если раньше мы определяли деформацию стержня при заданных внешних нагрузках, то здесь ставится обратная задача: задавшись искривлением оси сжатого стержня, следует определить, при каком значении осевой сжимающей силы Р такое искривление возможно.

Рассмотрим прямой стержень постоянного сечения, шарнирно опертый по концам; одна из опор допускает возможность продольного перемещения соответствующего конца стержня (рис.3). Собственным весом стержня пренебрегаем.

Рис.3. Расчетная схема в «задаче Эйлера»

Нагрузим стержень центрально приложенными продольными сжимающими силами и дадим ему весьма небольшое искривление в плоскости наименьшей жесткости; стержень удерживается в искривленном состоянии, что возможно, так как .

Деформация изгиба стержня предположена весьма малой, поэтому для решения поставленной задачи можно воспользоваться приближенным дифференциальным уравнением изогнутой оси стержня. Выбрав начало координат в точке А и направление координатных осей, как показано на рис.3, имеем:

(1)

Возьмем сечение на расстоянии х от начала координат; ордината изогнутой оси в этом сечении будет у , а изгибающий момент равен

По исходной схеме изгибающий момент получается отрицательным, ординаты же при выбранном направлении оси у оказываются положительными. (Если бы стержень искривился выпуклостью книзу, то момент был бы положительным, а у - отрицательным и .)



Приведенное только что дифференциальное уравнение принимает вид:

деля обе части уравнения на EJ и обозначая дробь через приводим его к виду:

Общий интеграл этого уравнения имеет вид:

Это решение заключает в себе три неизвестных: постоянные интегрирования а и b и значение , так как величина критической силы нам неизвестна.

Краевые условия на концах стержня дают два уравнения:

в точке А при х = 0 прогиб у = 0,

В х = 1 у = 0.

Из первого условия следует (так как и cos kx =1)

Таким образом, изогнутая ось является синусоидой с уравнением

(2)

Применяя второе условие, подставляем в это уравнение

у = 0 и х = l

получаем:

Отсюда следует, что или а или kl равны нулю.

Если а равно нулю, то из уравнения (2) следует, что прогиб в любом сечении стержня равен нулю, т. е. стержень остался прямым. Это противоречит исходным предпосылкам нашего вывода. Следовательно, sin kl = 0, и величина может иметь следующий бесконечный ряд значений:

где - любое целое число.

Отсюда , а так как то

Иначе говоря, нагрузка, способная удержать слегка искривленный стержень в равновесии, теоретически может иметь целый ряд значений. Но так как отыскивается, и интересно с практической точки зрения, наименьшее значение осевой сжимающей силы, при которой становится возможным продольный изгиб, то следует принять .

Первый корень =0 требует, чтобы было равно нулю, что не отвечает исходным данным задачи; поэтому этот корень должен быть отброшен и наименьшим корнем принимается значение . Тогда получаем выражение для критической силы:

Таким образом, чем больше точек перегиба будет иметь синусоидально-искривленная ось стержня, тем большей должна быть критическая сила. Более полные исследования показывают, что формы равновесия, определяемые формулами (1), неустойчивы; они переходят в устойчивые формы лишь при наличии промежуточных опор в точках В и С (рис.1).

Рис.1

Таким образом, поставленная задача решена; для нашего стержня наименьшая критическая сила определяется формулой

а изогнутая ось представляет синусоиду

Величина постоянной интегрирования а осталась неопределенной; физическое значение ее выяснится, если в уравнении синусоиды положить ; тогда (т. е. посредине длины стержня) получит значение:

Значит, а - это прогиб стержня в сечении посредине его длины. Так как при критическом значении силы Р равновесие изогнутого стержня возможно при различных отклонениях его от прямолинейной формы, лишь бы эти отклонения были малыми, то естественно, что прогиб f остался неопределенным.

Он должен быть при этом настолько малым, чтобы мы имели право применять приближенное дифференциальное уравнение изогнутой оси, т. е. чтобы было по прежнему мало по сравнению с единицей.

Получив значение критической силы, мы можем сейчас же найти и величину критического напряжения , разделив силу на площадь сечения стержня F ; так как величина критической силы определялась из рассмотрения деформаций стержня, на которых местные ослабления площади сечения сказываются крайне слабо, то в формулу для входит момент инерции поэтому принято при вычислении критических напряжений, а также при составлении условия устойчивости вводить в расчет полную, а не ослабленную, площадь поперечного сечения стержня . Тогда будет равно

Таким образом, если бы площадь сжатого стержня с такой гибкостью была подобрана лишь по условию прочности, то стержень разрушился бы от потери устойчивости прямолинейной формы.

Впервые проблема устойчивости сжатых стержней была поставлена . Эйлер вывел расчетную формулу для критической силы и показал, что ее величина существенно зависит от способа закрепления стержня. Идея метода Эйлера заключается в установлении условий, при которых кроме прямолинейной возможна и смежная (т.е. сколь угодно близкая к исходной) криволинейная форма равновесия стержня при постоянной нагрузке.

Предположим, что шарнирно закрепленный по концам прямой стержень, сжатый силой P = P k , был выведен некоторой горизонтальной силой из состояния прямолинейного равновесия и остался изогнутым после устранения горизонтальной силы (рис. 13.4). Если прогибы стержня малы, то приближенное дифференциальное уравнение его оси будет иметь такой же вид, как и при поперечном изгибе бруса:

Совмещая начало координат с центром нижнего сечения, направим ось у в сторону прогибов стержня, а ось х - по оси стержня.

В теории продольного изгиба принято сжимающую силу считать положительной. Поэтому, определяя изгибающий момент в текущем сечении рассматриваемого стержня, получаем

Но, как следует из рис. 13.4, при выбранном направлении осей у // <0, поэтому знаки левой и правой частей уравнения (17.2) будут одинаковыми, если в правой части сохранить знак минус. Если изменить направление оси у на противоположное, то одновременно изменятся знаки у и у // и знак минус в правой части уравнения (13.2) сохранится.

Следовательно, уравнение упругой линии стержня имеет вид

.

Полагая α 2 =Рк /EI , получаем линейное однородное дифференциальное уравнение

,

общий интеграл которого

Здесь A и B - постоянные интегрирования, определяемые из условий закрепления стержня, так называемых граничных или краевых условий.

Горизонтальное смещение нижнего конца стержня, как видно из рис. 13.4, равно нулю, т. е. при х =0 прогиб у =0. Это условие будет выполнено, если B =0. Следовательно, изогнутая ось стержня является синусоидой

.

Горизонтальное смещение верхнего конца стержня также равно нулю, поэтому

.

Константа A , представляющая собой наибольший прогиб стержня, не может быть равна нулю, так как при A =0 возможна только прямолинейная форма равновесия, а мы ищем условие, при котором возможна и криволинейная форма равновесия. Поэтому должно быть sin α l =0. Отсюда следует, что криволинейные формы равновесия стержня могут существовать, если α l принимает значения π ,2π ,.n π . Величина α l не может быть равна нулю, так как это решение соответствует случаю

Приравнивая α l = n π и подставляя

получаем

.

Выражение (13.5) называется формулой Эйлера . По ней можно вычислить критическую силу Рк при выпучивании стержня в одной из двух главных его плоскостей, так как только при этом условии справедливо уравнение (13.2), а следовательно и формула (13.5).

Выпучивание стержня происходит в сторону наименьшей жесткости, если нет специальных устройств, препятствующих изгибу стержня в этом направлении. Поэтому в формулу Эйлера надо подставлять I min - меньшей из главных центральных моментов инерции поперечного сечения стержня.

Величина наибольшего прогиба стержня A в приведенном решении остается неопределенной, она принята произвольной, но предполагается малой.

Величина критической силы, определяемая формулой (13.5), зависит от коэффициента n . Выясним геометрический смысл этого коэффициента.

Выше мы установили, что изогнутая ось стержня является синусоидой, уравнение которой после подстановки α =π n /l в выражение (13.4) принимает вид

.

Синусоиды для n =1, n =2 изображены на рис. 13.5. Нетрудно заметить, что величина n представляет собой число полуволн синусоиды, по которой изогнется стержень. Очевидно, стержень всегда изогнется по наименьшему числу полуволн, допускаемому его опорными устройствами, так как согласно (13.5) наименьшему n соответствует наименьшая критическая сила. Только эта первая критическая сила и имеет реальный физический смысл.

Например, стержень с шарнирно опертыми концами изогнется, как только будет достигнуто наименьшее значение критической силы, соответствующее n =1, так как опорные устройства этого стержня допускают изгиб его по одной полуволне синусоиды. Критические силы, соответствующие n =2, n =3, и более, могут быть достигнуты только при наличии промежуточных опор (рис. 13.6). Для стержня с шарнирными концевыми опорами без промежуточных закреплений реальный смысл имеет первая критическая сила

.

Формула (13.5), как следует из ее вывода, справедлива не только для стержня с шарнирно закрепленными концами, но и для любого стержня, который изогнется при выпучивании по целому числу полуволн. Применим эту формулу, например, при определении критической силы для стержня, опорные устройства которого допускают только продольные смещения его концов (стойка с заделанными концами). Как видно из рисунка 13.7, число полуволн изогнутой оси в этом случае n =2 и, следовательно, критическая сила для стержня при данных опорных устройствах

.

Предположим, что стойка с одним защемленным и другим свободным концом (рис. 13.8) сжата силой Р .

Если сила P = P k , то кроме прямолинейной может существовать также и криволинейная форма равновесия стойки (пунктир на рис. 13.8).

Дифференциальное уравнение изогнутой оси стойки в изображенной на рис. 13.8 системе координатных осей имеет прежний вид.

Общее решение этого уравнения:

Подчиняя это решение очевидным граничным условиям: y =0 при x =0 и y / =0 при x = l , получаем B =0, A α cos α l = 0.

Мы предположили, что стойка изогнута, поэтому величина A не может быть равна нулю. Следовательно, cos α l = 0. Наименьший отличный от нуля, корень этого уравнения α l = π /2 определяет первую критическую силу

,

которой соответствует изгиб стержня по синусоиде

.

Значениям α l =3π /2, α l =5π /2 и т.д, как было показано выше, соответствуют большие величины P k и более сложные формы изогнутой оси стойки, которые могут практически существовать лишь при наличии промежуточных опор.

В качестве второго примера рассмотрим стойку с одним защемленным и вторым шарнирно опертым концом (рис. 13.9). Вследствие искривления оси стержня при P = P k со стороны шарнирной опоры возникает горизонтальная реактивная сила R . Поэтому изгибающий момент в текущем сечении стержня

.α :

Наименьший корень этого уравнения определяет первую критическую силу. Это уравнение решается методом подбора. Нетрудно поверить, что наименьший, отличный от нуля, корень этого уравнения α l = 4.493=1.43 π .

Принимая α l = 1.43 π , получаем следующее выражение для критической силы:

Здесь μ =1/n - величина, обратная числу полуволн n синусоиды, по которой изогнется стержень. Постоянная μ называется коэффициентом приведения длины, а произведение μ l - приведенной длиной стержня. Приведенная длина есть длина полуволны синусоиды, по которой изгибается этот стержень.

Случай шарнирного закрепления концов стержня называется основным. Из сказанного выше следует, что критическая сила для любого случая закрепления стержня может быть вычислена по формуле для основного случая при замене в ней действительной длины стержня его приведенной длиной μ l .

Коэффициенты приведения μ для некоторых стоек даны на рис. 17.10.

Понятие об устойчивости и критической силе. Проектировочный и проверочный расчеты.

В конструкциях и сооружениях большое применение находят детали, являющиеся относительно длинными и тонкими стержнями, у которых один или два размера поперечного сечения малы по сравнению с длиной стержня. Поведение таких стержней под действием осевой сжимающей нагрузки оказывается принципиально иным, чем при сжатии коротких стержней: при достижении сжимающей силой F некоторой критической величины, равной Fкр, прямолинейная форма равновесия длинного стержня оказывается неустойчивой, и при превышении Fкр стержень начинает интенсильно искривляется (выпучивается). При этом новым (моментным) равновесным состоянием упругого длинного становится некоторая новая уже криволинейная форма. Это явление носит название потери устойчивости.

Рис. 37. Потеря устойчивости

Устойчивость - способность тела сохранять положение или форму равновесия при внешних воздействиях.

Критическая сила (Fкр) - нагрузка, превышение которой вызывает потерю устойчивости первоначальной формы (положения) тела. Условие устойчивости:

Fmax ≤ Fкр, (25)

Устойчивость сжатого стержня. Задача Эйлера .

При определении критической силы, вызывающей потерю устойчивости сжатого стержня, предполагается, что стержень идеально прямой и сила F приложена строго центрально. Задачу о критической нагрузке сжатого стержня с учетом возможности существования двух форм равновесия при одном и том же значении силы решил Л. Эйлер в 1744 году.

Рис. 38. Сжатый стержень

Рассмотрим шарнирно опертый по концам стержень, сжатый продольной силой F. Положим, что по какой-то причине стержень получил малое искривление оси, вследствие чего в нем появился изгибающий момент M:

где y - прогиб стержня в произвольном сечении с координатой x.

Для определения критической силы можно воспользоваться приближенным дифференциальным уравнением упругой линии:

(26)

Проведя преобразования, можно увидеть, что минимальное значение критическая сила примет при n = 1 (на длине стержня укладывается одна полуволна синусоиды) и J = Jmin (стержень искривляется относительно оси с наименьшим моментом инерции)

(27)

Это выражение - формула Эйлера.

Зависимость критической силы от условий закрепления стержня.

Формула Эйлера была получена для, так называемого, основного случая - в предположении шарнирного опирания стержня по концам. На практике встречаются и другие случаи закрепления стержня. При этом можно получить формулу для определения критической силы для каждого из этих случаев, решая, как в предыдущем параграфе, дифференциальное уравнение изогнутой оси балки с соответствующими граничными условиями. Но можно использовать и более простой прием, если вспомнить, что, при потере устойчивости на длине стержня должна укладываться одна полуволна синусоиды.

Рассмотрим некоторые характерные случаи закрепления стержня по концам и получим общую формулу для различных видов закрепления.

Рис. 39. Различные случаи закрепления стержня

Общая формула Эйлера:

(28)

где μ·l = l пр - приведенная длина стержня; l - фактическая длина стержня; μ - коэффициент приведенной длины, показывающий во сколько раз необходимо изменить длину стержня, чтобы критическая сила для этого стержня стала равна критической силе для шарнирно опертой балки. (Другая интерпретация коэффициента приведенной длины: μ показывает, на какой части длины стержня для данного вида закрепления укладывается одна полуволна синусоиды при потере устойчивости.)

Таким образом, окончательно условие устойчивости примет вид

(29)

Рассмотрим два вида расчета на устойчивость сжатых стержней - проверочный и проектировочный.

Проверочный расчет

Порядок проверочного расчета на устойчивость выглядит так:

Исходя из известных размеров и формы поперечного сечения и условий закрепления стержня, вычисляем гибкость;

По справочной таблице находим коэффициент понижения допускаемого напряжения, затем определяем допускаемое напряжение на устойчивость;

Сравниваем максимальное напряжение с допускаемым напряжением на устойчивость.

Проектировочный расчет

При проектировочном расчете (подобрать сечение под заданную нагрузку) в расчетной формуле имеются две неизвестные величины - искомая площадь поперечного сечения A и неизвестный коэффициент φ (так как φ зависит от гибкости стержня, а значит и от неизвестной площади A). Поэтому при подборе сечения обычно приходится пользоваться методом последовательных приближений:

Обычно в первой попытке принимают φ 1 = 0,5…0,6 и определяют площадь сечения в первом приближении

По найденной площади A1 подбирают сечение и вычисляют гибкость стержня в первом приближении λ1. Зная λ, находят новое значение φ′1;

Выбор материала и рациональной формы сечения.

Выбор материала . Так как в формулу Эйлера из всех механических характеристик входит лишь модуль Юнга, то для повышения устойчивости стержней большой гибкости нецелесообразно применять высокопрочные материалы, так как модуль Юнга для всех марок сталей примерно одинаков.

Для стержней малой гибкости применение высокосортных сталей оправдано, так как с повышением предела текучести у таких сталей повышаются и критические напряжения, а значит и запас устойчивости.

Иркутский государственный университет путей сообщения

Лабораторная работа № 16

по дисциплине«Сопротивление материалов»

ОПЫТНОЕ ОПРЕДЕЛЕНИЕ КРИТИЧЕСКИХ СИЛ

ПРИ ПРОДОЛЬНОМ ИЗГИБЕ

Кафедра ПМ

Лабораторная работа № 16

Опытное определение критических сил при продольном изгибе

Цель работы: исследование явления потери устойчивости сжатого стального стержня в упругой

стадии. Экспериментальное определение значений критических нагрузок сжатых

стержней при различных способах закрепления и сравнение их с теоретическими

значениями.

Общие положения

Сжатые стержни недостаточно проверять на прочность по известному условию:

,

где [σ] – допускаемое напряжение для материала стержня, P – сжимающая сила, F – площадь поперечного сечения.

В практической деятельности инженеры имеют дело с подвергающимися сжатию гибкими стержнями, тонкими сжатыми пластинами, тонкостенными конструкциями, выход из строя которых вызывается ен потерей несущей способности, а потерей устойчивости.

Под потерей устойчивости понимается потеря первоначальной формы равновесия.

В сопротивлении материалов рассматривается устойчивость элементов конструкций, работа­ющих на сжатие.



Рассмотрим длинный тонкий стержень (рис. 1), нагруженный осевой сжимающей силой P .

P < P кр P > P кр

Рис. 1. Стержень, нагруженный осевой сжимающей силой P .

При малых значениях силы F стер­жень сжимается, оставаясь прямолинейным. Причем, если стержень отклонить от этого положения небольшой поперечной нагрузкой, то он изогнется, но при снятии ее стержень возвращается в прямолинейное состояние. Это значит, что при данной силе P прямолинейная форма равновесия стержня устойчива.

Если продолжить увеличивать сжимающую силу P , то при неко­тором ее значении прямолинейная форма равновесия становит­ся неустойчивой и возникает новая форма равновесия стержня - криволинейная (рис. 1, б). Вследствие изгиба стержня в его сече­ниях появится изгибающий момент, который вызовет дополнитель­ные напряжения, и стержень может внезапно разрушиться.

Искривление длинного стержня, сжимаемого продольной силой, называется продольным изгибом .

Наибольшее значение сжимающей силы, при котором прямоли­нейная форма равновесия стержня устойчива, называется критичес­ким - P кр .

При достижении критической нагрузки происходит резкое каче­ственное изменение первоначальной формы равновесия, что ведет к выходу конструкции из строя. Поэтому критическая сила рассмат­ривается как разрушающая нагрузка.

Формулы Эйлера и Ясинского

Задачу определения критической силы сжатого стержня впер­вые решил член Петербургской академии наук Л. Эйлер в 1744 г. Формула Эйлера имеет вид

(1)

где Е модуль упругости материала стержня; J min - наименьший момент инерции поперечного сечения стержня (поскольку искривление стержня при потере устойчивости происходит в плоскости наименьшей жесткости, т. е. поперечные сечения стержня повора­чиваются вокруг оси, относительно которой момент инерции ми­нимален, т.е. либо вокруг оси x , либо вокруг оси y );

(μ·l ) – приведенная длина стержня, это произведение длины стержня l на коэффициент μ, зависящий от способов закреп­ления концов стержня.

Коэффициент μ называют коэффициентом приведения длины ;его значение для наиболее часто встречающихся случаев закрепления концов стержня приведены на рис. 2:

а - оба конца стержня закреплены шарнирно и могут сближаться;

б - один конец жестко защемлен, другой свободен;

в - один конец закреплен шарнирно, второй имеет «поперечно-плавающую заделку»;

г - один конец жестко защемлен, второй имеет «поперечно-плавающую заделку»;

д - один конец заделан жестко, на другом шарнирно-подвижная опора;

е - оба конца жестко защемлены, но могут сближаться.

Из этих примеров видно, что коэффициент μ представляет со­бой величину, обратную числу полуволн упругой линии стержня при потере устойчивости.

Рис. 2. Коэффициент μ для наиболее часто

встречающихся случаев закрепления концов стержня.

Нормальное напряжение в поперечном сечении сжатого стержня, соответствующее критическому значению сжимающей силы, также называется критическим.

Определим его исходя из формулы Эйлера:

(2)

Геометрическую характеристику сечения i min , определяемую по формуле

называют радиусом инерции сечения (относительно оси с J min ). Для прямоугольного сечения

С учетом (3) формула (2) примет вид:

(4)

Отношение приведенной длины стержня к минимальному ра­диусу инерции его поперечного сечения по предложению профес­сора Санкт-Петербургского института инженеров путей сообще­ния Ф.С. Ясинского (1856-1899) называют гибкостью стержня и обозначают буквой λ :

В этой безразмерной величине одновременно отражаются такие параметры: длина стержня, способ его закрепления и характеристи­ка поперечного сечения.

Окончательно, подставив (5) в формулу (4), получим

При выводе формулы Эйлера предполагалось, что материал стер­жня упруг и следует закону Гука. Следовательно, формулу Эйлера можно применять только при напряжениях, меньших предела про­порциональности σ пц , т. е. когда

Этим условием определяется предел применимости формулы Эйлера:

Величину, стоящую в правой части этого неравенства, называют предельной гибкостью :

ее значение зависит от физико-механических свойств материала стержня.

Для низкоуглеродистой стали Ст. 3, у которой σ пц = 200 МПа, Е = 2· 10 5 МПа:

Аналогично можно вычислить значение предельной гибкости для других материалов: для чугуна λ пред = 80, для сосны λ пред = 110.

Таким образом, формула Эйлера применима для стержней, гиб­кость которых больше или равна предельной гибкости , т. е.

λ λ пред

Понимать это надо так: если гибкость стержня больше предельной гибкости, то критическую силу надо определять по формуле Эйлера.

При λ < λ пред формула Эйлера для стержней неприменима. В этих случаях, когда гибкость стержней меньше предельной, при расчетах пользуются эмпирической формулой Ясинского :

σ кр = a λ , (7)

где а и b - определяемые опытным путем коэффициенты, по­стоянные для данного материала; они имеют размерность напря­жения.

При некотором значении гибкости λ о напряжение σ кр , вычис­ленное по формуле (7), становится равным предельному напря­жению при сжатии, т. е. пределу текучести σ т для пластичных мате­риалов или пределу прочности при сжатии σ вс – для хрупких материалов. Стер­жни малой гибкости (λ < λ о )рассчитывают не на устойчивость, а на прочность при простом сжатии.

Таким образом, в зависимости от гибкости расчет сжатых стер­жней на устойчивость производится различно.

Loading...Loading...