Радиоуправление своими руками. Простейшая однокомандная схема радиоуправления моделями (3 транзистора) Как сделать радиоуправление

Многие хотели собрать простую схему радиоуправления, но чтоб была многофункциональна и на достаточно большое расстояние. Я все-таки эту схему собрал, потратив на неё почти месяц. На платах дорожки рисовал от руки, так как принтер не пропечатывает такие тонкие. На фотографии приемника светодиоды с не подрезанными выводами - припаял их только для демонстрации работы радиоуправления. В дальнейшем их отпаяю и соберу радиоуправляемый самолет.

Схема аппаратуры радиоуправления состоит всего из двух микросхем: трансивера MRF49XA и микроконтроллера PIC16F628A. Детали в принципе доступные, но для меня проблемой был трансивер, пришлось через интернет заказывать. и платой качайте здесь. Подробнеее об устройстве:

MRF49XA - малогабаритный трансивер, имеющий возможность работать в трех частотных диапазонах.
- Низкочастотный диапазон: 430,24 - 439,75 Mгц (шаг 2,5 кГц).
- Высокочастотный диапазон А: 860,48 - 879,51 МГц (шаг 5 кГц).
- Высокочастотный диапазон Б: 900,72 - 929,27 МГц (шаг 7,5 кГц).
Границы диапазонов указаны при условии применения опорного кварца частотой 10 МГц.

Принципиальная схема передатчика:

В схеме TX довольно мало деталей. И она очень стабильная, более того даже не требует настройки, работает сразу после сборки. Дистанция (согласно источнику) около 200 метров.

Теперь к приемнику. Блок RX выполнен по аналогичной схеме, различия только в светодиодах, прошивках и кнопках. Параметры 10-ти командного блока радиоуправления:

Передатчик:
Мощность - 10 мВт
Напряжение питания 2,2 - 3,8 В (согласно даташиту на м/с, на практике нормально работает до 5 вольт).
Ток, потребляемый в режиме передачи - 25 мА.
Ток покоя - 25 мкА.
Скорость данных - 1кбит/сек.
Всегда передается целое количество пакетов данных.
Модуляция - FSK.
Помехоустойчивое кодирование, передача контрольной суммы.

Приемник:
Чувствительность - 0,7 мкВ.
Напряжение питания 2,2 - 3,8 В (согласно даташиту на микросхему, на практике нормально работает до 5 вольт).
Постоянный потребляемый ток - 12 мА.
Скорость данных до 2 кбит/сек. Ограничена программно.
Модуляция - FSK.
Помехоустойчивое кодирование, подсчет контрольной суммы при приеме.

Преимущества данной схемы

Возможность нажатия в любой комбинации любого количества кнопок передатчика одновременно. Приемник при этом отобразит светодиодами нажатые кнопки в реальном режиме. Говоря проще, пока нажата кнопка (или комбинация кнопок) на передающей части, на приемной части горит, соответствующий светодиод (или комбинация светодиодов).

Во время подачи питания на приемник и передатчик, они уходят в тест режим на 3 секунды. В это время ничего не работает, по истечению 3-х секунд обе схемы готовы к работе.

Кнопка (или комбинация кнопок) отпускается - соответсвующие светодиоды сразу же гаснут. Идеально подходит для радиоуправления различными игрушками - катерами, самолётами, автомобилями. Либо можно использовать, как блок дистанционного управления различными исполнительными устройствами на производстве.

На печатной плате передатчика кнопки расположены в один ряд, но я решил собрать что-то наподобии пульта на отдельной плате.

Питаются оба модуля от аккумуляторов 3,7В. У приемника, который потребляет заметно меньше тока, аккумулятор от электронной сигареты, у передатчика - от моего любимого телефона)) Схему, найденную на сайте вртп , собрал и испытал: [)еНиС

Обсудить статью РАДИОУПРАВЛЕНИЕ НА МИКРОКОНТРОЛЛЕРЕ

В некоторых случаях требуется однокомандная система дистанционного управления, достаточно простая, дешевая, с хорошей дальностью. Например, в ракетном моделировании, когда в определенный момент нужно выбросить парашют. Обычно для таких целей используют систему, состоящую из простого сверхрегенеративного приемника и передатчика. Конечно такая схема очень проста по количеству транзисторов, но для получения хорошей чувствительности приемнику-сверхрегенератору нужна кропотливая настройка, налаживание, которая к тому же легко сбивается под действием таких внешних факторов как влияние внешних емкостей, изменения температуры, влажности. И проблема не только в отклонении частоты настройки (это не столь страшно), сколько в том, что изменяется коэффициент обратной связи в сверхрегенераторе, режим транзистора, что в конечном итоге сверхрегенеративный приемник превращает в обычный детекторный приемник или в генератор.

Более стабильных параметров при такой же простоте (по количеству деталей) можно достигнуть если построить приемный тракт по супергетеродинной схеме на интегральной микросхеме. Но специализированные микросхемы для связной аппаратуры не всегда есть в наличии. Зато наверняка у каждого радиолюбителя найдется микросхема К174ХА34 или даже готовый радиовещательный приемный тракт на её основе. Какое-то время назад было простаки повальное увлечение конструированием УКВ-ЧМ радиовещательных приемников на её основе. Сейчас же многие из них отправлены «на дальнюю полку».

Напомню, что микросхема К174ХА34 (аналог TDA7021) представляет собой супергетеродинный радиоприемный тракт УКВ-ЧМ диапазона, работающий с низкой промежуточной частотой (70 кГц). Такая низкая ПЧ позволяет в простейшем варианте ограничиться всего одним контуром, – гетеродинным. Избавиться от LC или пъезокерамических фильтров ПЧ (фильтры сделаны на ОУ по RC-схемам). А в результате получается приемный тракт почти не требующий настройки, – если все правильно спаять работает сразу же, – только контур гетеродина подстроить и готово.

Микросхемы К174ХА34 выпускались в 16-ти и 18-ти выводных корпусах. Что интересно цоколевки у них почти совпадают. Их даже можно воткнуть в одну и ту же плату, подогнув или отрезав лишние выводы, либо оставив две дырки пустыми. Просто нужно мысленно себе представить что у 18-выводного корпуса нет выводов 9 и 10. Если их не брать в расчет то по номерам все как у 16-выводного варианта. У меня была микросхема в 16-выеодном корпусе.

И так, у 16-выводного варианта есть вывод 9 (это же вывод 11 у 18-выводного), так вот этот вывод обычно либо не использовался, либо служил для индикатора точной настройки. Напряжение на нем изменяется в зависимости от величины входного сигнала. Так вот, если это напряжение с него подать на транзисторный ключ с электромагнитным реле на выходе, то при включении передатчика (даже без модуляции) реле будет переключать контакты.

Практически берем типовой приемный тракт на К174ХА34 и задействуем 9-й вывод (рис.1). Теперь остается только настроить приемный тракт на нужную частоту контуром L1-C2. И отрегулировать резистором R2 порог срабатывания реле.
Антенна приемника может быть любой конструкции, – это зависит от места где будет установлен приемный тракт. У меня антенной служит жесткая стальная проволока длиной 30 см.
Схема передатчика показана на рисунке 2. Это однокаскадный генератор ВЧ с антенной на выходе.

Настройку передатчика нужно выполнять с подключенной антенной. В качестве антенны можно использовать проволочный штырь длиной не менее 1 метра. В процессе настройки нужно настроить передатчик на свободную частоту в УКВ-ЧМ диапазоне. Для этого нужен контрольный УКВ-ЧМ приемник с индикатором точной настройки. Передатчик работает без модуляции поэтому факт приема будет виден только по индикатору точной настройки. Впрочем, временно можно сделать модуляцию, подав на базу транзистора VT1 (рис.2.) какой-то аудиосигнал.

Настройка частоты передатчика катушкой L1. Глубину ПОС можно менять изменяя соотношение конденсаторов С2 и СЗ (будет удобнее если заменить их подстроечными). Потом потребуется еще раз точная подгонка частоты.
Режим работы каскада выставляется резистором R1 экспериментально по наилучшей отдаче, но ток потребления при этом не должен быть более 50 мА.

Детали. Катушка гетеродина приемного тракта бескаркасная. Её внутренний диаметр 3 мм. Провод – ПЭВ 0,43, а число витков 12. Изменять индуктивность катушки можно сжимая и растягивая её как пружину.
Катушка передатчика имеет аналогичную конструкцию и так же регулируется её индуктивность. Но внутренний диаметр катушки 5 мм, а число витков 8. Провод тоже более толстый – ПЭВ 0,61.
Вообще, эти катушки можно наматывать практически любым обмоточным или посеребрянным проводом сечением от 0,3 до 1,0 мм.

Электромагнитное реле маломощное с обмоткой на 5V (РЭС-55А, сопротивление обмотки 100 Ом). Можно использовать и другое реле с обмоткой на 5V. Если нужно работать с реле с обмоткой на более высокое напряжение нужно соответственно увеличить напряжение питания схемы, и параллельно конденсатору С14 подключить стабилитрон на 4,5-5,5V.

Что хочется сказать от себя — отличное решение в любой ситуации дистанционного контроля. В первую очередь это касается ситуации когда есть необходимость управлять большим количеством устройств на расстоянии. Даже если и не нужно управлять большим количеством нагрузок на расстоянии — разработку сделать стоит, так как конструкция не сложная! Пара не редких компонентов — это микроконтроллер PIC16F628A и микросхема MRF49XA — трансивер.

В Интернете уже давно томиться и обрастает положительными отзывами замечательная разработка. Она получила название в честь своего создателя (10 командное радиоуправление на mrf49xa от blaze) и находится по адресу —

Ниже приведем статью:

Схема передатчика:

Состоит из управляющего контроллера и трансивера MRF49XA.

Схема приемника:

Схема приемника состоит из тех же элементов, что и передатчик. Практически, отличие приемника от передатчика (не беря во внимание светодиоды и кнопки) состоит только в программной части.

Немного о микросхемах:

MRF49XA — малогабаритный трансивер, имеющий возможность работать в трех частотных диапазонах.
1. Низкочастотный диапазон: 430,24 — 439,75 Mгц (шаг 2,5 кГц).
2. Высокочастотный диапазон А: 860,48 — 879,51 МГц (шаг 5 кГц).
3. Высокочастотный диапазон Б: 900,72 — 929,27 МГц (шаг 7,5 кГц).

Границы диапазонов указаны при условии применения опорного кварца частотой 10 МГц, предусмотренного производителем. С опорными кварцами 11МГц устройства нормально работали на частоте 481 МГц. Детальные исследования на тему максимальной «затяжки» частоты относительно заявленной производителем не проводились. Предположительно она может быть не так широка, как в микросхеме ТХС101, поскольку в даташите MRF49XA упоминается об уменьшенном фазовом шуме, одним из способов достижения которого является сужение диапазона перестройки ГУН.

Устройства имеют следующие технические характеристики:
Передатчик.
Мощность — 10 мВт.

Ток, потребляемый в режиме передачи — 25 мА.
Ток покоя — 25 мкА.
Скорость данных — 1кбит / сек.
Всегда передается целое количество пакетов данных.
Модуляция FSK.
Помехоустойчивое кодирование, передача контрольной суммы.

Приемник.
Чувствительность — 0,7 мкВ.
Напряжение питания — 2,2 — 3,8 В (согласно даташиту на мс, на практике нормально работает до 5 вольт).
Постоянный потребляемый ток — 12 мА.
Скорость данных до 2 кбит/сек. Ограничена программно.
Модуляция FSK.
Помехоустойчивое кодирование, подсчет контрольной суммы при приеме.
Алгоритм работы.
Возможность нажатия в любой комбинации любого количества кнопок передатчика одновременно. Приемник при этом отобразит светодиодами нажатые кнопки в реальном режиме. Говоря проще, пока нажата кнопка (или комбинация кнопок) на передающей части, на приемной части горит, соответствующий светодиод (или комбинация светодиодов).
Кнопка (или комбинация кнопок) отпускается — соответствующие светодиоды сразу же гаснут.
Тест режим.
И приемник и передатчик по факту подачи на них питания входят на 3 сек в тест режим. И приемник и передатчик включаются в режим передачи несущей частоты, запрограммированной в EEPROM, на 1 сек 2 раза с паузой 1 сек (во время паузы передача выключается). Это удобно при программировании устройств. Далее оба устройства готовы к работе.

Программирование контроллеров.
EEPROM контроллера передатчика.


Верхняя строка EEPROM после прошивки и подачи питания на контроллер передатчика будет выглядеть так…

80 1F — (подиапазон 4хх МГц) — Config RG
AC 80 — (точное значение частоты 438 MГц) — Freg Setting RG
98 F0 — (максимальная мощность передатчика, девиация 240 кГц) — Tx Config RG

82 39 — (передатчик включен) — Pow Management RG .

Первая ячейка памяти второй строки (адрес 10 h ) — идентификатор. По умолчанию здесь FF . Идентификатор может быть любой в пределах байта (0 … FF). Это индивидуальный номер (код) пульта. По этому же адресу в памяти контроллера приемника находится его идентификатор. Они обязательно должны совпадать. Это дает возможность создавать разные пары приемник/передатчик.

EEPROM контроллера приемника.
Все настройки EEPROM, упомянутые ниже, запишутся автоматически на свои места по факту подачи на контроллер питания после его прошивки.
В каждой из ячеек данные можно менять на свое усмотрение. Если в любую используемую для данных ячейку (кроме идентификатора) вписать FF, за следующим включением питания эта ячейка немедленно будет переписана данными по умолчанию.

Верхняя строка EEPROM после прошивки и подачи питания на контроллер приемника будет выглядеть так…

80 1F — (подиапазон 4хх МГц) — Config RG

AC 80 — (точное значение частоты 438 MГц) — Freg Setting RG
91 20 — (полоса приемника 400 кГц, чувствительность максимальная) — Rx Config RG
C6 94 — (скорость данных — не быстрее 2 кбит/сек) — Data Rate RG
C4 00 — (АПЧ выключено) — AFG RG
82 D9 — (приемник включен) — Pow Management RG .

Первая ячейка памяти второй строки (адрес 10 h ) — идентификатор приемника.
Для корректного изменения содержимого регистров как приемника так и передатчика воспользуйтесь программой RFICDA , выбрав микросхему TRC102 (это клон MRF49XA).
Примечания.
Обратная сторона плат — сплошная масса (залуженная фольга).
Дальность уверенной работы в условиях прямой видимости — 200 м.
Количество витков катушек приемника и передатчика — 6 . Если воспользоваться опорным кварцем 11 МГц вместо 10 МГц, частота «уйдет» выше около 40 МГц. Максимальная мощность и чувствительность в этом случае будут при 5 витках контуров приемника и передатчика.

Моя реализация

На момент реализации устройства под рукой оказался замечательный фотоаппарат, поэтому процесс изготовления платы и монтажа деталей на плату оказался как ни когда увлекательным. И вот к чему это привело:

Первым дело нужно изготовить печатную плату. Для этого я постарался как можно подробней остановиться на процессе ее изготовления

Вырезаем нужный размер платы Видим что есть окислы — нужно от них избавиться Толщина попалась 1.5 мм

Следующий этап — очистка поверхности, для этого стоит подобрать необходимый инвентарь, а именно:

1. Ацетон;

2. Наждачная бумага (нулёвка);

3. Ластик (стерка)

4. Средства для очистки канифоли, флюса, окислов.

Ацетон и средства для смывки и очистки контактов от окислов и подопытная плата

Процесс очистки происходит как показано на фото:

Наждачной бумагой зачищаем поверхность стеклотекстолита. Так как он двухсторонний, проделываем все с обеих сторон.

Берем ацетон и обезжириваем поверхность+смываем остатки крошки наждачной бумаги.

И вуалая — чистая плата, можно наносить лазерно-утюжным методом печатку. Но для этого нужна печатка 🙂

Вырезаем из общего колличества Обрезаем лишнее

Берем вырезанные печатки приемника и передатчика и прикладываем их к стеклотекстолиту следующим образом:

Вид печатки на стеклотекстолите

Переворачиваем

Берем утюг и все это дело прогреваем равномерно, до появления отпечатка дорожек на обратной стороне. ВАЖНО НЕ ПЕРЕГРЕТЬ! Иначе поплывет тонер! Держим 30-40 сек. Равномерно поглаживаем сложные и плохо прогретые места печатки. Результатом хорошего перевода тонера на стеклотекстолит служит появление отпечатка дорожек.

Гладкое и увесистое основание улюга Прикладываем к печатке разогретый утюг
Прижимаем печатку и переводим.

Вот так выглядит готовая отпечатанная печатка на второй стороне журнальной глянцевой бумаги. Должно быть видно дорожки примерно как на фото:



Аналогичный процесс проделываем со второй печаткой, которая в вашем случае может быть либо приемником, либо передатчиком. Я разместил все на одном куске стеклотекстолита



Все должно остыть. Затем аккуратно пальцем под струей воды удаляем бумагу. Скатываем ее пальцами слегка теплой водой.

Под слегка теплой водой Пальцами скатываем бумагу Результат очистки

Не всю бумагу получается удалить таким образом. Когда плата высыхает остается белый «налет» который при травлении может создать кое-какие непротравлеенные участки между дорожками. Расстояние-то маленькое.



Поэтому мы берем тонкий пинцет или цыганскую иглу и удаляем лишнее. На фото замечательно видно!



Помимо остатков бумаги, на фото видно, как в результате перегрева в некоторых местах слиплись контактные площадки для микросхемы. Их нужно аккуратно, той же иглой, как можно внимательней разъединить (соскрести часть тонера) между контактными площадками.

Когда все готово переходим к следующему этапу — травление.

Так как у нас стеклотекстолит двухсторонний и обратная сторона сплошная масса нам нужно сохранить там медную фольгу. Для этой цели заклеим ее скотчем.

Скотч и защищенная плата Вторая сторона защищена от травления слоем скотча Изолента как «ручка» для удобвства травления платы

Теперь травим плату. Я делаю это старым дедовским методом. Развожу 1 часть хлорного железа к 3 частям воды. Весь раствор в банке. Хранить и использовать удобно. Разогреваю в микроволновой печи.


Каждая плата травилась отдельно. Теперь берем в руки уже знакомую нам «нулевку» и зачищаем тонер на плате

Всем доброго, три месяца тому назад - сидя «на ответах маил ру» наткнулся на вопрос: http://otvet.mail.ru/question/92397727 , после данного мной ответа автор вопроса начал писать мне в личку, из переписки стало известно что Тов. «Ivan Ruzhitsky», он же «STAWR» строит р/у машинку по возможности без «дорогих» заводских железяк.

Из покупного у него имелись RF модули на 433МГц и «ведро» радиодеталей.

Я не то чтобы «заболел» этой задумкой, но все же стал размышлять о возможности реализации данного проекта с технической стороны.
На тот момент я в теории радиоуправления был уже довольно не плохо подкован (я так думаю), кроме того; некоторые наработки уже были на вооружении.

Ну а для людей которым интересно - Администрация придумала кнопку……

Итак:
Все узлы делались «на коленке» соответственно «красоты» никакой, основная задача выяснить - на сколько данный проект осуществим и во сколько это «вылезит» в рублях и в трудонях.

ПУЛЬТ:
Самодельный передатчик делать не стал по двум причинам:
1. У Ивана он уже есть.
2. Однажды пытался замутить 27МГц – ни чего хорошего из этого не вышло.
Поскольку управление задумывалось пропорциональным, всякие пульты от китайского хлама отпали сами собой.

Схему кодера (шифратор каналов) взял с этого сайта: http://ivan.bmstu.ru/avia_site/r_main/HWR/TX/CODERS/3/index.html
Спасибо огромное авторам, именно из за этого устройства мне пришлось еще научиться «прошивать» МК.
Передатчик и приемник купил тут-же на «Парке» правда на 315МГц, просто выбирал подешевле:
На сайте с кодером есть все необходимое – сама схема, печатная плата «под утюг» и целая куча прошивок с различными расходами.

Корпус пульта спаян из стеклотекстолита, стики взял от вертолетного пульта на ИК управлении, можно было и от комповского геймпада, но жена меня убила бы, она на нем играет в «DmC», Отсек для батареек от тог-же пульта.

Приемник есть, но чтобы тачка ехала нужен еще и декодер (дешифратор каналов), вот его-то искать пришлось очень долго – у меня даже «гугл» вспотел, ну как говорится «ищущий да обрящет» и вот он: http://homepages.paradise.net.nz/bhabbott/decoder.html

Там же и прошивки для МК.

Регулятор: Изначально сделал тот что попроще:

Но ездить только передом не айс и был выбран вот этот:

Ссылка на сайт: http://vrtp.ru/index.php?showtopic=18549&st=600
Там же и прошивки.

Перерыв гору материнок и видео карт нужных транзисторов не нашел, а именно для верхнего плеча (Р-канальные), поэтому Н-мост (это узел который питает мотор) был спаян на базе Тошибовской микросхемы из видеомагнитофона «TA7291P»,

максимальный ток 1,2А – что меня вполне устраивало (не TRAXXAS – же делаю), плату рисовал маркером за 20р, травил хлорным железом, паял со стороны дорожек. Вот что получилось.


В эфир излучается «чистый» РРМ, конечно не есть хорошо, на самолет я такое не поставлю, а для игрушки пойдет и так.
Машинка взята заводская, от братьев китайцев, вся трибуха кроме ходового двигателя удалена и на её место всунут наш с Иваном проект, хоть мы и заняты им порознь, задумка-то его!

Потрачено:
Комплект RF модулей – 200р
Два МК PIC12F675 - по 40р за штуку.
Серва - TG9e 75р
+3 вечера.

Если будут вопросы с радостью отвечу, (о многом не написал)
С уважением Василий.

Для радиоуправления различными моделями и игрушками может быть использована аппаратура дискретного и пропорционального действия.

Основное отличие аппаратуры пропорционального действия от дискретной состоит в том, что она позволяет по командам оператора отклонять рули модели на любой требуемый угол и плавно изменять скорость и направление ее движения «Вперед» или «Назад».

Постройка и налаживание аппаратуры пропорционального действия достаточно сложны и не всегда под силу начинающему радиолюбителю.

Хотя аппаратура дискретного действия и имеет ограниченные возможности, но, применяя специальные технические решения, можно их расширить. Поэтому далее рассмотрим однокомандную аппаратуру управления, пригодную для колесных, летающих и плавающих моделей.

Схема передатчика

Для управления моделями в радиусе 500 м, как показывает опыт, достаточно иметь передатчик с выходной мощностью окьло 100 мВт. Передатчики радиоуправляемых моделей, как правило, работают в диапазоне 10 м.

Однокомандное управление моделью осуществляется следующим образом. При подаче команды управления передатчик излучает высокочастотные электромагнитные колебания, другими словами, генерирует одну несущую частоту.

Приемник, который находится на модели принимает сигнал, посланный передатчиком, в результате чего срабатывает исполнительный механизм.

Рис. 1. Принципиальная схема передатчика радиоуправляемой модели.

В итоге модель, подчинясь команде, меняет направление движения или осуществляет одно какое-нибудь заранее заложенное в конструкцию модели указание. Используя однокомандную модель управления, можно заставить модель осуществлять достаточно сложные движения.

Схема однокомандного передатчика представлена на рис. 1. Передатчик включает задающий генератор колебаний высокой частоты и модулятор.

Задающий генератор собран на транзисторе VT1 по схеме емкостной трех-точки. Контур L2, С2 передатчика настроен на частоту 27,12 МГц, которая отведена Госсвязьнадзором электросвязи для радиоуправления моделями.

Режим работы генератора по постоянному току определяется подбором величины сопротивления резистора R1. Созданные генератором высокочастотные колебания излучаются в пространство антенной, подключенной к контуру через согласующую катушку индуктивности L1.

Модулятор выполнен на двух транзисторах VT1, VT2 и представляет собой симметричный мультивибратор. Модулируемое напряжение снимается с коллекторной нагрузки R4 транзистора VT2 и подается в общую цепь питания транзистора VT1 высокочастотного генератора, что обеспечивает 100% модуляцию.

Управляется передатчик кнопкой SB1, включенной в общую цепь питания. Задающий генератор работает не непрерывно, а только при нажатой кнопке SB1, когда появляются импульсы тока, вырабатываемые мультивибратором.

Посылка в антенну высокочастотных колебаний, созданных задающим генератором, происходит отдельными порциями, частота следования которых соответствует частоте импульсов модулятора.

Детали передатчика

В передатчике использованы транзисторы с коэффициентом передачи тока базы h21э не менее 60. Резисторы типа МЛТ-0,125, конденсаторы — К10-7, КМ-6.

Согласующая антенная катушка L1 имеет 12 витков ПЭВ-1 0,4 и намотана на унифицированном каркасе от карманного приемника с подстроечным ферритовым сердечником марки 100НН диаметром 2,8 мм.

Катушка L2 бескаркасная и содержат 16 витков провода ПЭВ-1 0,8 намотанных на оправке диаметром 10 мм. В качестве кнопки управления можно использовать микропереключатель типа МП-7.

Детали передатчика монтируют на печатной плате из фольгированного стеклотекстолита. Антенна передатчика представляет собой отрезок стальной упругой проволоки диаметром 1...2 мм и длиной около 60 см, которая подключается прямо к гнезду X1, расположенному на печатной плате.

Все детали передатчика должны быть заключены в алюминиевый корпус. На передней панели корпуса располагается кнопка управления. В месте прохождения антенны через стенку корпуса к гнезду XI должен быть установлен пластмассовый изолятор, чтобы предотвратить касание антенны корпуса.

Налаживание передатчика

При заведомо исправных деталях и правильном монтаже передатчик не требует особой наладки. Необходимо только убедиться в его работоспособности и, изменяя индуктивность катушки L1, добиться максимальной мощности передатчика.

Для проверки работы мультивибратора надо включить высокоомные наушники между коллектором VT2 и плюсом источника питания. При замыкании кнопки SB1 в наушниках должен прослушиваться звук низкого тона, соответствующий частоте мультивибратора.

Для проверки работоспособности генератора ВЧ необходимо собрать волномер по схеме рис. 2. Схема представляет собой простой детекторный приемник, в котором катушка L1 намотана проводом ПЭВ-1 диаметром 1...1,2мм и содержит 10 витков с отводом от 3 витка.

Рис. 2. Принципиальная схема волномера для настройки передатчика.

Катушка намотана с шагом 4 мм на пластмассовом каркасе диаметром 25 мм. В качестве индикатора используется вольтметр постоянного тока с относительным входным сопротивлением 10 кОм/В или микроамперметр на ток 50...100мкА.

Волномер собирают на небольшой пластине из фольгированного стеклотекстолита толщиной 1,5 мм. Включив передатчик, располагают от него волномер на расстоянии 50...60 см. При исправном генераторе ВЧ стрелка волномера отклоняется на некоторый угол от нулевой отметки.

Настраивая генератор ВЧ на частоту 27,12 МГц, сдвигая и раздвигая витки катушки L2, добиваются максимального отклонения стрелки вольтметра.

Максимальную мощность высокочастотных колебаний, излучаемых антенной, получают вращением сердечника катушки L1. Настройка передатчика считается оконченной, если вольтметр волномера на расстоянии 1...1,2 м от передатчика показывает напряжение не менее 0,05 В.

Схема приемника

Для управления моделью радиолюбители довольно часто используют приемники, построенные по схеме сверхрегенератора. Это связано с тем, что сверхрегенеративный приемник, имея простую конструкцию, обладает очень высокой чувствительностью, порядка 10...20 мкВ.

Схема сверхрегенеративного приемника для модели приведена на рис. 3. Приемник собран на трех транзисторах и питается от батареи типа «Крона» или другого источника напряжением 9 В.

Первый каскад приемника представляет собой сверхрегенеративный детектор с самогаше-нием, выполненный на транзисторе VT1. Если на антенну не поступает сигнал, то этот каскад генерирует импульсы высокочастотных колебаний, следующих с частотой 60...100 кГц. Это и есть частота гашения, которая задается конденсатором С6 и резистором R3.

Рис. 3. Принципиальная схема сверхрегенеративного приемника радиоуправляемой модели.

Усиление выделенного командного сигнала сверхрегенеративным детектором приемника происходит следующим образом. Транзистор VT1 включен по схеме с общей базой и его коллекторный ток пульсирует с частотой гашения.

При отсутствии на входе приемника сигнала, эти импульсы детектируются и создают на резисторе R3 некоторое напряжение. В момент поступления сигнала на приемник продолжительность отдельных импульсов возрастает, что приводит к увеличению напряжения на резисторе R3.

Приемник имеет один входной контур L1, С4, который с помощью сердечника катушки L1 настраивается на частоту передатчика. Связь контура с антенной — емкостная.

Принятый приемником сигнал управления выделяется на резисторе R4. Этот сигнал в 10...30 раз меньше напряжения частоты гашения.

Для подавления мешающего напряжения с частотой гашения между сверхрегенеративным детектором и усилителем напряжения включен фильтр L3, С7.

При этом на выходе фильтра напряжение частоты гашения в 5... 10 раз меньше амплитуды полезного сигнала. Продетектированный сигнал через разделительный конденсатор С8 подается на базу транзистора VT2, представляющего собой каскад усиления низкой частоты, а далее на электронное реле, собранное на транзисторе ѴТЗ и диодах VD1, VD2.

Усиленный транзистором ѴТЗ сигнал выпрямляется диодами VD1 и VD2. Выпрямленный ток (отрицательной полярности) поступает на базу транзистора ѴТЗ.

При появлении тока на входе электронного реле, коллекторный ток транзистора увеличивается и срабатывает реле К1. В качестве антенны приемника можно использовать штырь длиной 70... 100 см. Максимальная чувствительность сверхрегенеративного приемника устанавливается подбором сопротивления резистора R1.

Детали и монтаж приемника

Монтаж приемника выполняют печатным способом на плате из фольгированного стеклотекстолита толщиной 1,5 мм и размерами 100x65 мм. В приемнике используются резисторы и конденсаторы тех же типов, что и в передатчике.

Катушка контура сверхрегенератора L1 имеет 8 витков провода ПЭЛШО 0,35, намотанных виток к витку на полистироловом каркасе диаметром 6,5 мм, с подстроечным ферритовым сердечником марки 100НН диаметром 2,7 мм и длиной 8 мм. Дроссели имеют индуктивность: L2 — 8 мкГн, a L3 — 0,07...0,1 мкГн.

Электромагнитное реле К1 типа РЭС-6 с обмоткой сопротивлением 200 Ом.

Настройка приемника

Настройку приемника начинают с сверхрегенеративного каскада. Подключают высокоомные наушники параллельно конденсатору С7 и включают питание. Появившийся в наушниках шум свидетельствует об исправной работе сверхрегенеративного детектора.

Изменением сопротивления резистора R1 добиваются максимального шума в наушниках. Каскад усиления напряжения на транзисторе VT2 и электронное реле особой наладки не требуют.

Подбором сопротивления резистора R7 добиваются чувствительности приемника порядка 20 мкВ. Окончательная настройка приемника производится совместно с передатчиком.

Если в приемнике параллельно обмотке реле К1 подключить наушники и включить передатчик, то в наушниках должен прослушиваться громкий шум. Настройка приемника на частоту передатчика приводит к пропаданию шума в наушниках и срабатыванию реле.

Loading...Loading...