Измеритель емкости конденсаторов своими руками. Описание и настройка устройства

Измеритель емкости конденсаторов своими руками — ниже представлена схема и описание как не прилагая больших усилий можно самостоятельно изготовить прибор для тестирования емкости конденсаторов. Такое устройство очень может пригодится при покупке емкостей на радиоэлектронном рынке. С его помощью без проблем выявляется некачественный или бракованный элемент накопления электрического заряда. Принципиальная схема данного ESRа, как его обычно называю большинство электронщиков, ничего сложного из себя не представляет и собрать такой аппарат может даже начинающий радиолюбитель.

Причем измеритель емкости конденсаторов не предполагает для его сборки длительного времени и больших денежных затрат, на изготовление пробника эквивалентного последовательного сопротивления уходит буквально два-три часа. Также не обязательно бежать в магазин радиотоваров — наверняка у любого радиолюбителя найдутся неиспользованные детали подходящие для этой конструкции. Все, что вам потребуется для повторения данной схемы — это мультиметр практически любой модели, только желательно, что бы был цифровой и с десяток деталей. Каких то переделок или модернизации цифрового тестера производить не нужно, все что необходимо с ним сделать — это припаять выводы деталей к необходимым площадкам на его плате.

Принципиальная схема устройства ESR:

Перечень элементов необходимых для сборки измерителя:

Один из главных компонентов прибора — это трансформатор, который должен иметь соотношением витков 11\1. Ферритовый кольцевой сердечник М2000НМ1-36 К10х6х3, который нужно предварительно обмотать изолирующим материалом. Затем намотать первичную обмотку на него, располагая витки по принципу — виток к витку, при этом заполняя всю окружность. Вторичную обмотку также необходимо выполнять с равномерным распределением по всему периметру. Примерное количество витков в первичной обмотки для кольца К10х6х3 будет 60-90 витков, а вторичка должна быть в одиннадцать раз меньше.

Диод D1 использовать можно практически любой кремневый с обратным напряжением не менее 40v, если вам не особо нужна супер точность в измерениях, то вполне подойдет КА220. Для более точного определения емкости придется поставить диод с небольшим падением напряжения в варианте прямого включения — Шоттки. Защитный супрессорный диод D2 должен быть рассчитан на обратное напряжение от 28v до 38v. Транзистор маломощный кремневый p-n-p проводимости: например КТ361 или его аналог.

Измерение величины ЭПС выполнять в диапазоне напряжения 20v. Во время подключении коннектора внешнего измерителя, ESR-приставка к мультиметру сразу же переходит в режим работы тестирования емкости. При этом будет визуально отображено на приборе показание около 35v в диапазоне проверки 200v и 1000v (это в зависимости от использования супрессорного диода). В случае исследования емкости на 20 вольтах, показание будет отображено как «выход за границу измерения». Когда коннектор внешнего измерителя отсоединяется, то и ЭПС-приставка моментально переключается на режим работы как обыкновенного мультиметра.

Заключение

Принцип работы устройства — для начала работы прибора нужно включить в сеть адаптер, при этом происходит включение измерителя ЭПС, когда отключили ESR, то мультиметр автоматически переходит в режим выполнения штатных функций. Чтобы сделать калибровку аппарата нужно подобрать постоянный резистор, так чтобы соответствовало шкале. Для наглядности картина ниже:

При замыкании щупов на шкале мультиметра будет отображено 0.00- 0.01, это показание означает погрешность прибора в диапазоне измерения до 1 Ом.

Мастера, ремонтирующие радиоаппаратуру, чаще всего сталкиваются с пробоем конденсаторов либо со снижением емкости. Чтобы узнать, исправна деталь или нет, надо измерить емкость конденсатора. Для этого существуют различные приборы.

Устройство и характеристики конденсатора

Конденсатор содержит две обкладки из металла, между которыми помещается диэлектрик. Для диэлектрика используются воздух, пластик, слюда, картон, керамические материалы.

В более современных деталях вместо металла применяется фольга, которую сворачивают в рулоны. Таким образом, при меньших габаритах конденсатора можно повысить его емкость.

Конденсаторы классифицируются по диэлектрическому материалу, способам монтажа, форме обкладок и т. д. По полярности они делятся на:

  • электролитические, или оксидные, обладающие полярностью;
  • неполярные.

Электролитические конденсаторные элементы требуют обязательного соблюдения полярности при включении. Диэлектриком в них служит оксидный слой, формирующийся на танталовом (алюминиевом) аноде. Катод – электролит в виде жидкости или геля. Измерение емкости конденсатора такого типа должно проводиться, учитывая маркировку полюсов детали.

Основное свойство конденсатора – накопление электрического заряда, благодаря которому он широко используется в различных фильтрах. С его помощью можно передавать сигнал между каскадами усиления, разделять высокие и низкие частоты и т.д.

Параметры конденсатора:

  1. Емкость. Способность к накоплению заряда, зависящая от площади обкладок, расстояния между ними, характера применяемого материала в качестве электролита. Измеряется в фарадах;
  2. Номинальное напряжение. Показывает, при каком напряжении возможна длительная и стабильная работа элемента. Если параметр превышается, может наступить пробой.

Возможные неисправности конденсатора

Различают несколько видов неисправностей конденсаторов, влияющих на работу электрической схемы:

  • полный пробой (замыкание между обкладками);
  • нарушение внешней герметичности от механических повреждений;
  • уменьшение емкости;
  • возрастание внутреннего сопротивления;
  • уменьшение напряжения, при котором наступает обратимый пробой элемента.

В большинстве случаев детали выходят из строя по причине продолжительной работы в условиях перегрева. Всегда важно обеспечить оптимальный режим температур для работы аппаратуры.

Как проверить исправность конденсатора

На первом этапе надо сделать визуальный осмотр детали на наличие механических повреждений, деформации корпуса, изменения цвета. У электролитических элементов это разбухание в верхней части, которое может быть небольшим, но заметным в сравнении с исправными аналогами. Зачастую деталь внешне выглядит нормально. Тогда для ее проверки потребуются специальные приборы:

  • мультиметр, в котором реализована функция измерения емкости;
  • специальный измеритель емкости конденсаторов;
  • LC-метр;
  • прибор ESR.

Используя мультиметр, иногда трудно сделать вывод о неисправности, так как емкость поврежденного конденсаторного элемента снижается на очень малые величины. С помощью LC-метров или специальных приборов определить ее значение можно точнее. Для измерений емкости электролитических конденсаторов служат приборы ESR. Причем замеры производятся без выпаивания деталей из схемы.

Если нет специального прибора, то емкостные замеры неполярных элементов можно производить мультиметром, измеряющим сопротивление. При этом они выпаиваются из платы.

  1. На шкале мультиметра установить предел «200 кОм». Предел шкалы меняется в зависимости от номинального емкостного значения;
  2. Разрядить выпаянные конденсаторные элементы, так как может существовать остаточный заряд. Разряд производится замыканием их выводов накоротко;
  3. Щупы прибора подключить к конденсаторным выводам и наблюдать за его показаниями. Стараться не прикасаться к контактной части щупов руками.

Появившееся на экране значение сопротивления будет постепенно увеличиваться, а затем покажет «1», на цифровом приборе означающую «бесконечность». У конденсаторов с малой емкостью процесс изменения сопротивления ускорен так, что можно его не зафиксировать.

Важно! Исправный заряженный конденсаторный элемент обладает «бесконечным» сопротивлением.

Если деталь неисправна, сразу, без предшествующего нарастания, будут видны значения «1», указывающие на обрыв внутри детали, или «0» – внутреннее КЗ. Плавное нарастание сопротивления наблюдается из-за зарядки детали от батареи мультиметра.

Можно применить для емкостных замеров и старые аналоговые тестеры. При этом наблюдения ведутся за движениями стрелки. Она должна сразу отклониться вправо со скоростью, зависящей от конденсаторной емкости, продолжая свое медленное движение до пределов шкалы. Если она не дергается или, отклонившись, останавливается, это говорит о повреждении. О том же сигнализирует резкий бросок до предельных цифр.

Важно! Проверке мультиметром можно подвергнуть конденсаторные элементы емкостью до 0,25 мкФ. Для меньших параметров проверка ведется на LC-метрах.

Измерение фактических емкостных значений

Вышеописанным способом невозможно определить количественные емкостные значения, можно только сделать вывод об исправности конденсаторного элемента. По приборам, измеряющим емкость в фарадах, сразу определяется ее отклонение от номинального параметра. Нулевое значение говорит о пробое, сниженное – тоже сигнализирует о том, что деталь нужно заменить.

Опосредованно о величине емкости можно судить по скорости нарастания сопротивления в момент подключения к мультиметру. Чем она ниже, тем больше емкость. Можно подсчитать ее примерное значение, подключая исправные конденсаторные элементы с заранее известной емкостью и производя замеры времени в секундах, за которое сопротивление достигает «бесконечности». Вывод делается на основании сравнения с испытываемым конденсаторным элементом.

На лицевой панели мультиметра, предназначенного для емкостных замеров, существуют специальные входные разъемы СХ, промаркированные «плюсом» и «минусом». Вместо них могут присутствовать обыкновенные щупы. Для измерения конденсаторные элементы вставляются в эти разъемы с обязательным соблюдением полярности у электролитических деталей. Маркировка присутствует и на самих конденсаторах. Для неполярных элементов это не имеет значения. Предельное значение шкалы измеряемой емкости надо выставлять, исходя из конденсаторных параметров.

Важно! Перед подсоединением к прибору необходимо снять остаточный заряд с конденсатора.

Измерение прибором ESR

ESR означает эквивалентное последовательное сопротивление, параметр очень важный для электролитического конденсатора. Когда это сопротивление увеличивается, зарядный ток уменьшается, что вызывает сбои в работе электрической цепи. Причем емкость, измеренная традиционными способами, может не выходить из границ нормы. Особенно влияние эквивалентного сопротивления заметно у деталей емкостью больше 5 мкФ. Для стабильной работы параметр не должен превышать 1 Ом.

При проверке конденсаторных элементов без выпаивания из платы такой аппарат дает более точные результаты. Попытки аналогично замерить параметры детали мультиметром не дадут достоверной картины. Рядом с конденсатором существуют другие элементы: индуктивности, сопротивления и т.д., которые вносят искажающее влияние. Обычно делают вывод об исправности конденсаторного элемента с помощью косвенных измерений либо параллельно ему припаивают другой с идентичными характеристиками. Это возможно только в низковольтных цепях.

Снижение напряжения пробоя конденсатора

Мастерам-радиолюбителям может встретиться случай, когда все характеристики конденсатора в норме при замере мультиметром, но при работе в схеме наблюдаются признаки его пробоя. Это происходит при снижении напряжения пробоя ниже номинальной величины. Если деталь рассчитана на напряжение 25 В, а пробой наступает при 15 В, то при измерении мультиметром не будет выявлена неисправность конденсаторного элемента, так как пробой имеет обратимый характер.

Для определения такой неисправности надо использовать источник постоянного тока с возможностью регулировать уровень напряжения. Подключив к нему деталь и постепенно увеличивая подводимое напряжение, выясняется наличие повреждения, заметное по резкому возрастанию тока вплоть до срабатывания защитного отключения ИП.

Измерения конденсаторной емкости можно проводить разными способами. Просто обнаружить неисправный элемент можно омметром, более точные результаты получаются при использовании LC-метров и приборов ESR.

Видео

Из заголовка статьи понятно, что сегодня речь пойдет о приборе для измерения ёмкости конденсаторов. Не в каждом простом мультиметре есть данная функция. А ведь при изготовлении очередной самоделки мы очень часто задумываемся: будет ли она работать, исправны ли конденсаторы, которые мы применили, как их проверить.Да и просто в процессе ремонта данный прибор будет необходим. Проверить на целостность электролитический конденсатор, конечно, можно при помощи тестера. Но мы узнаем: живой он или нет, а вот определить ёмкость, насколько он сухой, мы не сможем.

В некоторых дешевых мультиметрах, которые присутствуют сейчас на рынке, имеется эта функция. Но предел измерения ограничен цифрой в 200 микрофарад. Что явно мало. Нужно хотя бы четыре тысячи микрофарад. Но такие мультиметры стоят на порядок выше. Поэтому я наконец-то решил купить измеритель ёмкости конденсаторов . Выбирал самый дешевый с приемлемыми характеристиками. Остановил свой выбор на XC6013L:

Поставляется это устройство в красивой коробке. Правда, на коробке изображение другого мультиметра:

А сверху наклейка с моделью данного прибора, наверно, у китайцев не хватает коробок:

Прибор заключён в защитный желтый кожух из мягкой пластмассы, похожей на резину. В руках чувствуется увесистость, что говорит о серьезности прибора. С нижней стороны имеется откидная подставка, которая многим может и не пригодиться:

Питается измеритель ёмкости от батарейки напряжением 9 вольт типа крона, которая поставляется в комплекте:

Характеристики прибора просто великолепны. Он может производить измерения от 200 пикофарад до 20 тысяч микрофарад. Что вполне достаточно для радиолюбительских целей:

Сверху прибора расположился большой и информативный жидкокристаллический дисплей. Под ним находятся две кнопки. Слева — красная кнопка, при помощи которой можно зафиксировать на дисплее текущее показание ёмкости. А справа — синяя кнопка, которая очень порадовала, — подсветкой экрана, что, несомненно, является плюсом данного прибора. Между кнопками имеется коннектор для измерения малогабаритных конденсаторов. Правда, проверить бушные конденсаторы, выпаянные из плат доноров, не получается, так как контактные площадки расположены достаточно глубоко. Поэтому данным коннектором можно воспользоваться, только проверяя конденсаторы с длинными выводами:

Под селектором выбора диапазонов измерений находится коннектор для подключения щупов. Кстати, щупы выполнены из такого же материала, как защитный кожух прибора, наощупь они довольно-таки мягкие:

Там же находится, несомненно, самая важная функция прибора — это установка нулевых показаний при измерении ёмкостей в разряде пикофарад. Что наглядно видно на следующих двух фотографиях. Здесь умышленно извлечен один щуп и при помощи регулятора выставлен ноль:

Здесь щуп поставлен на место. Как видите, ёмкость щупов влияет на показания. Теперь достаточно при помощи регулятора выставить ноль и произвести измерения, что будет достаточно точно:

Теперь давайте протестируем прибор в работе и посмотрим, на что он способен.

Тестируем измеритель ёмкости конденсаторов

Для начала будем проверять конденсаторы заведомо исправные, новые и извлечённые из плат доноров. Первым будет подопытный на 120 микрофарад. Это новый экземпляр. Как видите, показания слегка занижены. Кстати, таких конденсаторов у меня штуки 4, и ни один не показал 120 микрофарад. Возможна погрешность прибора. А может, сейчас делают одну некондицию:

Вот одна тысяча микрофарад, весьма точно:

Две тысячи двести микрофарад, тоже неплохо:

А вот десять микрофарад:

Ну а теперь сто микрофарад, очень хорошо:

Давайте посмотрим на показания прибора, которые он покажет при проверке дефектных конденсаторов, которые были извлечены во время ремонта . Как видите, разница ощутима:

Вот такие получились результаты. Конечно, в некоторых случаях неисправность электролитического конденсатора видна визуально. Но в большинстве случаев без прибора обойтись сложно. К тому же я тестировал данный прибор на двух платах, проверяя конденсаторы, не выпаивая их. Устройство показало неплохие результаты, только в некоторых случаях нужно соблюдать полярность. Поэтому я советую купить такой прибор, и вы сможете измерять ёмкость конденсаторов своими руками.

Почти два года назад купил цифровой измеритель ёмкости, взял, можно сказать, первое что попалось. Так сильно меня утомила неспособность мультиметра Маstech MY62 измерять ёмкость конденсаторов более 20 микрофарад, да и меньше 100 пикофарад он правильно не мерил. Понравилось в СМ-7115А два фактора:

  1. Измеряет весь востребованный диапазон
  2. Компактность и удобство

Заплатил 750 рублей. Искренне считал, что он этих денег не стоит, а цену «взвинтили» по причине полного отсутствия конкурентной продукции. Страна производитель - конечно Китай. Опасался, что будет «привирать», больше того был в этом уверен - однако напрасно.

Ёмкостемер и провода к нему были упакованы в полиэтилен, каждый в свою оболочку и вложены в коробку из толстого картона, свободное пространство заполнено пенопластом. Так же в коробке находилась инструкция на английском языке. Габаритные размеры прибора 135 х 72 х 36 мм, вес 180 грамм. Цвет корпуса чёрный, передняя панель с сиреневым отливом. Имеет жидкокристаллический индикатор, девять диапазонов измерения, два положения отключения питания, регулятор установки нуля, 15 сантиметровые, разного цвета (красный - чёрный) провода, при помощи которых подключается к прибору измеряемый конденсатор, заканчиваются зажимами типа «крокодил», а гнёзда на корпусе прибора, для их подключения, замаркированы цветным обозначением соответствующей полярности, дополнительно возможно измерение и без них (что увеличивает точность), для чего имеются два продолговатых гнезда, которые подписаны символом измеряемого конденсатора. Используется батарея питания на 9 вольт, имеется функция автоматической индикации её разряда. Жидкокристаллический индикатор трёхразрядный +1 знак после запятой, заявленный производителем диапазон измерения составляет от 0,1 пФ до 20000 мкФ, с возможностью юстировки на диапазоне измерения от 0 до 200 пФ, для установки нуля, в пределах +/- 20 пФ, время одного измерения 2-3 секунды.

Таблица допустимых погрешностей при измерениях, индивидуально по диапазонам. Представлена изготовителем.

На задней половине корпуса имеется интегрированная подставка. Она даёт возможность более компактно разместить измеритель на рабочем месте и изменяет в лучшую сторону обзор жидкокристаллического индикатора.

Батарейный отсек выполнен полностью автономно, для смены элемента питания достаточно сдвинуть в сторону его крышку. Удобство из разряда неприметных, когда оно есть.

Для того чтобы снять заднюю крышку корпуса достаточно открутить один саморез. Самый массивный компонент печатной платы - предохранитель на 500 мА.

В основу работы измерительного прибора положен метод двойного интегрирования. Собран он на логических счётчиках HEF4518BT - 2 шт, ключе HEF4066BT, десятичном счётчике с дешифратором HCF4017 и смд транзисторах: J6 - 4 шт, М6 - 2 шт.

Открутив ещё шесть саморезов можно увидеть другую сторону печатной платы. Переменный резистор, при помощи которого производится установка на «0» стоит так, что его можно легко заменить при необходимости. Слева контакты для подключения измеряемого конденсатора, те, что выше, для непосредственного подключения (без проводов).

Прибор выставляется на нулевую точку отсчёта не сразу, но выставленный показание удерживает. С отключёнными проводами сделать это гораздо проще.

Для наглядной демонстрации разницы в точности измерения при различный способах измерений (с проводами и без) взял конденсаторы малой ёмкости с заводской маркировкой - 8,2 пФ

Видеообзор прибора

Без проводов С проводами
№1 8 пФ 7,3 пФ
№2 7,6 пФ 8,3 пФ
№3 8,1 пФ 9,3 пФ

Всё наглядно, однозначно без проводов измерения будут точнее, хотя и расхождение-то практически в пределах 1 пФ. Так же неоднократно производил измерения конденсаторов стоящих на платах - показания замера исправных вполне адекватные согласно указанного на них номинала. Если не быть сильно большим придирой, то вполне можно сказать, что добротность измерения у прибора достаточно высокая.

Недостатки прибора

  • установка на ноль производится не сразу,
  • у лепестков контактов, для измерения без проводов, отсутствует упругость, после разжатия в исходное положение не возвращаются,
  • измеритель не укомплектован калибровочной ёмкостью.

Выводы

В общем и целом прибором доволен. Измеряет хорошо, компактен (легко помещается в карман), так что на радиорынке беру не то, что дают, а что нужно. Планирую, как будет время, доработать: заменить потенциометр и контакты непосредственного измерения. Его схему, или что-то похожее, можно поискать в разделе . Рассказал «всё как есть», а вы уже решайте сами, стоит ли пополнять домашнюю лабораторию таким прибором. Автор - Babay.

Схема эта, несмотря на свою видимую сложность, совсем проста в повторении, поскольку собрана на цифровых микросхемах и при отсутствии ошибок в монтаже и использовании заведомо исправных деталей практически не требует настройки. Тем не менее, возможности устройства достаточно велики:

  • диапазон измерения – 0,01 — 10000 мкФ;
  • 4 поддиапазона – 10, 100, 1000, 10 000 мкФ;
  • выбор поддиапазона – автоматический;
  • индикация результата – цифровая, 4 разряда с плавающей десятичной точкой;
  • погрешность измерения – единица младшего разряда;

Рассмотрим схему прибора:

щелкните для увеличения

На микросхеме DD1, точнее на двух его элементах, собран кварцевый генератор, работа которого пояснений не требует. Дальше тактовая частота поступает на делитель, собранный на микросхемах DD2 – DD4. Сигналы с него с частотами 1 000, 100, 10 и 1 кГц поступают на мультиплексор DD6.1, который использован в качестве узла автоматического выбора поддиапазона.

Основной узел измерения – одновибратор, собранный на элементах DD5.3, DD5.4, длительность импульса которого напрямую зависит от подключенного к нему конденсатора. Принцип измерения емкости – подсчет количества импульсов за время работы одновибратора. На элементах DD5.1, DD5.2 собран узел, предотвращающий дребезг контактов кнопки «Старт измерения». Ну и последняя часть схемы — четырехразрядная линейка двоично-десятичных счетчиков DD9 — DD12 с выводом на четыре семисегментных индикатора.

Рассмотрим алгоритм работы измерителя. При нажатии на кнопку SB1 двоичный счетчик DD8 обнуляется и переключает узел диапазона (мультиплексор DD6.1) на самый нижний диапазон измерения – 0.010 – 10.00 мкФ. При этом на один из входов электронного ключа DD1.3 поступают импульсы частотой 1 МГц. На второй вход этого же ключа проходит разрешающий сигнал с одновибратора, длительность которого прямо пропорциональна подключенной к нему емкости измеряемого конденсатора.

Таким образом на счетную декаду DD9…DD12 начинают поступать импульсы с частотой 1 МГЦ. Если происходит переполнение декады, то сигнал переноса с DD12 увеличивает показания счетчика DD8 на единицу и разрешает запись нуля в триггер DD7 по входу D. Этот нуль включает формирователь DD5.1, DD5.2 а он в свою очередь сбрасывает счетную декаду, снова устанавливает DD7 в «1» и перезапускает одновибратор. Процесс повторяется, но на счетную декаду через коммутатор теперь поступает частота 100 кГц (включился второй диапазон).

Если до завершения импульса с одновибратора счетная декада снова переполнилась, то опять происходит смена диапазона. Если одновибратор отключился раньше, то счет останавливается и на индикаторе можно прочитать значение подключенной для измерения емкости. Последний штрих – блок управления десятичной точкой, которая и указывает текущий поддиапазон измерения. Его функции выполняет вторая часть мультиплексора DD6, которая засвечивает нужную точку в зависимости от включенного поддиапазона.

В качестве индикаторов в схеме используются вакуумные люминесцентные индикаторы ИВ6, поэтому блок питания измерителя должен выдавать два напряжения: 1 В для накала и +12 В для анодного питания ламп и микросхем. Если индикаторы заменить ЖКИ, то можно обойтись одним источником +9В, применение же светодиодных матриц невозможно из-за малой нагрузочной способности микросхем DD9…DD12.

В качестве калибровочного резистора R8 лучше применить многооборотный, поскольку именно от точности калибровки будет зависеть величина погрешности измерения прибора. Остальные резисторы могут быть МЛТ-0.125. По поводу микросхем — в приборе можно использовать любую из серий К1561, К564, К561, К176, но следует иметь в виду, что 176 серия очень неохотно работает с кварцевым резонатором (DD1).

Настройка прибора достаточно проста, но выполнить ее следует с особой тщательностью.

  • Временно отключить кнопку SB1 от DD8 (вывод 13).
  • В точку соединения R3 с R2 подать прямоугольные импульсы частотой примерно 50-100 Гц (подойдет любой самый простой генератор на логической микросхеме).
  • На место измеряемого конденсатора подключить образцовый, емкость которого известна и лежит в диапазоне 0.5 – 4 мкФ (к примеру, К71-5В 1 мкф±1%). Если есть возможность, то емкость лучше измерить с помощью измерительного моста, но можно понадеяться и на емкость, указанную на корпусе. Здесь нужно иметь в виду, что как точно вы откалибруете прибор, так он вам и будет в будущем измерять.
  • С помощью подстроечного резистора R8 выставить показания индикаторов как можно точнее по соответствию с емкостью эталонного конденсатора. После калибровки подстроечный резистор лучше законтрить каплей лака или краски.

По материалам «Радиолюбитель» №5, 2001г.

Loading...Loading...