Расположение лопастей. Оптимальные лопасти для ветрогенератора: вид, форма, материалы и инструкция по изготовлению своими руками

Нами была разработана конструкция ветрогенератора с вертикальной осью вращения. Ниже, представлено подробное руководство по его изготовлению, внимательно прочтя которое, вы сможете сделать вертикальный ветрогенератор сами.
Ветрогенератор получился вполне надежный, с низкой стоимостью обслуживания, недорогой и простой в изготовлении. Представленный ниже список деталей соблюдать не обязательно, вы можете внести какие-то свои коррективы, что-то улучшить, что-то использовать свое, т.к. не везде можно найти именно то, что в списке. Мы постарались использовать недорогие и качественные детали.

Используемые материалы и оборудование:

Наименование Кол-во Примечание
Список используемых деталей и материалов для ротора:
Предварительно вырезанный лист металла 1 Вырезан из стали толщиной 1/4" при помощи гидроабразивной, лазерной и др. резке
Ступица от авто (Хаб) 1 Должна содержать 4 отверстия, диаметр около 4 дюймов
2" x 1" x 1/2" неодимовый магнит 26 Очень хрупкие, лучше заказать дополнительно
1/2"-13tpi x 3" шпилька 1 TPI - кол-во витков резьбы на дюйм
1/2" гайка 16
1/2" шайба 16
1/2" гровер 16
1/2".-13tpi колпачковая гайка 16
1" шайба 4 Для того, чтобы выдержать зазор между роторами
Список используемых деталей и материалов для турбины:
3" x 60" Оцинкованная труба 6
ABS пластик 3/8" (1.2x1.2м) 1
Магниты для балансировки Если нужны Если лопасти не сбалансированы, то магниты прикрепляются для балансировки
1/4" винт 48
1/4" шайба 48
1/4" гровер 48
1/4" гайка 48
2" x 5/8" уголки 24
1" уголки 12 (опционально) В случае, если лопасти не держат форму, то можно добавить доп. уголки
винты, гайки, шайбы и гроверы для 1" уголка 12 (опционально)
Список используемых деталей и материалов для статора:
Эпоксидка с затвердителем 2 л
1/4" винт нерж. 3
1/4" шайба нерж. 3
1/4" гайка нерж. 3
1/4" кольцевой наконечник 3 Для эл. соединения
1/2"-13tpi x 3" шпилька нерж. 1 Нерж. сталь не является ферромагнетиком, поэтому не будет "тормозить" ротор
1/2" гайка 6
Стеклоткань Если нужна
0.51мм эмал. провод 24AWG
Список используемых деталей и материалов для монтажа:
1/4" x 3/4" болт 6
1-1/4" фланец трубы 1
1-1/4" оцинк. труба L-18" 1
Инструменты и оборудование:
1/2"-13tpi x 36" шпилька 2 Используется для поддомкрачивания
1/2" болт 8
Анемометр Если нужен
1" лист алюминия 1 Для изготовления проставок, если понадобятся
Зеленая краска 1 Для покраски держателей пластика. Цвет не принципиален
Голубая краска бал. 1 Для покраски ротора и др. частей. Цвет не принципиален
Мультиметр 1
Паяльник и припой 1
Дрель 1
Ножовка 1
Керн 1
Маска 1
Защитные очки 1
Перчатки 1

Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки.

Изготовление турбины

1. Соединяющий элемент - предназначен для соединения ротора к лопастям ветрогенератора.
2. Схема расположения лопастей - два встречных равносторонних треугольника. По данному чертежу потом легче будет расположить уголки крепления лопастей.

Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний.

Последовательность действий изготовления турбины:

  1. Изготовление нижней и верхней опор (оснований) лопастей. Разметьте и при помощи лобзика вырежьте из ABS пластика окружность. Затем обведите ее и вырежьте вторую опору. Должны получиться две абсолютно одинаковые окружности.
  2. В центре одной опоры вырежьте отверстие диаметром 30 см. Это будет верхняя опора лопастей.
  3. Возьмите хаб (ступица от авто) и разметьте и просверлите четыре отверстия на нижней опоре для крепления хаба.
  4. Сделайте шаблон расположения лопастей (рис. выше) и разметьте на нижней опоре места крепления уголков, которые будут соединять опору и лопасти.
  5. Сложите лопасти в стопку, прочно свяжите их и обрежьте до требуемой длины. В данной конструкции лопасти длиной 116 см. Чем длинее лопасти, тем больше энергии ветра они получают, но обратной стороной является нестабильность в сильный ветер.
  6. Разметьте лопасти для крепления уголков. Накерните, а затем просверлите отверстия в них.
  7. Используя шаблон расположения лопастей, который представлен на рисунке выше, прикрепите лопасти к опоре при помощи уголков.

Изготовление ротора

Последовательность действий по изготовлению ротора:

  1. Положите два основания ротора друг на друга, совместите отверстия и напильником или маркером сделайте небольшую метку по бокам. В дальнейшем, это поможет правильно сориентировать их относительно друг-друга.
  2. Сделайте два бумажных шаблона расположения магнитов и приклейте их на основания.
  3. Промаркируйте полярность всех магнитов при помощи маркера. В качестве "тестера полярности" можно использовать небольшой магнит, обмотанный тряпкой или изолентой. Проводя его над большим магнитом, будет хорошо видно, отталкивается он или притягивается.
  4. Приготовьте эпоксидную смолу (добавив в нее отвердитель). И равномерно нанесите ее снизу магнита.
  5. Очень аккуратно поднесите магнит к краю основания ротора и переместите его к своей позиции. Если магнит устанавливать сверху ротора, то большая мощность магнита может его резко примагнитить и он может поломаться. И никогда не суйте свои пальцы и другие части тела между двумя магнитами или магнитом и железом. Неодимовые магниты очень мощные!
  6. Продолжайте приклеивать магниты к ротору (не забудьте смазывать эпоксидкой), чередую их полюса. Если магниты сьезжают под действием магнитной силы, то воспользуйтесь куском дерева, располагая его между ними для страховки.
  7. После того, как один ротор закончили, переходите к второму. Используя ранее поставленную метку, расположите магниты точно напротив первого ротора, но в другой полярности.
  8. Положите роторы подальше друг от друга (чтобы они не примагнитились, иначе потом не отдерете).

Изготовление статора очень трудоемкий процесс. Можно конечно купить готовый статор (попробуй еще найти их у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками

Статор ветрогенератора - электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:
320 витков, 0.51 мм (24AWG) = 100В @ 120 об/мин.
160 витков, 0.0508 мм (16AWG) = 48В @ 140 об/мин.
60 витков, 0.0571 мм (15AWG) = 24В @ 120 об/мин.

Вручную наматывать катушки - это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки я бы вам посоветовал сделать простое приспособление - намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов.

Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой.

Приспособа сделана из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой.

Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек.

Вы можете придумать свою конструкцию намоточного станка, а может у вас уже имеется готовый.
После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром.

Не подключайте домашних потребителей напрямую от ветрогенератора! Также соблюдайте меры безопасности при обращении с электричеством!

Процесс соединения катушек:

  1. Зачистите шкуркой концы выводов каждой катушки.
  2. Соедините катушки, как показано на рисунке выше. Должно получиться 3 группы, по 3 катушки в каждой группе. При такой схеме соединений получится трехфазный переменный ток. Концы катушек припаяйте, либо воспользуйтесь зажимами.
  3. Выберите одну из следующих конфигураций:
    А. Конфигурация "звезда ". Для того, чтобы получить большое напряжение на выходе, соедините выводы X,Y и Z между собой.
    B. Конфигурация "треугольник". Для того, чтобы получить большой ток, соедините X с B, Y с C, Z с A.
    C. Для того, чтобы в будущем сделать возможность изменять конфигурацию, нарастите все шесть проводников и выведите их наружу.
  4. На большом листе бумаге нарисуйте схему расположения и подключения катушек. Все катушки должны быть равномерно распределены и соответствовать расположению магнитов ротора.
  5. Прикрепите катушки при помощи скотча к бумаге. Приготовьте эпоксидную смолу с отвердителем для заливки статора.
  6. Для нанесения эпоксидки на стеклоткань используйте малярную кисть. Если необходимо, то добавьте небольшие кусочки стеклоткани. Центр катушек не заполняйте, чтобы обеспечить их достаточное охлаждение при работе. Постарайтесь избегать образования пузырьков. Целью данной операции является закрепление катушек на своих местах и придание плоской формы статору, который будет располагаться между двумя роторами. Статор не будет нагруженным узлом и не будет вращаться.

Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках:

Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше - места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность.

Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром.

Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора.

Кронштейн статора

Труба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось.

На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами.

На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами. Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия.

Генератор. Окончательная сборка

Небольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре.

На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны).
На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место.

Процесс сборки:
1. В плите верхнего ротора просверлите 4 отверстия и нарежьте в них резьбу для шпильки. Это необходимо для плавного опускания ротора на свое место. Уприте 4 шпильки в алюминиевые пластины приклеенные ранее и установите на шпильки верхний ротор.
Роторы будут притягиваться друг к другу с очень большой силой, поэтому и нужно такое приспособление. Сразу выровняйте роторы относительно друг-друга по поставленным ранее метках на торцах.
2-4. Поочередно вращая ключом шпильки, равномерно опускайте ротор.
5. После того, как ротор уперся в втулку (обеспечивающая зазор), выкрутите шпильки и уберите алюминиевые пластины.
6. Установите хаб (ступицу) и прикрутите его.

Генератор готов!

После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так (см. рис. выше)

Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники.

Колпачковые гайки и шайбы служат для крепления соедин. платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам.

Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности.

Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.
Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи.

На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный.

Место установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора - достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы "любят" когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.
Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).

Немного о механике ветрогенератора

Как известно, ветер возникает из-за разности температур поверхности земли. Когда ветер вращает турбины ветрогенератора, он создает три силы: подьемную, торможения и импульсную. Подьемная сила обычно возникает над выпуклой поверхностью и является следствием разности давлений. Сила торможения ветра возникает за лопастями ветрогенератора, она является нежелательной и тормозит ветряк. Импульсная сила возникает из-за изогнутой формы лопастей. Когда молекулы воздуха толкают лопасти сзади, то им некуда потом деваться и они собираются позади них. В результате, они толкают лопасти в направлении ветра. Чем больше подьемная и импульсная силы и меньше сила торможения, тем быстрее лопасти будет вращаться. Соответственно вращается ротор, который создает магнитное поле на статоре. В результате чего вырабатывается электрическая энергия.

Лопасти несущего винта вертолета надо построить так, чтобы они, создавая необходимую подъемную силу, выдерживали все возникающие на них нагрузки. И не просто выдерживали, а имели бы еще запас прочности на всякие непредвиденные случаи, которые могут встретиться в полете и при техническом обслуживании вертолета на земле (например, резкий порыв ветра, восходящий поток воздуха, резкий маневр, обледенение лопастей, неумелая раскрутка винта после запуска двигателя и т. д.).

Одним из расчетных режимов для подбора несущего винта вертолета является режим вертикального набора на любой избранной для расчета высоте. На этом режиме из-за отсутствия поступательной скорости в плоскости вращения винта потребная мощность имеет большую величину.

Зная приблизительно вес конструируемого вертолета и задаваясь величиной полезной нагрузки, которую должен будет поднимать вертолет, приступают к подбору винта. Подбор винта сводится к тому, чтобы выбрать такой диаметр винта и такое число его оборотов в минуту, при которых бы расчетный груз мог быть поднят винтом отвесно вверх с наименьшей затратой мощности.

При этом известно, что тяга несущего винта пропорциональна четвертой степени его диаметра и только второй степени числа оборотов, т. е. тяга, развиваемая несущим винтом, более зависит от диаметра, чем от числа оборотов. Поэтому заданную тягу легче получить увеличением диаметра, чем увеличением числа оборотов. Так, например, увеличив диаметр в 2 раза, получим тягу в 24 = 16 раз большую, а увеличив число оборотов в два раза, получим тягу только в 22 = 4 раза большую.

Зная мощность двигателя, который будет установлен на вертолете для приведения во вращение несущего винта, сначала подбирают диаметр несущего винта. Для этого применяют следующее соотношение:

Лопасть несущего винта работает в очень тяжелых условиях. На нее действуют аэродинамические силы, которые ее изгибают, скручивают, разрывают, стремятся оторвать от нее обшивку. Чтобы «противостоять» такому действию аэродинамических сил, лопасть должна быть достаточно прочной.

При полетах в дождь, в снег или в облаках при условиях, способствующих обледенению, работа лопасти еще более усложняется. Капли дождя, попадая на лопасть с огромным» скоростями, сбивают с нее краску. При обледенении па лопастях образуются ледяные наросты, которые искажают ее профиль, мешают ее маховому движению, утяжеляют ее. При хранении вертолета на земле на лопасть разрушающе действуют резкие изменения температуры, влажность, солнечные лучи.

Значит, лопасть должна быть не только прочной, но она еще должна быть невосприимчивой к влиянию внешней среды. Но если бы только это! Тогда лопасть можно было бы сделать цельнометаллической, покрыв ее противо-коррозийным слоем, и задача была бы решена.

Но есть еще одно требование: лопасть, кроме этого, должна быть еще и легкой. Поэтому ее изготовляют полой За основу конструкции лопасти берут металлический лонжерон, чаще всего - стальную трубу переменного сечения, площадь которого постепенно или ступенчато уменьшается от корневой части к концу лопасти.

Лонжерон, как главный продольный силовой элемент лопасти, воспринимает перерезывающие силы и изгибающий момент. В этом отношении работа лонжерона лопасти схожа с работой лонжерона самолетного крыла. Однако на лонжерон лопасти действуют в результате вращения винта еще центробежные силы, чего нет у лонжерона крыла самолета. Под действием этих сил лонжерон лопасти подвергается растяжению.

К лонжерону привариваются или приклепываются стальные фланцы для крепления поперечного силового набора - нервюр лопасти. Каждая нервюра, которая может быть металлической или деревянной, состоит из стенок и полок. К металлическим полкам приклеивается или приваривается металлическая обшивка, а к деревянным полкам приклеивается фанерная или пришивается полотняная обшивка или к носку приклеивается фанерная обшивка, а к хвостику пришивается полотняная, как показано. В носовой части профиля полки нервюр крепятся к переднему стрингеру, а в хвостовой части - к заднему стрингеру. Стрингеры служат вспомогательными продольными силовыми элементами.

Обшивка, покрывающая полки нервюр, образует собой профиль лопасти в любом ее сечении. Наиболее легкой является полотняная обшивка. Однако во избежание искажения профиля в результате прогиба полотняной обшивки на участках между нервюрами, нервюры лопасти приходится ставить очень часто, примерно через 5-6 см одна от другой, что утяжеляет лопасть. Поверхность лопасти с плохо натянутой полотняной обшивкой выглядит ребристой и обладает низкими аэродинамическими качествами, так как ее лобовое сопротивление велико. В процессе одного оборота профиль такой лопасти меняется, что способствует появлению дополнительной вибрации вертолета. Поэтому полотняная обшивка пропитывается аэролаком, который по мере своего высыхания сильно натягивает полотно.

При изготовлении обшивки из фанеры жесткость лопасти увеличивается и расстояние между нервюрами может быть увеличено в 2,5 раза по сравнению с лопастями, обтянутыми полотном. Для того чтобы уменьшить сопротивление, поверхность фанеры гладко обрабатывается и полируется.

Хороших аэродинамических форм и большой прочности можно добиться, если изготовить полую цельнометаллическую лопасть. Трудность ее производства состоит в изготовлении переменного по сечению лонжерона, который образует носовую часть профиля. Хвостовая часть профиля лопасти изготовляется из листовой металлической обшивки, которую передними кромками заподлицо приваривают к лонжерону, а задние кромки склепывают между собой.

Профиль лопасти винта вертолета выбирается с таким расчетом, чтобы при увеличении угла атаки срыв обтекания возникал на возможно больших углах атаки. Это необходимо для того, чтобы избежать срыва обтекания на отступающей лопасти, где углы атаки особенно велики. Кроме того, во избежание вибраций профиль надо подобрать такой, у которого бы при изменении угла атаки не менялось положение центра давления.

Очень важным фактором для прочности и работы лопасти является взаимное расположение центра давления и центра тяжести профиля. Дело в том, что при совместном действии изгиба и кручения, лопасть подвержена самовозбуждающейся вибрации, т. е. вибрации со все возрастающей амплитудой (флаттеру). Во избежание вибрации лопасть должна балансироваться относительно хорды, т. е. должно быть обеспечено такое положение центра тяжести на хорде, которое исключало бы самовозрастание вибрации. Задача балансировки сводится к тому, чтобы у построенной лопасти центр тяжести профиля находился впереди центра давления.

Продолжая рассматривать тяжелые условия работы лопасти несущего винта, необходимо отметить, что повреждение деревянной обшивки лопасти каплями дождя может быть предотвращено, если вдоль ее передней кромки укрепить листовую металлическую окантовку.

Борьба же с обледенением лопастей представляет собой более сложную задачу. Если такие виды обледенения в полете, как иней и изморозь, большой опасности для вертолета не представляют, то стекловидный лед, постепенно и незаметно, но чрезвычайно прочно наращивающийся на лопасти, приводит к утяжелению лопасти, искажению ее профиля и, в конечном счете, к уменьшению подъемной силы, что приводит к резкой потере управляемости и устойчивости вертолета.

Существовавшая одно время теория о том, что лед вследствие машущего движения лопастей будет в полете скалываться, оказалась несостоятельной. Обледенение лопасти начинается раньше всего у корневой части, где изгиб лопасти при ее машущем движении невелик. В дальнейшем слой льда начинает распространяться все дальше к концу лопасти, постепенно сходя на нет. Известны случаи, когда толщина льда у корневой части достигала 6 мм, а у конца лопасти - 2 мм.

Предотвратить обледенение возможно двумя путями.

Первый путь - это тщательное изучение прогноза погоды в районе полетов, обход встретившихся по пути облаков и изменение высоты полета с целью выхода из воны обледенения, прекращение полета и т. д.

Второй путь - это оборудование лопастей противо-обледенительными устройствами.

Известен целый рад этих устройств для лопастей вертолета. Для удаления льда с лопастей несущего винта может

быть применен спиртовой противообледенитель, который разбрызгивает на передней кромке винта спирт. Последний, смешиваясь с водой, понижает температуру ее замерзания и препятствует образованию льда.

Скалывание льда с лопастей винта может быть осуществлено воздухом, который нагнетается в резиновую камеру, проложенную вдоль передней кромки несущего винта. Раздувающаяся камера надкалывает ледяную корку, отдельные куски которой затем сметаются с лопастей винта встречным потоком воздуха.

Если передняя кромка лопасти винта сделана из металла, то ее можно подогревать или электричеством, или теплым воздухом, пропускаемым через трубопровод, проложенный вдоль передней кромки несущего винта.

Будущее покажет, какой из этих способов найдет себе более широкое применение.

Для аэродинамических характеристик несущего винта большое значение имеют число лопастей несущего винта, и удельная нагрузка на ометаемую винтом площадь. Теоретически число лопастей винта может быть любым, от одной бесконечно большого их числа, настолько большого, что они в конечном счете сливаются в спиральную поверхность, как это предполагалось в проекте Леонардо да Винчи или в вертолете-велосипеде И. Быкова.

Однако есть какое-то наиболее выгодное число лопастей. Число лопастей не должно быть меньше трех, так как при двух лопастях возникают большие неуравновешенные силы и колебания тяги винта. Показано изменение тяги несущего винта около его среднего значения в течение одного оборота винта у однолопастного и двухлопастного винтов. Трехлопастной винт уже практически сохраняет среднее значение тяги в течение всего оборота.

Число лопастей винта не должно быть также очень большим, так как в этом случае каждая лопасть работает в потоке, возмущенном предыдущей лопастью, что снижает коэффициент полезного действия несущего винта.

Чем больше лопастей винта, тем большую часть площади ометаемого диска они занимают. В теорию несущего винта вертолета введено понятие коэффициента заполнения о, который подсчитывается как отношение суммарной площади

Для расчетного режима работы несущего винта вертолета (отвесный подъем) наивыгоднейшей величиной коэффициента заполнения является величина 0,05-0,08 (среднее значение 0,065).

Эта нагрузка является средней. Малой нагрузкой называют нагрузку в пределах 9-12 кг/м2. Вертолеты, имеющие такую нагрузку, маневренны и обладают большой крейсерской скоростью.

Вертолеты общего назначения имеют среднюю нагрузку в пределах от 12 до 20 кг/м2. И, наконец, большой нагрузкой, редко применяемой, является нагрузка от 20 до 30 кг/м2.

Дело в том, что хотя высокая удельная нагрузка на ометаемую площадь и обеспечивает большую полезную нагрузку вертолета, но при отказе двигателя такой вертолет на режиме самовращения будет снижаться быстро, что недопустимо, так как в этом случае нарушается безопасность снижения.

Результаты поиска

Нашлось результатов: 122140 (1,75 сек )

Свободный доступ

Ограниченный доступ

Уточняется продление лицензии

1

Методы физического и математического моделирования метод. указания к выполнению индивидуальных заданий

Приведены задания к практическим занятиям по дисциплине "Методы физического и математического моделирования" способствуют приобретению навыков разработки алгоритмов, составления блок-схем, программирования и работы на компьютере (ввод программы, ее отладка).

указанном формате на дисплей" LPRINT USING"вывод численных переменных в указанном формате на печать" TAB "расположение <...> выполнение операции или группы операций, в результате которых изменяется значение, форма представления или расположение <...> бумага Межстраничный соединитель указание связи между разъединенными частями схем алгоритмов программ, расположенных

Предпросмотр: Методы физического и математического моделирования.pdf (0,1 Мб)

2

ИССЛЕДОВАНИЕ РАБОТЫ ТРЕХЪЯРУСНОГО ПЛУГА АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА ТЕХНИЧЕСКИХ НАУК

САРАТОВСКИЙ ИНСТИТУТ МЕХАНИЗАЦИИ СЕЛЬСКОГО ХОЗЯЙСТВА ИМЕНИ М. И. КАЛИНИНА

Экспериментальные исследования подтвердили теоретические выводы, сделанные из предположения, что сила тяги всегда проходит через центры сопротивления плуга в горизонтальной и вертикальной плоскостях.

году писал: "Расположение сопротивления Н (сопротивление пласта) и сида |N (реакция на полевой доске) <...> Rxz»» расположенных на высоте равной половине глубины пахоты от носков соответствующих лемехов. <...> На поперечные планки с помощью отвесов проек­ тировались расположенные над планками точки ребра динамо

Предпросмотр: ИССЛЕДОВАНИЕ РАБОТЫ ТРЕХЪЯРУСНОГО ПЛУГА.pdf (0,0 Мб)

3

№9 [Системный администратор, 2016]

Журнал «Системный администратор» – ведущее российское отраслевое издание для ИТ-специалистов. Его цель – предоставление полной и объективной информации о решениях, продуктах и технологиях современной ИТ-отрасли.90% статей в журнале носят прикладной характер, снабжены примерами, таблицами, графическим материалом. Именно поэтому журнал «Системный администратор» является настольным пособием для ИТ-профессионалов и тех, кто решил делать карьеру в ИТ. Издается с октября 2002 года.

----------# Переменные #-------------# место создания каталога с вики base=/home/user/site1 # место расположение <...> каталог с файлами движка MediaWiki, ↵ не обязательный параметр, по умолчанию = "$mw"" echo "" echo "Расположение <...> В таких случаях антивирус, расположенный на втором уровне статического анализа, проверяя входящее письмо <...> в который входят пять компонентов: Dial Plan, Voice Policy, Route, PSTN Usage, Trunk Configuration, расположенных <...> Вторым> шагом является создание «подменяемого запроса», идентичного по тексту исходному (с теми же расположением

Предпросмотр: Системный администратор №9 2016.pdf (0,3 Мб)

4

Мультиагентная технология управления мобильными ресурсами в режиме реального времени учеб. пособие

ИУНЛ ПГУТИ

Учебное пособие включает разделы, которые подробно описывают современное состояние и методы адаптивного планирования, мультиагентный подход к решению задач динамического планирования ресурсов в реальном времени, архитектуру и реализацию мультиагентной системы управления транспортными ресурсами. Теоретический материал иллюстрируется большим количеством примеров динамического планирования. Учебное пособие содержит контрольные вопросы и упражнения по всем разделам.

Для того чтобы ввести новую запись, необходимо нажать на кнопку «Создать», расположенную в верхней части <...> тягачей Опция "Расположение тягачей" предназначена для отображения всех тягачей на указанную дату (Рисунок <...> Рисунок 73 – Расположение тягачей 3.4.4.3 Просмотр маршрута «Просмотр маршрута» («Мониторинг»  «Просмотр <...> Планируемое расположение ресурсов на момент предпочитаемого начала выполнения заявки AT000018 приведено <...> Рисунок 113 – Задание предпочитаемого ресурса Расположение ресурсов на момент начала планирования заявок

Предпросмотр: Мультиагентная технология управления мобильными ресурсами в режиме реального времени.pdf (0,4 Мб)

5

№8 [Транспортное строительство, 2010]

Информация об организациях и предприятиях транспортного строительства, их возможностях, сложности и качестве выполняемых работ и предоставляемых услуг.

Для ротора с радиальным расположением лопастей (β = 0) неравенства (16), (17) принимают вид: N � 0 V0 <...> При использовании роторов с по� добным расположением лопастей в реально действующих технологических машинах <...> Роторы с подобным расположением лопастей целесообразно применять в тех случаях, когда требуется интенсивный <...> При радиальном расположении лопастей ротора уравне� ние (13) относительного движения частиц по ним остается <...> Проведенные теоретические исследования позволяют сде� лать следующие выводы: расположение лопастей

Предпросмотр: Транспортное строительство №8 2010.pdf (0,2 Мб)

6

Ветеринарно-санитарная экспертиза лаб. практикум

В учебном пособии рассмотрены современные органолептические и лабораторные методы ветеринарно-санитарной экспертизы мяса и мясных продуктов, а также продуктов растительного происхождения. В лабораторном практикуме приведены требования к качеству и безопасности продуктов, основанные на действующих нормативных документах. Пособие содержит краткую теоретическую информацию по ветеринарно-санитарной экспертизе продуктов, способствующую лучшему освоению дисциплины.

пищевод в едином сочленении подвешивают за трaхею на крюк или размещают на столе таким образом, чтобы их расположение <...> Разрезают все бронхиальные, а также глубокие шейные лимфатические узлы, расположенные вдоль трахеи. <...> Топография расположения основных внутренних органов и крупных лимфатических узлов близка к таковой у <...> личинки трихинелл видны как круглые черви длиной до 1 мм с заостренными краями, закрученные в спираль, расположенные <...> при помощи цветных стандартов, запаянных в пробирки, и компаратора с шестью гнездами (рисунок 1.17), расположенными

Предпросмотр: Ветеринарно-санитарная экспертиза.pdf (0,6 Мб)

7

Живу в Сибири, с давних пор увлекаюсь охотой, рыбалкой. Замечательны наши места. Много рек, озёр, богатых рыбой и дичью Больше всего люблю охотиться на водоплавающую птицу. Но взять её порой бывает невозможно: непроходимые топи, плавни, зыбуны, непролазные камыши.

<...> с внешним уголком; 12 – шарнирная лопасть ; 13 – внешний дюралюминиевый уголок. <...> <...> <...> А с боковым расположением лопастей можно ходить как по чистым, так и по заросшим водоёмам.

8

ИССЛЕДОВАНИЕ И ОБОСНОВАНИЕ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ И РЕЖИМА РАБОТЫ РОТОРНЫХ КАНАВООЧИСТИТЕЛЬНЫХ МАШИН АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА ТЕХНИЧЕСКИХ НАУК

Настоящая работа посвящена выбору наиболее рационального типа рабочего органа, исследованию и обоснованию основных параметров и режима работы его применительно к очистке мелких и. средних каналов

При радиальном расположении лопастей где" FiroSi3ifft>vf v„ 5 ~ 5б4870йч " (22) Sx - длина лопасти , <...> ^n ;" " . в ~ 2648700ч » (23) г д е " . " " " " с0 - коэффициент, учитывающий расположение центра, <...>лопастями . <...>лопастях . <...> При таком расположении струя грунта, выброшенного рабочим органом, идет более компактно, а вблизи рабочего

Предпросмотр: ИССЛЕДОВАНИЕ И ОБОСНОВАНИЕ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ И РЕЖИМА РАБОТЫ РОТОРНЫХ КАНАВООЧИСТИТЕЛЬНЫХ МАШИН.pdf (0,0 Мб)

9

РЕЗУЛЬТАТЫ ТЕОРЕТИЧЕСКИХ И ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ МНОГОЛОПАСТНЫХ РАБОЧИХ ОРГАНОВ РОТОРНОГО ТИПА ДЛЯ РАСПРЕДЕЛЕНИЯ ТВЕРДОГО НАВОЗА [Электронный ресурс] / А.П. Дьячков [и др.] // Вестник Воронежского государственного аграрного университета.- 2014 .- №1-2 .- С. 80-86 .- Режим доступа: https://сайт/efd/386825

Представлены результаты теоретических и экспериментальных исследований процесса распределения твердого навоза разбрасывателем из валков с многолопастными рабочими органами роторного типа. Определены рациональные значения конструктивных и режимных параметров предложенной конструкции, обеспечивающие качественное внесение твердых органических удобрений, соответствующее агротехническим требованиям.

последнего ряда роторов, равный R = 0,4 м, обеспечивающий теоретическую дальность полета, при радиальном расположении <...> Теоретические зависимости «предельной» зоны загрузки от угла наклона лопастей при различной длине лопастей <...> Результаты теоретических исследований по обоснованию количества рядов лопастей и радиуса лопастей каждого <...> Все лопасти на роторе устанавливали радиально. Ширина лопастей равнялась bл = 0,13 м. <...> скорости движения (Vр = 1,55…1,63 м/с), количестве рядов лопастей (от 2 до 4 рядов) и количестве лопастей

10

Расчет центробежного компрессора метод. указания по курсовому проектированию по дисциплине "Тепловые двигатели и нагнетатели"

Методические указания представлены для студентов, обучающихся по направлению "Теплоэнергетика" очной и заочной форм обучения.

рабочего колеса в двух проекциях с показом расположения лопастей и корпус насоса. <...> По форме и взаимному расположению линий тока в плане можно судить о плавности формы лопасти (рисунок <...> Построение спирального отвода, расположенного за лопаточным диффузором, осуществляется тем же способом <...> соотношениям bсп/bд = 1,0÷1,5 угол раскрытия сечений спирали  = 50÷60°, в то время как для спирали, расположенной <...> Лопаточный диффузор Конструктивно лопаточный диффузор представляет решетку профилированных лопаток, расположенную

Предпросмотр: Расчет центробежного компрессора.pdf (0,4 Мб)

11

М.: ПРОМЕДИА

Число и расположение лопастей в пределах входного устройства сырья. 6. <...> и количество лопастей ). <...> Рис. 9–11 показывают расположение CFD для трех высот вместе с линиями траектории пара окрашенными с помощью <...> В случае с радиальным противоположным расположением штуцеров достигли максимальной пиковой скорости 143,5 <...> минимального увлечения в пределах критериев оптимального распределения пара и имеет участок пространства для расположения

12

ИЗЫСКАНИЕ И ИССЛЕДОВАНИЕ РОТАЦИОННОГО РАБОЧЕГО ОРГАНА ДЛЯ АКТИВНОГО РЫХЛЕНИЯ И СЕПАРАЦИИ ПОЧВ В КАРТОФЕЛЕУБОРОЧНЫХ МАШИНАХ АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА ТЕХНИЧЕСКИХ НАУК

БЕЛОРУССКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЗЕМЛЕДЕЛИЯ

Поэтому совершенствование существующих и изыскание новых методов сепарации почвы и рабочих органов для этих целей является важной задачей.

расположенный за ротором. <...> - угол трения клубней о лопасти . <...> Возможны три способа расположения лопасти на барабане ротора: по радиусу 7 - 0"» с наклоном вперед 7 <...> с наклоном лопасти назад, при котором обеспечивае­ тся максимальная движущая сила по лопасти . <...> D - - 1000 мм; б) диаметр барабана ротора d = 300 мм; в) число лопастей z = 8; г) шаг винтовой лопасти

Предпросмотр: ИЗЫСКАНИЕ И ИССЛЕДОВАНИЕ РОТАЦИОННОГО РАБОЧЕГО ОРГАНА ДЛЯ АКТИВНОГО РЫХЛЕНИЯ И СЕПАРАЦИИ ПОЧВ В КАРТОФЕЛЕУБОРОЧНЫХ МАШИНАХ.pdf (0,0 Мб)

13

В статье приведены результаты экспериментальных исследований по изучению процесса измельчения клинкера в пресс-валковом измельчителе и в шаровой мельнице, оснащенной энергообменными устройствами. Определены конструкции энергообменных устройств, позволяющие создавать эффективное силовое воздействие мелющих тел на измельчаемый материал.

В этой связи были проведены исследования по изучению влияния взаимного расположения ЭУ, режимов работы <...> Рабочие поверхности эллипсного сегмента и лопасти двойного действия при этом параллельны между собой, <...> измельчитель и шаровая мельница, оснащенная энергообменными устройствами: 1 – ПВИ; 2 – барабан; 3 – лопасть <...> Романович Из графической зависимости Q, N, q = f(ξ, ϕ 2) (рис. 4) установлено, что взаимное расположение <...>лопасти двойного действия и эллипсного сегмента в барабане мельницы оказывает существенное влияние на

14

Общая ихтиология практикум

В практикуме изложены лабораторные работы по изучению внешних признаков, формы тела, плавников, чешуи, мускулатуры рыб; их измерению и анатомическому вскрытию. При этом особое внимание уделяется положениям, способствующим глубокому изучению внешних признаков, имеющих систематическое значение и отражающих исключительную приспособленность различных видов рыб к условиям обитания.

Длина верхней и нижней лопастей хвостового плавника (С) – длина наибольших лучей верней и нижней лопастей <...> Рисунки: «Различные формы рта», «Размеры рта рыбы», «Расположение глаз», «Расположение ноздрей у рыб» <...> Такое расположение называется югулярным, и характерно оно для большеголовых рыб с компактным расположением <...>) верхняя лопасть короче (летучие рыбы, чехонь), при изобатном (изоцеркальном) обе лопасти имеют одинаковую <...> Рисунок 23 – Схема расположения лопастей хвостового плавника относительно зоны вихрей и слоя трения при

Предпросмотр: Общая ихтиология.pdf (0,2 Мб)

15

приведены технические характеристики и примеры использования некоторых видов соединений деревянных конструкций, получивших развитие за последнее столетие. Дан анализ достоинств и недостатков соединителей типа кольцевых, тавровых и дисковых шпонок, когтевых и вклеиваемых шайб, клеестальных волнистых зубчатых шпонок. Приводятся сортаменты и значения несущей способности некоторых соединителей

Повышенные требования к точности изготовления, качеству и влажности древесины. кольцевая шпонка с лопастями <...>лопастями . <...> Эти лопасти представляют собой куски полосовой стали с длиной, равной примерно тройному диаметру кольца <...> Шпонка состоит из металлической ленты с выштампованными в ней зубьями, расположенными несимметрично. <...> Шпонка снабжена зубьями и шипами, расположенными соответственно на впадинах и гребнях со стороны Copyright

16

Ветроэнергетические установки и перспективы их использования в Арктической зоне РФ: учеб. пособие

Обоснована актуальность развития ветроэнергетики в России, в том числе в ее Арктической зоне. Обобщены данные о ветроэнергетических установках (ВЭУ) и энергии ветра, приведена классификация ВЭУ и информация об используемых аэродинамических профилях. Представлена методика оценки ветроэнергетического потенциала и пример ее практической реализации для Соловецкого архипелага. Рассмотрены вопросы проектирования ветропарков с помощью Windsim, а также влияния ВЭУ на окружающую среду. Представлено состояние и перспективы развития ветроэнергетики в Архангельской области и Ненецком автономном округе. Приведены исходные данные для выполнения индивидуальных заданий.

исторически сложившихся систем энергоснабжения, повышения энергетической безопасности районов и потребителей, расположенных <...> Вращающий момент создается также подъемной силой двух вертикально расположенных лопастей с аэродинамическим <...>лопасть вращается в турбулизированном потоке, возмущенном предыдущими лопастями . <...> самым основные эстетические запросы; – проведение компьютерного моделирования с различными вариантами расположения <...> Однако при расположении ветроустановки на расстоянии 300 м от места постоянного пребывания людей уровень

Предпросмотр: Ветроэнергетические установки и перспективы их использования в Арктической зоне РФ учеб. пособие.pdf (1,3 Мб)

17

ИССЛЕДОВАНИЕ ПРОЦЕССА СМЕШИВАНИЯ В ДВУХВАЛЬНОМ ГОРИЗОНТАЛЬНОМ КОРМОСМЕСИТЕЛЕ ПРИ ПРИГОТОВЛЕНИИ СМЕСИ ВЛАЖНЫХ КОРМОВ АВТОРЕФЕРАТ ДИС. ... КАНДИДАТА ТЕХНИЧЕСКИХ НАУК

АЗЕРБАЙДЖАНСКИЙ СЕЛЬСКОХОЗЯЙСТВЕННЫЙ ИНСТИТУТ ИМЕН

Задачи: а) исследовать физико-механические свойстве влажных корковых смесей; б) выявить основные закономерности распределения различных компонентов во влажных кормовых смесях; в) выявить факторы процесса смешивания, влияющие на расход анергии; г) установить оптимальные параметры двухзального лопастного кормосмесителя непрерывного действия, обеспечивающие аффективное смешивание.

Мм; R наружный радиус лопасти , ші ; Z расстояние от нижнего кряя лопасти до оси лопаст ­ ного вала, <...> при расположении лопастей под углом ot » 10, 20, 35, 45 " и 60° по отношению к оси вала» 3) От типа <...> и формы лопастей расход мощности изучалоя на 3 конструктивной форме и размеров лопастей . " ".*) От „ <...> от ширины лопасти и сог­ ласно полученных экспериментальных данных определена опти­ мальная ширина лопасти <...> ширине лопасти .

Предпросмотр: ИССЛЕДОВАНИЕ ПРОЦЕССА СМЕШИВАНИЯ В ДВУХВАЛЬНОМ ГОРИЗОНТАЛЬНОМ КОРМОСМЕСИТЕЛЕ ПРИ ПРИГОТОВЛЕНИИ СМЕСИ ВЛАЖНЫХ КОРМОВ.pdf (0,0 Мб)

18

РОЛЬ ЛЕКСИКО-ГРАММАТИЧЕСКИХ ТРАНСФОРМАЦИЙ ПРИ ПЕРЕВОДЕ ТЕХНИЧЕСКОГО ТЕКСТА

ФГБОУ ВПО "ИГЛУ"

Цель работы – определить, с какими трудностями сталкивается переводчик в работе с техническими текстами на испанском языке, и выявить методы решения переводческих проблем.

<...> прогибом лопасти при вращении винта. <...> На рис.2.6 представлены различные способы расположения лопастей несущего винта. <...> вращения лопасти во втулке несущего винта. <...> Однако при взмахе лопасти изменяется расстояние между центром тяжести лопасти и центром тяжести самого

Предпросмотр: РОЛЬ ЛЕКСИКО-ГРАММАТИЧЕСКИХ ТРАНСФОРМАЦИЙ ПРИ ПЕРЕВОДЕ ТЕХНИЧЕСКОГО ТЕКСТА.pdf (1,1 Мб)

19

№10 [Изобретательство, 2010]

Теория и практика создания изобретений и оформление прав на изобретения, информация о наиболее важных изобретениях, нормативные акты, судебные решения.

Расположенными по винтовой линии (рис. 3). <...> Вследствие расположения лопастей по винтовой линии происходит вращение протона при его взаимодействии <...> Электрон из-за фигурной своей формы в виде скрученной лопасти занимает на протоне на концах его лопастей <...> X. № 10. 2010 г. 38 к гребню одной из его лопастей . <...> X. № 10. 2010 г. 39 между собой их лопасти .

Предпросмотр: Изобретательство №10 2010.pdf (0,2 Мб)

20

№5 [Гуманитарные и социальные науки, 2016]

Научный журнал «Гуманитарные и социальные науки» является сетевым изданием, публикует статьи, сообщения, рецензии и другие материалы образовательного, научного, гуманитарного, социально-экономического и культурно-просветительского характера и предоставляет возможность преподавателям, докторантам, аспирантам, практическим работникам представить результаты своих научных исследований на рассмотрение максимально широкой аудитории.

Расположение членов предложения – детерминантов, подлежащего, сказуемого – внутри темы является относительно <...> науки 2016. № 5 105 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» В приведенном примере расположение <...>Расположение в составе темы компонента глагольного сказуемого и других членов предложения (подлежащего <...> крылатая или с крылом: волосы стягиваются сдерихой на затылке, сорока прикрепляется сзади крыльями, лопастями <...> "дружественная зона" – "расположение своих войск").

Предпросмотр: Гуманитарные и социальные науки №5 2016.pdf (0,4 Мб)

21

№3 [Вертолетная индустрия, 2011]

Журнал «ВЕРТОЛЕТНАЯ ИНДУСТРИЯ» - это компетентный анализ российской вертолетной индустрии. Это издание, отвечающее интересам руководителей предприятий российской авиации. Это респектабельный журнал, рассчитанный на всех представителей бизнес-авиации. Журнал издается для организаций, предоставляющих услуги в вертолетной и самолетной отраслях, в бизнес-авиации, для представительств иностранных компаний, авиационных холдингов по всей России и владельцев частных вертолетов. Журнал издается АССОЦИАЦИЕЙ ВЕРТОЛЕТНОЙ ИНДУСТРИИ (АВИ), первой в России организацией, объединившей в себе все основные структуры вертолетной отрасли, существующие на сегодняшний день в России.

накладки, через них в центр лопасти монтируется винтовая колонка. <...> Единственное место, которое не разрешалось посещать, это контрольно-испытательная станция, расположенная <...> Топливные баки на машинах подключаются к 7-тонной цистерне с топливом, расположенной за защитной бетонной <...> В России огромные территории и большие объемы природных ресурсов, расположенных в областях, куда сложно <...> с неравномерным расположением лопастей делают вертолет EC135 самым тихим вертолетом своего класса.

Предпросмотр: Вертолетная индустрия №3 2011.pdf (0,3 Мб)

22

Аборигенные, стародавние сорта, произрастающие в различных регионах возделывания винограда, - важная часть мирового генофонда культуры. Многие аборигенные донские сорта винограда (Vitis vinifera L.) представляют значительную ценность для возделывания и использования в селекционной работе. Среди сортов Дона выделяют как близкие по основным признакам группы, так и более отдаленные. Основные признаки листьев сортов винограда - важнейший ампелографический признак. Исследования ДНК - наиболее информативный метод анализа генотипов растений. Микросателлитные маркеры широко используются для генотипирования сортов и подвоев винограда, а также успешно применяются при изучении происхождения сортов и анализа их родословных. Мы провели оценку родства ряда донских сортов по результатам микросателлитного генотипирования. Целью настоящей работы было изучение генетического сходства аборигенных донских сортов на основе ДНКанализа и сопоставление полученных результатов с данными анализа основных признаков сформировавшегося листа, а также выводами других авторов. Исследования проводили на 16 сортах, произрастающих в коллекции Всероссийского НИИ виноградарства и виноделия им. Я.И. Потапенко (г. Новочеркасск) и в Российской ампелографической коллекции (г. Анапа). Все изученные сорта были описаны по основным ампелографическим признакам. В работе применяли полимеразную цепную реакцию с разделением ее продуктов посредством электрофореза. ДНК выделяли из молодых листьев апикальной части побегов 4-5 типичных кустов сорта. Использовали шесть SSR-маркеров, рекомендованных как основные для фингерпринтинга V. vinifera. Контролем служили сорта Шардоне и Каберне-Совиньон, аллельный состав которых по изучаемым SSR-локусам известен. Матрицу генетических дистанций строили с использованием коэффициентов (индексов) подобия по M. Nei и W. Li. Кластерный анализ на основании данных SSR-генотипирования выполняли методом попарного невзвешенного кластирования с арифметическим усреднением (UPGMA). Проводили графическое построение дендрограмм. Данные по морфологическим признакам листьев и результаты SSR-генотипирования анализировали методом главных координат (PCA). С помощью автоматического генетического анализатора ABI Prism 3130 («Applied Biosystems», США) были получены ДНК-профили местных донских сортов винограда по микросателлитным локусам VVMD5, VVMD7, VVMD27, VVS2, VrZAG62 и VrZAG79. В генотипах исследуемых донских сортов было определено шесть (по локусам VVS2, VVMD5, VVMD7, VrZAG62) и семь (по локусам VVMD27, VrZAG79) аллелей на локус. Кластерный анализ позволил разделить сорта на две основные ветви: в одну вошли Сибирьковый, Пухляковский белый, Сиволистный, Пухляковский черный, Косоротовский и Кукановский (все они относятся к группе естественных сеянцев Пухляковского белого), в другой оказались Безымянный донской, Плечистик обоеполый, Старый горюн, Цимлянский белый, Цимлянский черный, Цимладар, Плечистик, Сыпун черный, Махроватчик и Бессергеневский ¹ 7. Интересно, что во второй ветви выделились три подгруппы. Одна включала сорта Безымянный донской, Плечистик обоеполый, Цимлянский белый, Цимлянский черный, Цимладар, Плечистик, Сыпун черный (группа цимлянских сортов), в другую вошли Бессергеневский ¹ 7 (предположительно сеянец Пухляковского белого) и Старый горюн (группа цимлянских сортов); отдельно выделился сорт Махроватчик (считается сеянцем сорта Кокур белый). В пространстве главных координат нами не было обнаружено распределения сортов по основным признакам листьев в соответствии с их предполагаемым происхождением. По результатам SSR-анализа большинство сортов оказались распределены в соответствии с ранее сделанными выводами об их происхождении. Таким образом, наиболее информативной может считаться оценка коллекций, стародавних сортов, селекционного материала и интродуцируемых образцов по комплексу ампелографических признаков и SSR-маркерам. Ключевые слова: аборигенный генофонд, SSR-маркеры, ампелографические признаки листа, Vitis vinifera L., донские сорта винограда, генетическое сходство.

верхушечного зубчика к его ширине, 078-2 - отношение длины бокового зубчика к его ширине, 068 - число лопастей <...> , 067 - форма пластинки, 065 - размер пластинки, 082 - расположение лопастей верхних боковых вырезок, <...> 079 - расположение лопастей черешковой выемки, 084 - паутинистое опушение между главными жилками на

23

№8 [Моделист-конструктор, 2015]

Популярный ежемесячный научно-технический журнал. Издается с августа 1962 года в Москве. Доброе напутствие новому изданию дали известные авиаконструкторы А.Туполев, С.Ильюшин, космонавт Ю.Гагарин. С тех пор журнал вот уже свыше сорока лет освещает вопросы научно-технического творчества, самодеятельного конструирования, рассказывает об истории отечественной и зарубежной техники. Среди его авторов наряду со знаменитыми изобретателями и конструкторами, чемпионами технических видов спорта - большая армия разносторонних умельцев, любителей техники, ее истории. «Моделист-конструктор» - единственный в стране журнал, в каждом номере которого печатаются чертежи, схемы и описания самых разных самодельных конструкций. Редакция одну из главных задач видит в том, чтобы помочь каждому читателю, какого бы возраста он ни был, сделаться мастером на все руки, не только знатоком техники, но и разносторонним умельцем, способным изготовить своими руками все необходимое для труда и отдыха. ПЕРЕДАЧА ПОДПИСНЫХ НОМЕРОВ ОСУЩЕСТВЛЯЕТСЯ С ЗАДЕРЖКОЙ В 12 МЕСЯЦЕВ!!!

На них закреплены штоки (11) с небольшими «плавниками»-лопастями (12). <...> Выкройка лопасти и крепление её Рис. 5. <...> Первые лыжи я изготовил с нижним расположением лопастей . <...> А с боковым расположением лопастей можно ходить как по чистым, так и по заросшим водоёмам. <...>Расположение волокон – вдоль наибольшего размера.

Предпросмотр: Моделист-конструктор №8 2015.pdf (0,1 Мб)

24

№6 [Авиаколлекция, 2014]

Приложение к журналу «Моделист-конструктор», издается с июля 2003 года. Специализированный журнал для любителей истории авиации и авиамоделистов. Каждый выпуск - это мини-монография об отечественной или иностранной конструкции летательных аппаратах. Каждый выпуск содержит информацию об истории создания самолета или вертолета, его серийном производстве, модификациях, эксплуатации, боевом применении и окраске. Приводятся краткое техническое описание и чертежи машины. А также большое количество фотографий, в том числе фотоснимки узлов и агрегатов. ПЕРЕДАЧА ПОДПИСНЫХ НОМЕРОВ ОСУЩЕСТВЛЯЕТСЯ С ЗАДЕРЖКОЙ В 12 МЕСЯЦЕВ!!!

Пилот сидел в кресле, расположенном в диаметральной плоскости, по бокам и чуть сзади размещались места <...> Взаимное расположение лопастей и отсутствие общей разбалансировки винта гарантировались тремя тросиками <...> К стрингеру приклеены триммеры для доводки лопасти . <...> Носок лопасти окован тонкой полоской нержавеющей стали. <...> В передней части кабины имеются три расположенных рядом кресла: для лётчиков (два крайних) и пассажира

Предпросмотр: Авиаколлекция №6 2014.pdf (0,4 Мб)

25

Основы конструирования и проектирования вибрационных смесителей [монография]

В монографии на основе известных конструкций и результатов исследований предложены принципы проектирования вибрационных смесителей, обеспечивающих приготовление перспективных строительных материалов с необходимыми физико-химическими характеристиками.

;  угол наклона лопасти к горизонту. <...> Бетоносмесители лопастные : N k FR   , где F фронтальная площадь лопасти ; R радиус установки лопасти <...> ;  угловая скорость лопасти ; k коэффициент сопротивления смеси вращению лопастей . <...> и масса замеса; z число лопастей ; R r, соответственно радиусы конца и начала лопасти ;  число оборотов <...> , L ширина лопасти , h зазор между кромкой лопасти и стенкой камеры смешивания, V объем смеси.

Предпросмотр: osnovy-konstruirovanija.pdf (0,1 Мб)

26

№1 [Научно-технический вестник Брянского государственного университета, 2018]

Журнал специализируется на публикации научных статей, содержащих новые научные результаты в области теоретических и прикладных исследований и соответствующих по тематике следующим отраслям науки из Номенклатуры специальностей научных работников: 02 – химические науки; 05 – технические науки; 25 – науки о Земле.

лопасти 32 при помощи фиксаторов 33 и стопорных винтов 34. <...> Для герметизации зазоров между сопрягаемыми поверхностями лопастей и внутренней поверхности обечайки <...> в каждой лопасти выполняется паз 37 для установки уплотнительного элемента 38. <...> с количеством установленных перегородок (лопастей ). <...> Использование различных схем расположения проходов склада тарно-штучных грузов / Д.И.

Предпросмотр: Научно-технический вестник Брянского государственного университета №1 2018.pdf (1,9 Мб)

27

Системы охлаждения поршневых двигателей внутреннего сгорания учеб. пособие

Издательство СГАУ

Системы охлаждения поршневых двигателей внутреннего сгорания. Используемые программы: Adobe Acrobat. Труды сотрудников СГАУ (электрон. версия)

Лопасти могут быть поворотными. <...> трубок под углом к воздуш­ ному потоку, 2 шахматное расположение трубок, 3 рядное расположение трубок <...> На работу" вентилятора влияет его расположение в кожухе по глубине. <...> Но расположение его лопастей должно быть более точным, так как из-за возможного несовпадения векторов <...> с лопастями , отогнутыми назад.

Предпросмотр: Системы охлаждения поршневых двигателей внутреннего сгорания.pdf (0,8 Мб)

28

Статья «Лопастное долото с усиленным периферийным вооружением» посвящена обоснованию ряда важнейших параметров лопастного долота режуще-скалывающего принципа работы – повышение работоспособности периферийного и центрального вооружения долота

При этом обязательным условием является расположение этих элементов на различных уровнях относительно <...> Практика отработки лопастных долот свидетельствует, что характер износа вооружения, расположенного на <...> Объемная работа разрушения периферийных резцов гораздо больше объемной работы резцов, расположенных на <...>Расположение спаренных резцов на периферии лопасти Для обеспечения возможности размещения на периферийной <...>лопасти .

29

Осевые и центробежные насосы тепловых электрических станций учеб. пособие

М.: ФЛИНТА

В пособии рассматриваются принципы действия, энергетические характеристики и конструкции осевых и центробежных насосов, а также их элементов. Представлена классификация насосов и особенности их работы в составе насосных установок и сети. Рассмотрены характерные повреждения элементов насосов, возникающие в процессе эксплуатации. Приведены методики определения гидравлических и геометрических параметров проектируемых насосов и особенности подбора серийных насосов для требуемых условий.

<...> <...> и вертикальным расположением вала. <...> рабочего колеса; ОП – с поворотными лопастями рабочего колеса; В – с вертикальным расположением вала <...>Расположение лап здесь нижнее.

Предпросмотр: Осевые и центробежные насосы ТЭС.pdf (0,7 Мб)

30

Предлагается конструктивно-технологический способ повышения износостойкости и долговечности лопастей смесителя, заключающийся в наплавке износостойких валиков, расположенных по шевронной схеме, для формирования на поверхности трения защитного слоя из технологической массы, обеспечивающего «теневой эффект» – экранирование рабочей поверхности лопастей от воздействия абразивных частиц.

смесителя, заключающийся в наплавке износостойких валиков, расположенных по шевронной схеме, для формирования <...> Схема расположения наплавленных валиков предусматривает реализацию так называемого теневого эффекта [ <...> ; 4 – держатель лопасти ; 5 – верхняя смесительная лопасть ; 6 – донная смесительная лопасть Ю.И. <...>расположением валиков, шириной и высотой валиков, а также соответствующим шагом наплавления. <...> валиков, расположенных по шевронной схеме, может повысить долговечность лопастей в 1,3–1,5 раза по сравнению

31

Ветроустановки учеб. пособие

М.: Изд-во МГТУ им. Н.Э. Баумана

Рассмотрены принципы работы и устройство ветроустановок различного типа, а также особенности их регулирования (управления).

В результате при расположении крупных ВЭУ на расстоянии не ближе 250 м от жилых домов уровень шума не <...> на направление ветра (вид сверху): а – при помощи хвостового оперения; б – при помощи виндроз; в – расположением <...> Они представляют собой небольшие ветроколеса, расположенные перпендикулярно к плоскости вращения основного <...> Ориентация при помощи расположения ветродвигателя за вертикальной осью его поворота основана на том, <...> Механизм поворота может управляться центробежным регулятором, расположенным на основном вертикальном

Предпросмотр: Ветроустановки.pdf (0,2 Мб)

32

Теоретические и экспериментальные исследования смешивания сухих компонентов и микродобавок в лопастном смесителе. Теория, конструкция, расчет монография

РИО ПГСХА

В монографии обобщены результаты теоретических и экспериментальных исследований процесса смешивания сухих компонентов в смесителе микродобавок. Приведены показатели, характеризующие качество приготавливаемой смеси и энергоемкости процесса перемешивания. Разработана новая конструктивная схема смесителя микродобавок, и обоснованы оптимальные параметры конструкции смесителя по минимуму энергоемкости перемешивания.

Через приемную горловину, расположенную под выгрузной течкой 9, компонент поступает в загрузочный шнековый <...> Компоненты загружают при вертикальном расположении корпуса смесителя через одно из отверстий наружных <...> Полученная смесь выгружается через нижнее отверстие корпуса при вертикальном расположении микросмесителя <...> Сами смесительные устройства выполнены в виде горизонтально расположенных валов с лопатками. <...> показали наличие двух зон предполагаемого расположения минимума энергоемкости.

Предпросмотр: ТЕОРЕТИЧЕСКИЕ И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ СМЕШИВАНИЯ СУХИХ КОМПОНЕНТОВ И МИКРОДОБАВОК В ЛОПАСТНОМ СМЕСИТЕЛЕ.pdf (0,6 Мб)

33

Дорожно-строительные машины и комплексы

Изложены основы теории и проектирования, особенности расчета и конструкции машин для строительства и содержания дорог, аэродромов и городского хозяйства, восстановления и ремонта дорожных покрытий

Такому требованию более или менее удовлетворяет в» товое расположение лопастей . <...> В двухвальных лотковых смесителях вращающиеся в противоположных направлениях валы с лопастями , расположенными <...> Высота лопастей для различных точек лопасти по ее длине различна. <...>лопастей , м). <...>лопасти , м; у угол между плоскостью лопасти и осью вала; RH, Re наружный и внутренний радиусы лопасти

Предпросмотр: Дорожно-строительные машины и комплексы.pdf (0,1 Мб)

34

Анализируются отказы и энергетические характеристики поворотно-лопастных турбин, давно отработавших нормативный срок службы. Обосновывается целесообразность замены морально устаревших и физически изношенных поворотно-лопастных рабочих колес на новые радиально-осевые колеса

Подземная УстьХантайская ГЭС с расположением машинного зала на глубине 47 м относится к такому случаю <...> Схема расположения повреждений лопастей осевой турбины Рис. 2. <...> zНА – число лопаток направляющего аппарата, fоб – частота вращения турбины), что вызвано близостью расположения <...> Фактический зазор «лопасть - камера» турбин Усть-Хантайской ГЭС Агрегат Номер лопасти турбины Средний <...> Выбор параметров нового оборудования В климатических условиях расположения подземной Усть-Хантайской

35

Определитель деревьев и кустарников Европейской России, Крыма и Кавказа по листьям и цветам с многочисл. рис. в тексте

Березовский В. А., Ильин А. А., Карбасников Н. П.Орлов А.В.

Определитель деревьев и кустарников Европейской России, Крыма и Кавказа по листьям и цветам

лопасть . <...> Дерево съ кольчато-расположенными сучьями. <...> Н * С п Р а в ™ ° попере-шо-расположенные , * G m e l U 1 r ? <...> Почки и листья двурядно-спиралъно расположенные . <...> Ночки и листья супротивно-расположенные .

Предпросмотр: Определитель деревьев и кустарников Европейской России, Крыма и Кавказа по листьям и цветам.pdf (0,1 Мб)

36

Оборудование перерабатывающих производств практикум

РИЦ СГСХА

В практикуме рассмотрены машинно-аппаратурные схемы линий и основное оборудование для производства муки, крупы, комбикормов, хлебобулочных изделий и растительных масел, а также технологическое оборудование для переработки продукции животноводства.

Взаимное расположение рифлей. <...> В этом случае применяют расположение рифлей «спинка по спинке». <...>лопастью , совершающей криволинейное плоское движение; г – с месильной лопастью , совершающей криволинейное <...>Лопасть совершает планетарное движение. <...> , спаренными Z-образными цилиндрическими лопастями (ТМ-63, РЗ-ХТИ-3), с месильной лопастью в виде многоугольного

Предпросмотр: Оборудование перерабатывающих производств.pdf (2,2 Мб)

37

Расчет параметров вертолета на этапе предварительного проектирования учеб. пособие

В учебном пособии изложены методы расчета основных параметров вертолета на стадии эскизного проекта: расчет аэродинамического сопротивления, взлетной массы, массы агрегатов, мощности двигательной установки, вопросы компоновки и центровки.

По углу установки φ07 сечения лопасти , расположенного на расчетном радиусе r07, определяется общий шаг <...> Геометрическая крутка лопасти , определяющая угловое положение ряда сечений лопасти , расположенных по <...> Для сечений, расположенных ближе к концу лопасти , рекомендуется применять скоростные профили типа ЦАГИ <...> При этом сечения лопасти , расположенные ближе к оси вращения и имеющие малые окружные скорости работают <...> Крутка лопасти представляется в виде ряда углов φi установки профилей сечений, расположенных на различных

Предпросмотр: Расчет параметров вертолета на этапе предварительного проектирования.pdf (0,2 Мб)

38

Статья «Лопастное долото, работающее в режиме бокового сдвига горной породы» посвящена обоснованию ряда важнейших параметров лопастного долота режуще-скалывающего принципа работы

опыта эксплуатации лопастных долот определились следующие основные требования к их конструкции: 1) расположение <...> При этом образуется дополнительная плоскость обнажения для рядом расположенного резца. <...> рабочие элементы лопасти могли бы сваливать разрушаемую породу. <...> Но при таком варианте лопасти периферийный резец должен опережать рядом расположенный резец на некоторую <...> Такая схема расположения периферийного резца может применяться только при разбуривании мягких пород,

39

Механическое оборудование и технологические комплексы учеб. пособие

Изложены основные теоретические сведения, основы расчета и проектирования машин и оборудования; дано описание конструкций машин и оборудования, принципа их действия; предложен выбор и расчет технологических линий и комплексов оборудования.

Блок обычно имеет семь расположенных по окружности цилиндров. <...>Лопасть 7 предназначена для очистки стенок корпуса, а лопасть 4 - для очистки обечайки внутреннего стакана <...> К траверсе прикреплены лопасть 21, подгребающая смесь под лопасти , и лопасти 24 и 23, очищающие стенки <...> ; α - угол между плоскостью лопасти и осью вала; δ - число лопастей в пределах одного шага винта. <...> Опишите схему расположения смесителей в смесительных отделениях. 10. по бокам зонтика, имеют округлый контур.

Учебное пособие предназначено для студентов по профилю подготовки «Технология хлебопекарного, макаронного и кондитерского производства» всех форм обучения при изучении дисциплины «Технологическое оборудование предприятий отрасли», а также в ходе курсового и дипломного проектирования.

Расположенных параллельно в горизонтальной плоскости. <...> Внутри камеры на горизонтальном валу укреплены четыре лопасти , расположенные одна относительно другой <...> Необходимое время обработки на соответствующей скорости устанавливается при помощи реле, расположенного <...>лопасти 10. <...> 2, расположенному в дне корыта.

Предпросмотр: Тестомесильные машины и тестоприготовительные агрегаты.pdf (0,5 Мб)

43

Насосы, вентиляторы, компрессоры. Расчет и подбор нагнетателей метод. указания к выполнению курсовой работы по дисциплине «Насосы, вентиляторы, компрессоры»

ФГБОУ ВПО "Саратовский ГАУ им. Н. И. Вавилова"

Методическое указание содержит ряд теоретических материалов, по теме «Насосы, вентиляторы, компрессоры». Здесь рассмотрены основные вопросы расчета и подбора компрессоров необходимого давления и мощности. Дан подробный анализ расчета насосных систем, в частности расчет центробежного насоса, его рабочего колеса, который позволит студентам самостоятельно выбрать и рассчитать рабочее колесо и представить его в графической форме. В методическом указании предлагаются варианты для выполнения курсовой работы.

: ширина канала в меридианном сечении 1b , расположение входной кромки лопасти и радиус ее средней точки <...> r1, а также входной угол лопасти β1. <...> , которая чаще всего выбирается равной скорости ύ0, 11 1 1 2 mvr Q b     (13) Расположение входных <...> канала mvr Q b    2 (27) Найдя ширину канала b в функции длины средней линии S, из ряда точек, расположенных <...> Профилирование лопасти .

Предпросмотр: Насосы, вентиляторы, компрессоры. Расчет и подбор нагнетателей. Методические указания к выполнению курсовой работы по дисциплине «Насосы, вентиляторы, компрессоры».pdf (0,2 Мб)

44

Разработан метод выбора рационального угла наклона шнековой лопасти вертикального винтового конвейера, позволяющий учитывать физико-механические свойства и геометрические характеристики поперечного сечения потока транспортируемого материала, а также процессы, протекающие на поверхностях контактов материала с рабочими органами конвейера, с учетом налагаемых ограничений и критерия оптимизации

. № 5 55 УДК 621. 867. 1/3 (06) МЕТОД ВЫБОРА РАЦИОНАЛЬНОГО УГЛА НАКЛОНА ШНЕКОВОЙ ЛОПАСТИ ВИНТОВОГО КОНВЕЙЕРА <...> шнековой лопасти изучено мало из-за многих факторов, влияющих на эту величину. <...> Входными параметрами являются радиус лопасти R, угол подъема винтовой линии α. <...> формуле вит 0 2/Q V k   , (2) где 0 – угловая скорость шнекового вала, с –1; Vвит – объем материала, расположенного При необходимости возможно снятие усилия с ручки управления и педалей нажатием кнопки, В настоящее время проводится реконструкция гидротурбин Рыбинской ГЭС, проработавших более 60 лет. Цель реконструкции: повышение мощности, КПД и обеспечение экологичности. Реконструкция включает механический и гидравлический проекты, обоснование прочности, модельные испытания и поставку. Рабочее колесо - экологически чистое, без масла в корпусе. В статье специалистов конструкторского бюро «Гидротурбомаш» ОАО «Силовые машины» отражены этапы реконструкции, параметры гидротурбины до и после реконструкции

<...> своими опорными поверхностями вращаются во втулках и упорных кольцах, расположенных в наружных и внутренних <...> ремонта - не менее 20 лет. для предотвращения попадания твердых частиц и воды из проточного тракта в зону расположения <...> из кавитационно-стойкой нержавеющей стали, механизма поворота лопастей , сервомотора, расположенного <...> своими опорными поверхностями вращаются во втулках и упорных кольцах, расположенных в наружных и внутренних

47

Механизация технологического процесса сепарирования молока

РИО ПГСХА

Приводятся основные сведения о проблеме, связанной с механизацией сепарирования молока. Описаны методики, оборудование и приборное обеспечение экспериментальных исследований в лабораторных и производственных условиях сепаратора-сливкоотделителя с лопастным тарелкодержателем. Осуществлено теоретическое и экспериментальное обоснование конструктивных, кинематических и технологических параметров сепаратора-сливкоотделителя с лопастным тарелкодержателем.

В таблице 1.2 представлены основные жирные кислоты молочного жира в порядке их расположения от периферии <...> Состоит из станины 17 (рисунок 1.8) с расположенными на ней указателем уровня масла 2, сливной пробкой <...> конца лопасти соответственно внутренней и наружной, м; 3R – радиус расположения оси отверстия выходного <...> угол дуги профиля лопасти –(2.39); длина профиля лопасти – (2.40). <...> ; радиуса кривизны профиля лопасти ; центрального угла дуги радиуса кривизны лопасти ; длины лопасти .

Предпросмотр: Механизация технологического процесса сепарирования молока.pdf (0,8 Мб)

48

До последнего времени разрушение крепежа крышек турбин рассматривалось только на высоконапорных радиально осевых турбинах (Саяно-Шушенская, Нурекская ГЭС). Дальнейшее изучение проблемы установило, что разрушение крепежа встречается и на поворотнолопастных турбинах. Так, при капитальном ремонте в 2011 г. агрегата УчКурганской ГЭС (номинальная мощность турбины Nт=45 МВт при расчетном напоре Hр=25,8 м) было обнаружено 26 разрушенных шпилек из 72. Большая авария с отрывом крышки ПЛ турбины (станционный номер 1) произошла 10 марта 1992 г. на ГЭС «Гранд Рэпидс» (Канада). Затоплены были и другие три агрегата. Степень разрушений на станции была весьма значительной. Только на разбор завалов в турбинном зале было затрачено более 2 млн долларов. Остановимся на этой аварии подробнее

<...> зажатость шпильки). при ослаблении крепежа вибрации крышки турбины должны быть больше вибрации рядом расположенной <...>Расположение датчиков для замера виброскоростей (а) и экспериментальная шпилька (б) Рис. 3. <...> Схема расположения датчиков для измерения виброскоростей и эскиз экспериментальной шпильки с местом установки <...> Схема расположения датчиков для измерения виброскоростей и эскиз экспериментальной шпильки с местом установки

49

Изучены конодонты из каменноугольных и нижнепермских отложений разреза Заладу, который расположен в восточной части Ирана, вблизи д. Гушкамар. Выделено около 50 конодонтовых элементов, на основании которых впервые для Ирана установлены комплексы конодонтов нижнего башкира, верхней части московского яруса, низов касимовского яруса, верхней части гжельского и основания ассельского. В едином разрезе намечено положение границы карбона и перми по появлению S. nodulinearis и S. isolatus. Определено 12 видов конодонтов, принадлежащих 4 родам, в открытой номенклатуре определено 9 форм, большинство из них описаны и изображены.

Дополнительная лопасть , расположенная с внутренней стороны, выступает за контур платформы, несет скульптуру <...> <...> Дополнительные лопасти отсутствуют. <...> , расположенную за пределами платформы параллельно осевому гребню. <...>расположенными параллельно осевому гребню.

50

Информатизация технологического оборудования судового машиностроения

Северный (Арктический) федеральный университет имени М.В. Ломоносова

Рассмотрены наиболее актуальные проблемы информатизации современного машиностроительного производства и предложены оптимальные методы и пути их решения в существующих экономических условиях. Предложенные технические решения по модернизации различного технологического оборудования позволяют придать морально устаревшему оборудованию новые технологические возможности, повысить класс точности технологического оборудования, расширить функциональные возможности станков и номенклатуру обрабатываемых изделий, снизить трудоёмкость обработки, повысить оперативность и точность контроля, повысить качество выполнения технологических операций.

Контроль за движением суппорта ведётся по сигнальным лампам, расположенным на панели пульта управления <...> Отключение копирования осуществляется нажатием кнопки Кн5, расположенной на копировальном пульте. <...> Схема расположения функциональных блоков ЦСУИ станка показана на рис. 4.9. <...> Схема расположения функциональных блоков ЦСУИ: 1 – вертикальная колонна станка; 2 – шпиндельная бабка <...> В первую очередь определяется количество и взаимное расположение точек (обCopyright ОАО «ЦКБ «БИБКОМ»

Предпросмотр: Информатизация технологического оборудования судового машиностроения.pdf (1,1 Мб)

, ветрогенераторы , мельницы , гидро- и пневмоприводы).

В нагнетательных машинах лопасти или лопатки перемещают поток. В приводных - поток жидкости или газа приводит в движение лопасти или лопатки.

Принцип действия

В зависимости от величины перепада давления на валу может находиться несколько ступеней давления.

Основные типы лопаток

Лопаточные машины, в качестве наиболее важного элемента содержат находящиеся на валу диски, оснащенные профилированными лопатками. Диски, в зависимости от типа и назначения машины, могут вращаться с абсолютно разными скоростями , составляющими от единиц оборотов в минуту у ветрогенераторов и мельниц, до десятков и сотен тысяч оборотов в минуту у газотурбинных двигателей и турбонагнетателей.

Лопатки современных лопаточных машин, в зависимости от назначения, выполняемой данным устройством задачи и среды, в которой они работают, имеют самую различную конструкцию. Эволюция этих конструкций прослеживается при сравнении лопаток средневековых мельниц - водяной и ветряной, с лопатками ветродвигателя и гидротурбины ГЭС .

На конструкцию лопаток влияют такие параметры, как плотность и вязкость среды, в которой они работают. Жидкость гораздо плотнее газа, более вязкая и практически несжимаема. Поэтому форма и размеры лопаток гидравлических и пневматических машин сильно отличается. Из-за разности объёмов при одинаковом давлении, площадь поверхности лопаток пневматических машин может быть в несколько раз больше лопаток гидравлических.

Различают рабочие, спрямляющие и поворотные лопатки. Кроме того, в компрессорах могут быть направляющие лопатки, а также входные направляющие лопатки, а в турбинах - сопловые лопатки и охлаждаемые.

Конструкция лопатки

Для каждой лопатки характерен собственный аэродинамический профиль. Обычно он напоминает крыло летательного аппарата . Самое существенное отличие лопатки от крыла состоит в том, что лопатки работают в потоке, параметры которого очень сильно изменяются по её длине.

Профильная часть лопатки

По конструкции профильной части лопатки подразделяются на лопатки постоянного и переменного сечений . Лопатки постоянного сечения применяются для ступеней, в которых длина лопатки не более одной десятой среднего диаметра ступени. В турбинах большой мощности это, как правило, лопатки первых ступеней высокого давления. Высота этих лопаток невелика и составляет 20–100 мм.

Лопатки переменного сечения имеют переменный профиль на последующих ступенях, причём площадь поперечных сечений плавно уменьшается от корневого сечения к вершине. У лопаток последних ступеней это соотношение может достигать 6–8. Лопатки переменного сечения всегда имеют начальную закрутку, то есть углы, образованные прямой, соединяющей кромки сечения (хордой), с осью турбины, называемыми углами установки сечений. Эти углы, из соображений аэродинамики, по высоте задаются различными, с плавным увеличением от корня к вершине.

Для относительно коротких лопаток углы закрутки профиля (разность между углами установки периферийного и корневого сечений) составляют 10–30, а для лопаток последних ступеней могут достигать 65–70.

Взаимное расположение сечений по высоте лопатки при образовании профиля и положение этого профиля относительно диска представляет собой установку лопатки на диске и должно удовлетворять требованиям аэродинамики, прочности и технологичности изготовления.

Лопатки в основном изготавливаются из предварительно отштампованных заготовок . Также применяются методы изготовления лопаток точным литьём или точной штамповкой . Современные тенденции повышения мощности турбин требуют увеличения длины лопаток последних ступеней. Создание таких лопаток зависит от уровня научных достижений в области аэродинамики потока, статической и динамической прочности и наличия материалов с необходимыми свойствами.

Современные титановые сплавы позволяют изготовить лопатки длиной до 1500 мм . Но в этом случае ограничением является прочность ротора, диаметр которого приходится повышать, но тогда необходимо уменьшать длину лопатки для сохранения соотношения из соображений аэродинамики, иначе увеличение длины лопатки неэффективно. Поэтому существует ограничение длины лопатки, больше которой она не может эффективно работать.

  1. Гребешки лабиринтного уплотнения радиального зазора
  2. Бандажная полка
  3. Гребешки торцевого лабиринтного уплотнения
  4. Отверстие для подвода охлаждающего воздуха во внутренние каналы охлаждаемой лопатки

Хвостовая часть лопатки

Конструкции хвостовых соединений и, соответственно, хвостовиков лопатки весьма разнообразны и применяются исходя из условий обеспечения необходимой прочности с учётом освоения технологий их изготовления на предприятии, изготавливающем турбины. Виды хвостовиков: Т-образные, грибовидные, вильчатые, ёлочные и др.

Ни один вид хвостовых соединений не имеет особого преимущества над другим - у каждого есть свои преимущества и недостатки. Разными заводами изготавливаются разные типы хвостовых соединений, и каждый из них использует свои технологии изготовления.

Основные типы хвостовиков лопаток: 1. Т-образный хвостовик; 2. Грибовидный хвостовик; 3. Вильчатый хвостовик; 4. Ёлочный хвостовик

Связи

Рабочие лопатки турбин соединяются в пакеты связями различной конструкции: бандажами, приклёпанными к лопаткам или выполненными в виде полок (цельнофрезерованный бандаж); проволоками, припаянными к лопаткам или свободно вставленными в отверстия в профильной части лопаток, и прижимающимися к ним центробежными силами; с помощью специальных выступов, свариваемых друг с другом после наборки лопаток на диск.

Элементы сборки лопаток: 1.Перо лопатки; 2. Полка; 3. Хвостовик; 4. Бандажная трубка

Лопатки паровых турбин

Разница размеров и формы лопаток на разных ступенях давления одной турбины

Назначение лопаток турбин - превращение потенциальной энергии сжатого пара в механическую работу . В зависимости от условий работы в турбине длина её рабочих лопаток может колебаться от нескольких десятков до полутора тысяч миллиметров. На роторе лопатки расположены ступенчато, с постепенным увеличением длины, и изменением формы поверхности. На каждой ступени лопатки одинаковой длины расположены радиально оси ротора. Это обусловлено зависимостью от таких параметров, как расход, объём и давление.

При равномерном расходе давление на входе в турбину максимальное, расход минимален. При прохождении рабочим телом через лопатки турбины совершается механическая работа, давление уменьшается, но увеличивается объём. Следовательно, увеличивается площадь поверхностей рабочей лопатки и, соответственно, её размер. Например, длина лопатки первой ступени паровой турбины мощностью 300 МВт составляет 97 мм, последней - 960 мм.

Лопатки компрессоров

Назначение лопаток компрессоров - изменение начальных параметров газа и превращение кинетической энергии вращающегося ротора в потенциальную энергию сжатого газа. Форма, размеры и способы закрепления на роторе лопаток компрессоров не особо отличаются от лопаток турбин. В компрессоре при одинаковом расходе газ сжимается, его объём уменьшается, а давление возрастает, поэтому на первой ступени компрессора длина лопаток больше, чем на последней.

Лопатки газотурбинных двигателей

В газотурбинном двигателе есть и компрессорные, и турбинные лопатки. Принцип действия такого двигателя - сжатие воздуха, необходимого для горения, с помощью лопаток турбокомпрессора, направления этого воздуха в камеру сгорания и, при воспламенении с топливом - механическая работа продуктов сгорания на лопатках турбины, расположенной на одном валу с компрессором. Этим газотурбинный двигатель отличается от любой другой машины, где имеются либо компрессорные нагнетающие лопатки, как в нагнетателях и воздуходувках всякого рода, либо турбинные лопатки, как у паротурбинных силовых установок или на гидроэлектростанциях.

Лопатки (лопасти) гидротурбин

Диск с лопатками гидротурбины

Лопасти ветротурбины

По сравнению с лопатками паровых и газовых турбин лопатки гидротурбин работают в среде с малыми скоростями, но высокими давлениями. Здесь длина лопатки невелика относительно её ширины, а иногда ширина больше длины в зависимости от плотности и удельного объёма жидкости. Часто лопатки гидротурбин бывают приварены к диску или могут изготавливаться целиком с ним.

ГОСТ Р 52692-2006
(ИСО 484-1:1981)

Группа Д44


НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Судостроение

СУДОВЫЕ ГРЕБНЫЕ ВИНТЫ

Допуски на изготовление

Часть 1

Гребные винты диаметром более 2,5 м

Shipbuilding. Ship screw propellers. Manufacturing tolerances.
Part 1. Propellers of diameter greater than 2,5 m


ОКС 47.020.20
ОКП 64 4700

Дата введения 2007-07-01

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании" , а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 ПОДГОТОВЛЕН Научно-исследовательским институтом по стандартизации и сертификации "Лот" ФГУП "ЦНИИ им. акад. А.Н.Крылова" на основе аутентичного перевода международного стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 5 "Судостроение"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2006 г. N 354-ст

4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 484-1:1981 "Судостроение. Судовые гребные винты. Допуски на изготовление. Часть 1. Гребные винты диаметром более 2,5 м" (ISO 484-1:1981 "Shipbuilding - Ship screw propellers - Manufacturing tolerances - Part 1: Propellers of diameter greater than 2,5 m") путем внесения технических отклонений, объяснение которых приведено во введении к настоящему стандарту

5 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет


ВНЕСЕНА поправка, опубликованная в ИУС N 11, 2007 год

Поправка внесена изготовителем базы данных

Введение

Введение

В настоящем стандарте вместо ссылки на международный стандарт ИСО 3715, замененный на два стандарта: ИСО 3715-1 "Суда и судовые технологии. Пропульсивные установки судов. Часть 1. Термины и определения геометрии гребных винтов" и ИСО 3715-2 "Суда и судовые технологии. Часть 2. Словарь для пропульсивных установок с гребными винтами регулируемого шага", которые в настоящее время не приняты в Российской Федерации, приведена ссылка на ГОСТ 25815 , распространяющийся на термины и определения судовых гребных винтов и соответствующий конкретным потребностям судостроения Российской Федерации.

Ссылка на рекомендацию ИСО/Р 468 в настоящий стандарт не включена, т.к. данная рекомендация была заменена на ИСО 468:1982 "Шероховатость поверхности. Параметры, их значения и общие правила установления технических требований", который отменен без замены в 1998 г.

Текст измененных по отношению к международному стандарту ИСО 484-1 отдельных структурных элементов в настоящем стандарте выделен курсивом.

1 Назначение

Настоящий стандарт устанавливает допуски на изготовление судовых гребных винтов диаметром более 2,5 м.

Примечание - В некоторых случаях возможны отклонения допусков по желанию заказчика или взаимному соглашению проектанта и заказчика. Приспособления и методы измерений выбирает изготовитель гребных винтов при условии, что допуски им будут выдержаны с требуемой точностью.

2 Область применения

Стандарт распространяется на цельнолитые гребные винты, гребные винты со съемными лопастями и гребные винты регулируемого шага.

3 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий межгосударственный стандарт:

ГОСТ 25815-83 Винты гребные. Термины и определения (ИСО 3715-1:2002 "Суда и судовые технологии. Пропульсивные установки судов. Часть 1. Термины и определения геометрии гребных винтов", NEQ; ИСО 3715-2:2001 "Суда и судовые технологии. Часть 2. Словарь для пропульсивных установок с гребными винтами регулируемого шага", NEQ)

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочного стандарта в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

4 Методы измерения шага

4.1 Принцип одного из методов измерения состоит в нанесении на дуге радиуса отрезка PQ , соответствующего углу , и в измерении разности высот точек Р и Q относительно плоскости, перпендикулярной к оси гребного винта (см. рисунок 1).

Рисунок 1

Отрезок PQ должен быть спроектирован одним из методов, описанных в 4.1.1 или 4.1.2*.
________________
* При необходимости могут быть применены другие методы, обеспечивающие требуемую точность.

4.1.1 Применение рейсмусов

Отрезок PQ проектируют при помощи рейсмусов.

4.1.2 Метод градуированных дисков

Длина отрезка PQ является характеристикой угла на части градуированного диска соответствующего радиуса (см. рисунок 1).

5 Метод измерения толщины сечения

5.1 Толщина цилиндрического сечения в точке S должна быть измерена по направлению SV (см. рисунок 2), расположенному в тангенциальной плоскости коаксиального цилиндра перпендикулярно к линии шага нагнетательной стороны сечения, и по направлению SU перпендикулярно к поверхности нагнетательной стороны или по направлению ST параллельно оси гребного винта при условии, если она определена таким способом на чертеже.

Рисунок 2

5.2 Максимальная толщина для каждого радиуса должна быть определена при помощи пары кронциркулей или профиля, полученного построением, в различных точках: S , S , S , S и т.д.

5.3 Для проверки входящей и выходящей кромок применяют кромочные шаблоны. Длина кромочных шаблонов должна составлять, по крайней мере, 15% длины сечения, но не менее 125 мм.

Входящая и выходящая кромки должны быть проверены кромочными шаблонами для гребных винтов классов S и I (см. таблицу 1). Для гребных винтов других классов проверку проводят по просьбе заказчика.


Таблица 1

Класс гребного винта

Наименование класса гребного винта

Особый

Высший

Средний

Обычный

6 Классы гребных винтов

Класс точности устанавливает заказчик в соответствии с таблицей 1.

7 Допуски на шаг

Допуски на шаг приведены в таблице 2.


Таблица 2

Наименование параметра

Класс гребного винта

, %

Местный шаг

Шаг сечения

Шаг лопасти

Шаг винта

Примечание - Предельные отклонения выражены в процентах конструктивного шага соответствующего радиуса для местного шага и шага сечения и среднего конструктивного шага для шага лопасти и шага винта

7.1 Шаг должен быть измерен, по крайней мере, на радиусах, указанных в таблице 3.


Таблица 3

Класс гребного винта

Радиусы

Сечение около галтели ступицы: ; ; ; ; ; ;

Сечение около галтели ступицы: ; ; ; ;

Сечение около галтели ступицы: ; ;


По соглашению между заинтересованными сторонами могут быть проведены измерения на других радиусах.

7.2 Измерение местных шагов для винтов классов S и I проводят в соответствии с разделом 10.

7.3 Допуски на местный шаг и шаг сечения, приведенные в таблице 2, увеличивают на 50% для сечений на или менее.

7.4 Изготовитель гребных винтов может компенсировать погрешность на шаг, допуск на который приведен в таблице 2, изменением диаметра гребного винта только с согласия заказчика.

7.5 Конструктивным шагом является шаг базовой линии.

Линия конструктивного шага сечения представляет собой винтовую базовую линию для рассматриваемого сечения, для которой даны ординаты сечения нагнетательной и засасывающей сторон.

Это может быть линия, соединяющая носик и хвостик сечения, а может быть и любая другая соответственно расположенная винтовая линия.

7.6 Местный шаг в точке В (см. рисунок 1) определяют измерением разности высот между точками Р и Q , расположенными на равных расстояниях от точки В , по обе стороны от нее (ВР=BQ ), и умножением разности высот на . Результат следует сравнить с местным шагом, измеренным по профилям нагнетательной стороны для тех же точек.

Расстояние между двумя любыми точками при измерении местного шага может быть от 100 до 400 мм. Одно измерение шага следует проводить вблизи входящей кромки, другое - вблизи выходящей кромки и, по крайней мере, еще два измерения шага между ними. По мере возможности измерения должны быть последовательными.

7.7 Шаг сечения и шаг лопасти определяют для каждого радиуса умножением разности высот между измеряемыми крайними точками на .

7.8 Шаг лопасти определяют как среднеарифметическое значение шагов сечений для рассматриваемой лопасти.

7.9 Шаг гребного винта определяют как среднеарифметическое значение средних шагов лопасти.

8 Допуски на радиус гребного винта

8.1 Допуски на радиус гребного винта приведены в таблице 4.


Таблица 4

Наименование параметра

Класс гребного винта

Радиус гребного винта

8.2 Для гребного винта в направляющей насадке эти допуски могут быть уменьшены.

9 Допуски на толщину сечения лопасти

9.1 Измерения толщины следует проводить на тех же радиусах, что и измерения шага.

9.2 Предельные отклонения, указанные в таблице 5, выражены в процентах местной толщины.


Таблица 5

Наименование параметра

Класс гребного винта

Предельные отклонения (допуск)

мм,
не менее

мм,
не менее

мм,
не менее

мм,
не менее

Толщина сечения лопасти

9.3 Максимальные значения толщин, указанные на чертеже, после вычитания отрицательного допуска должны быть не менее значений толщин, требуемых классификационными обществами.

10 Допуски на плавность сечений лопасти

Допуски на плавность сечений лопастей применяют только для гребных винтов классов S и I на радиусах, на которых измеряются шаги.

Чтобы добиться плавности сечений, отклонения в результате последовательных измерений местного шага и толщины не должны отличаться одно от другого более чем на половину допуска (например, если допуск от плюс 2,0% до минус 2,0%, то допускаемая разность последовательных отклонений составляет 2,0%).

Для избежания чрезмерных отклонений в общей кривизне сечения необходимо, чтобы алгебраическая сумма отклонений, выраженная в процентах, двух каких-либо последовательных измерений местного шага превышала не более чем в 1,5 раза предусмотренный допуск. Например, если допуск ±2,0%, то сумма последовательных отклонений должна быть ±3,0% (см. рисунок 3).

Примечания

1 На рисунке отклонения увеличены в 20 раз.

2 Очень высокие значения подчеркнуты.

Рисунок 3 - Гребной винт класса I

Плавность цилиндрических сечений также проверяют, применяя специальные гибкие шаблоны.

Входящие и выходящие кромки следует проверять кромочными шаблонами, позволяющими установить соответствие кромок чертежу с учетом следующих допусков нагнетательной и засасывающей сторон:

±0,5 мм - для класса S;

±0,75 мм - для класса I.

По соглашению между изготовителем и заказчиком кромки могут быть проверены кромочными шаблонами, состоящими из трех элементов для каждой кромки (см. рисунок 4), один элемент с коротким носом для проверки края кромки лопасти и два элемента, которые прикладывают к кромке - один к нагнетательной, другой к засасывающей стороне. Каждый шаблон охватывает приблизительно 20% длины лопасти, но не более 300 мм. Эти шаблоны должны быть изготовлены с допуском 0,25 мм для класса S и 0,35 мм для класса I.

Рисунок 4

11 Допуски на длину сечений лопасти

11.1 Предельные отклонения, приведенные в таблице 6, выражены в процентах отношения диаметра к числу лопастей ().


Таблица 6

Наименование параметра

Класс гребного винта

Предельные отклонения (допуск)

мм,
не менее

мм,
не менее

мм,
не менее

мм,
не менее

Длина сечений лопасти

11.2 Длины сечений каждой лопасти должны быть измерены, по крайней мере, на пяти радиусах для класса S (например: ; ; ; ; ) и на четырех радиусах для классов I, II, III.

12 Допуски на взаимное расположение лопастей, на положение осевых линий и на контуры лопастей

12.1 Положение осевых линий лопастей

Осевую линию наносят на чертеж в виде прямой линии, которая проходит через точку М на нагнетательной стороне лопасти и точку О на оси гребного винта.

Точка М должна быть на цилиндрическом сечении радиуса более чем и, если возможно, вблизи .

Точку выбирают таким образом, чтобы прямая ОМ пересекала наибольшее возможное число сечений лопасти.

Отношение между углами (соответствующим входящей кромке) и (соответствующим выходящей кромке) указывают на чертеже (см. рисунок 5).

указывают размером на чертеже

Рисунок 5

Точку М" на изготовленном гребном винте устанавливают таким образом, чтобы отношение , равное отношению , указанному на чертеже, могло быть достигнуто на рассматриваемом радиусе (см. рисунок 6).

Рисунок 6

Плоскости начала отсчета, проходящие через точку М", используют для проверки контура входящей кромки и откидки лопастей так же, как и углового смещения лопасти*.
_________________
* Определение откидки - по ГОСТ 25815 .

12.2 Допуски на контур входящей кромки

Допуски должны быть рассчитаны для радиусов, указанных в таблице 3, на соответствующих дугах и действительны для длины дуги (см. рисунок 6). Допуски, выраженные в процентах , приведены в таблице 6 ( - диаметр, - число лопастей).

Допуски для длины дуги должны быть равны удвоенным значениям, приведенным в таблице 6, при условии плавности контуров кромок лопасти.

12.3 Допуски на угловое смещение между двумя соседними лопастями

Допуски должны составлять:

±1° - для винтов классов S и I;

±2° - для винтов классов II и III.

13 Допуски на откидку, положение лопасти вдоль оси винта и взаимное расположение осевых линий соседних лопастей

Откидка характеризуется положением осевой линии лопасти РР" (см. рисунок 7). Откидку определяют измерением расстояния до плоскости W, перпендикулярной к оси вращения гребного винта, по крайней мере в точках А, В и С , расположенных на радиусах или ; или ; или .

Рисунок 7

В таблице 7 приведены допуски на расстояния , и , выраженные в процентах диаметра гребного винта , для проверки положения лопастей вдоль оси винта. Те же допуски (а не двойные допуски) применяют, для разностей: для одной и той же лопасти для проверки откидки и - для двух соседних лопастей для проверки относительного осевого положения.


Таблица 7

Наименование параметра

Класс гребного винта

Предельные отклонения, %

Положение лопасти в точках А , В и С (расположенных на радиусах ; и ) no отношению к плоскости W, перпендикулярной к оси винта

14 Обработка поверхности

Состояние поверхности лопастей, выраженное как среднеарифметическое значение отклонения Ra, мкм, должно иметь шероховатость, не превышающую следующих значений:

3 (начиная от ступицы) - для гребных винтов класса S;

6 (начиная от радиуса 0,3) - для гребных винтов класса I;

12 (начиная от радиуса 0,4) - для гребных винтов класса II;

25 (начиная от радиуса 0,5) - для гребных винтов класса III.

15 Статическая балансировка

15.1 Все изготовленные гребные винты должны быть статически отбалансированы.

Максимально допустимую массу балансировочного груза , кг, приложенного на конце лопасти гребного винта, определяют по формуле:

Или , наименьшее из них, (1)


где - масса гребного винта, кг;

- внешний радиус лопасти, м;

- расчетное число оборотов гребного винта в минуту, об/мин;

и - коэффициенты, зависящие от класса гребного винта, приведены в таблице 8.


Таблица 8

Обозначение коэффициента

Класс гребного винта

16 Измерительные приборы

Максимально допустимая погрешность измерительных приборов не должна превышать половины допуска на размер или параметр, а в случае геометрических измерений - 0,5 мм (выбирают наибольшее значение из них).



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
М.: Стандартинформ, 2007

Редакция документа с учетом
изменений и дополнений подготовлена
АО "Кодекс"

Loading...Loading...