В чем измеряется сила? В каких единицах измеряется сила? Единицы силы. Динамометр

Все мы привыкли в жизни употреблять слово сила в сравнительной характеристике, говоря мужчины сильнее женщин, трактор сильнее автомобиля, лев сильнее антилопы.

Сила в физике определяется как мера изменения скорости тела, которое происходит при взаимодействии тел. Если сила является мерой, и мы можем сравнивать приложение различной силы, значит, это физическая величина, которую можно измерить. В каких единицах измеряется сила?

Единицы измерения силы

В честь английского физика Исаака Ньютона, проделавшего огромные исследования в природе существования и использования различных видов силы, за единицу измерения силы в физике принят 1 ньютон (1 Н). Что же такое сила в 1 Н? В физике не выбирают единицы измерения просто так, а делают специальное согласование с теми единицами, которые уже приняты.

Мы знаем из опыта и экспериментов, что если тело покоится и на него действует сила, то тело под действием этой силы меняет свою скорость. Соответственно, для измерения силы выбирали единицу, которая будет характеризовать изменение скорости тела. И не забываем, что есть еще и масса тела, так как известно, что с одинаковой силой воздействие на различные предметы будет различно. Мяч мы можем кинуть далеко, а вот булыжник улетит на гораздо меньшее расстояние. То есть, учтя все факторы, приходим к определению, что сила в 1 Н будет приложена к телу, если тело массой 1 кг под воздействием этой силы меняет свою скорость на 1 м/с за 1 секунду.

Единица измерения силы тяжести

Также нас интересует единица измерения силы тяжести. Так как мы знаем, что Земля притягивает к себе все тела на ее поверхности, значит, существует сила притяжения и ее можно измерить. И опять-таки, мы знаем, что сила притяжения зависит от массы тела. Чем больше масса тела, тем сильнее Земля его притягивает. Экспериментально установлено, чтосила тяжести, действующая на тело массой 102 грамма - это 1 Н. А 102 грамма - это приблизительно одна десятая килограмма. А если быть более точным, то если 1 кг разделить на 9,8 частей, то мы как раз и получим приблизительно 102 грамма.

Если на тело массой 102 грамма действует сила 1 Н, то на тело массой 1 кг действует сила 9,8 Н. Ускорение свободного падения обозначают буквой g. И g равно 9,8 Н/кг. Это сила, которая действует на тело массой 1 кг, ускоряя его каждую секунду на 1 м/с. Получается, что тело, падающее с большой высоты, за время полета набирает очень большую скорость. Почему же тогда снежинки и дождевые капли падают довольно спокойно? У них очень маленькая масса, и тянет их к себе земля очень слабо. А сопротивление воздуха для них довольно велико, поэтому они летят к Земле с не очень большой, довольно одинаковой скоростью. А вот метеориты, например, при подлете к Земле набирают очень высокую скорость и при приземлении, образуется приличный взрыв, который зависит от величины и массы метеорита соотвественно.

Инструкция

Определить силу мышц можно с помощью динамометров различной конструкции. Сила мышц кисти определяется динамометром Коллена. Динамометр кладется на ладонь и сжимается пальцами с максимальным усилием. Результат на и является показателем силы. При разных положениях локтевого сустава сила мышц кисти меняется. Она будет выше в свободном положении локтевого сустава с углом 160-170 градусов по отношению к плечу. В согнутом состоянии (10-15 градусов) показатель силы уменьшится, а в максимально разогнутом (190-200 градусов) - станет минимальным. Согласно многочисленным исследованиям, самыми высокими показателями силы обладают тяжелоатлеты. Становым динамометром измеряется сила разгибателей туловища. Комплексными динамометрическими установками можно показатели практически всех крупных мышц человека: сгибателей и разгибателей бедра, мышц плеч, сгибателей туловища и т.п. Динамометрами оснащаются физкультурные диспансеры для наблюдения за динамикой роста физических показателей .

В спортивного зала динамическая сила мышц определяется максимальными показателями в конкретном упражнении. В тяжелой сила выявляется в двух соревновательных упражнениях – рывке и толчке. В пауэрлифтинге – в жиме лежа, приседании и становой тяге. Нагрузка на мышцы в двух видах отличается, ведь для того, чтобы выполнить рывок, необходимо еще придать ускорение снаряду, проявить взрывную силу.

Если вы не новичок в поднятии тяжестей и регулярно посещаете тренажерный зал хотя бы , то можете измерить динамическую силу мышц самостоятельно. Сначала хорошо разомнитесь с пустым грифом (сделайте 10-12 повторов), затем постепенно добавляйте вес и уменьшайте количество повторений. Когда почувствуете, что вес штанги близок к предельному, выполняйте по 1 повторению и понемногу довешивайте диски с каждым новым подходом. Обязательно используйте страховку в таких упражнениях, как приседание и жим лежа. Страховка осуществляется подготовленными атлетами с двух сторон. При выполнении приседаний и становой тяги обязательно надевайте ремень и сохраняйте прямое положение спины.

Полезный совет

В зависимости от времени суток и физического состояния человека показатели силы могут меняться, поэтому тестирование лучше проводить в дневное время после 2-3 дней отдыха от физических нагрузок.

Вес человека - одна из самых важных его физических характеристик. Ведь как недостаток веса, так и его избыток со временем приводит к проблемам со здоровьем. Чтобы правильно рассчитать оптимальный вес человека , необходимо учитывать множество различных факторов. Самое главное - начать делать "работы над ошибками" в питании и образе жизни как можно быстрее.

Вам понадобится

  • Весы, ростомер

Инструкция

Традиционный подход при вычислении веса заключается в использовании общепринятых соотношений роста и веса. Существует , которая подсказывает, какой вес является оптимальным для с тем или иным ростом. Удобство данной заключается в том, что правильный вес можно вычислить очень . Есть и еще более упрощенный подход к вычислению нормального веса для человека по его . Это так называемая Лоренца.

Сперва нужно рост (сделать это нужно как можно точнее, желательно с использованием медицинского ростомера). Расчет оптимального веса по формуле Лоренца является самым простым. Нужно отнять человека в сантиметрах сотню и отнять от данного значения разность (рост в сантиметрах "минус" 150), поделенную на 2. Чтобы упростить расчет оптимального веса и не ошибиться в вычислениях, можно воспользоваться специальными программами. Интерфейс одной из них представлен на рисунке.

Слово «сила» настолько всеобъемлюще, что дать ему четкое понятие - задача практически невыполнимая. Разнообразие от силы мышц до силы разума не охватывает весь спектр вложенных в него понятий. Сила, рассмотренная как физическая величина, имеет четко определенное значение и определение. Формула силы задает математическую модель: зависимость силы от основных параметров.

История исследования сил включает определение зависимости от параметров и экспериментальное доказательство зависимости.

Сила в физике

Сила - мера взаимодействия тел. Взаимное действие тел друг на друга полностью описывает процессы, связанные с изменением скорости или деформацией тел.

Как физическая величина сила имеет единицу измерения (в системе СИ - Ньютон) и прибор для ее измерения - динамометр. Принцип действия силомера основан на сравнении силы, действующей на тело, с силой упругости пружины динамометра.

За силу в 1 ньютон принята сила, под действием которой тело массой 1 кг изменяет свою скорость на 1 м за 1 секунду.

Сила как определяется:

  • направлением действия;
  • точкой приложения;
  • модулем, абсолютной величиной.

Описывая взаимодействие, обязательно указывают эти параметры.

Виды природных взаимодействий: гравитационные, электромагнитные, сильные, слабые. Гравитационные всемирного тяготения с ее разновидностью - силой тяжести) существуют благодаря влиянию гравитационных полей, окружающих любое тело, имеющее массу. Исследование полей гравитации не закончено до сих пор. Найти источник поля пока не представляется возможным.

Больший ряд сил возникает вследствие электромагнитного взаимодействия атомов, из которых состоит вещество.

Сила давления

При взаимодействии тела с Землей оно оказывает давление на поверхность. Сила которой имеет вид: P = mg, определяется массой тела (m). Ускорение свободного падения (g) имеет различные значения на разных широтах Земли.

Сила вертикального давления равна по модулю и противоположна по направлению силе упругости, возникающей в опоре. Формула силы при этом меняется в зависимости от движения тела.

Изменение веса тела

Действие тела на опору вследствие взаимодействия с Землей чаще именуют весом тела. Интересно, что величина веса тела зависит от ускорения движения в вертикальном направлении. В том случае, когда направление ускорения противоположно ускорению свободного падения, наблюдается увеличение веса. Если ускорение тела совпадает с направлением свободного падения, то вес тела уменьшается. К примеру, находясь в поднимающемся лифте, в начале подъема человек чувствует увеличение веса некоторое время. Утверждать, что его масса меняется, не приходится. При этом разделяем понятия «вес тела» и его «масса».

Сила упругости

При изменении формы тела (его деформации) появляется сила, которая стремится вернуть телу его первоначальную форму. Этой силе дали название "сила упругости". Возникает она вследствие электрического взаимодействия частиц, из которых состоит тело.

Рассмотрим простейшую деформацию: растяжение и сжатие. Растяжение сопровождается увеличением линейных размеров тел, сжатие - их уменьшением. Величину, характеризующую эти процессы, называют удлинением тела. Обозначим ее "x". Формула силы упругости напрямую связана с удлинением. Каждое тело, подвергающееся деформации, имеет собственные геометрические и физические параметры. Зависимость упругого сопротивления деформации от свойств тела и материала, из которого оно изготовлено, определяется коэффициентом упругости, назовем его жесткостью (k).

Математическая модель упругого взаимодействия описывается законом Гука.

Сила, возникающая при деформации тела, направлена против направления смещения отдельных частей тела, прямо пропорциональна его удлинению:

  • F y = -kx (в векторной записи).

Знак «-» говорит о противоположности направления деформации и силы.

В скалярной форме отрицательный знак отсутствует. Сила упругости, формула которой имеет следующий вид F y = kx, используется только при упругих деформациях.

Взаимодействие магнитного поля с током

Влияние магнитного поля на постоянный ток описывается При этом сила, с которой магнитное поле действует на проводник с током, помещенный в него, называется силой Ампера.

Взаимодействие магнитного поля с вызывает силовое проявление. Сила Ампера, формула которой имеет вид F = IBlsinα, зависит от (В), длины активной части проводника (l), (I) в проводнике и угла между направлением тока и магнитной индукцией.

Благодаря последней зависимости можно утверждать, что вектор действия магнитного поля может измениться при повороте проводника или изменении направления тока. Правило левой руки позволяет установить направление действия. Если левую руку расположить таким образом, чтобы вектор магнитной индукции входил в ладонь, четыре пальца были направлены по току в проводнике, то отогнутый на 90 ° большой палец покажет направление действия магнитного поля.

Применение этому воздействию человечеством найдено, к примеру, в электродвигателях. Вращение ротора вызывается магнитным полем, созданным мощным электромагнитом. Формула силы позволяет судить о возможности изменения мощности двигателя. С увеличением силы тока или величины поля вращательный момент возрастает, что приводит к увеличению мощности двигателя.

Траектории частиц

Взаимодействие магнитного поля с зарядом широко используется в масс-спектрографах при исследовании элементарных частиц.

Действие поля при этом вызывает появление силы, названной силой Лоренца. При попадании в магнитное поле движущейся с некоторой скоростью заряженной частицы формула которой имеет вид F = vBqsinα, вызывает движение частицы по окружности.

В этой математической модели v - модуль скорости частицы, электрический заряд которой - q, В - магнитная индукция поля, α - угол между направлениями скорости и магнитной индукции.

Частица движется по окружности (либо дуге окружности), так как сила и скорость направлены под углом 90 ° друг к другу. Изменение направления линейной скорости вызывает появление ускорения.

Правило левой руки, рассмотренное выше, имеет место и при изучении силы Лоренца: если левую руку расположить таким образом, чтобы вектор магнитной индукции входил в ладонь, четыре пальца, вытянутых в линию, были направлены по скорости положительно заряженной частицы, то отогнутый на 90 ° большой палец покажет направление действия силы.

Проблемы плазмы

Взаимодействие магнитного поля и вещества используется в циклотронах. Проблемы, связанные с лабораторным изучением плазмы, не позволяют содержать ее в замкнутых сосудах. Высоко может существовать только при высоких температурах. Удержать плазму в одном месте пространства можно посредством магнитных полей, закручивая газ в виде кольца. Управляемые можно изучать, также закручивая высокотемпературную плазму в шнур при помощи магнитных полей.

Пример действия магнитного поля в естественных условиях на ионизированный газ - Полярное сияние. Это величественное зрелище наблюдается за полярным кругом на высоте 100 км над поверхностью земли. Загадочное красочное свечение газа пояснить смогли лишь в ХХ веке. Магнитное поле земли вблизи полюсов не может препятствовать проникновению солнечного ветра в атмосферу. Наиболее активное излучение, направленное вдоль линий магнитной индукции, вызывает ионизацию атмосферы.

Явления, связанные с движением заряда

Исторически сложилось так, что основной величиной, характеризующей протекание тока в проводнике, называют силу тока. Интересно, что это понятие ничего общего с силой в физике не имеет. Сила тока, формула которой включает заряд, протекающий за единицу времени через поперечное сечение проводника, имеет вид:

  • I = q/t, где t - время протекания заряда q.

Фактически, сила тока - величина заряда. Единицей ее измерения является Ампер (А), в отличие от Н.

Определение работы силы

Силовое воздействие на вещество сопровождается совершением работы. Работа силы - физическая величина, численно равная произведению силы на перемещение, пройденное под ее действием, и косинус угла между направлениями силы и перемещения.

Искомая работа силы, формула которой имеет вид A = FScosα, включает величину силы.

Действие тела сопровождается изменением скорости тела или деформацией, что говорит об одновременных изменениях энергии. Работа силы напрямую зависит от величины.

См. также «Физический портал»

Сила как векторная величина характеризуется модулем , направлением и «точкой» приложения силы. Последним параметром понятие о силе, как векторе в физике, отличается от понятия о векторе в векторной алгебре, где равные по модулю и направлению векторы, независимо от точки их приложения, считаются одним и тем же вектором. В физике эти векторы называются свободными векторами.В механике чрезвычайно распространено представление о связанных векторах, начало которых закреплено в определённой точке пространства или же может находиться на линии, продолжающей направление вектора (скользящие векторы). .

Также используется понятие линия действия силы , обозначающее проходящую через точку приложения силы прямую, по которой направлена сила.

Размерность силы - LMT −2 , единицей измерения в Международной системе единиц (СИ) является ньютон (N, Н), в системе СГС - дина .

История понятия

Понятие силы использовали ещё ученые античности в своих работах о статике и движении. Изучением сил в процессе конструирования простых механизмов занимался в III в. до н. э. Архимед . Представления Аристотеля о силе, связанные с фундаментальными несоответствиями, просуществовали в течение нескольких столетий. Эти несоответствия устранил в XVII в. Исаак Ньютон , используя для описания силы математические методы. Механика Ньютона оставалась общепринятой на протяжении почти трехсот лет. К началу XX в. Альберт Эйнштейн в теории относительности показал, что ньютоновская механика верна лишь в при сравнительно небольших скоростях движения и массах тел в системе, уточнив тем самым основные положения кинематики и динамики и описав некоторые новые свойства пространства-времени .

Ньютоновская механика

Исаак Ньютон задался целью описать движение объектов, используя понятия инерции и силы. Сделав это, он попутно установил, что всякое механическое движение подчиняется общим законам сохранения . В г. Ньютон опубликовал свой знаменитый труд « », в котором изложил три основополагающих закона классической механики (знаменитые законы Ньютона).

Первый закон Ньютона

Например, законы механики абсолютно одинаково выполняются в кузове грузовика, когда тот едет по прямому участку дороги с постоянной скоростью и когда стоит на месте. Человек может подбросить мячик вертикально вверх и поймать его через некоторое время на том же самом месте вне зависимости от того движется ли грузовик равномерно и прямолинейно или покоится. Для него мячик летит по прямой. Однако для стороннего наблюдателя, находящегося на земле, траектория движения мячика имеет вид параболы . Это связано с тем, что мячик относительно земли движется во время полета не только вертикально, но и горизонтально по инерции в сторону движения грузовика. Для человека, находящегося в кузове грузовика не имеет значения движется ли последний по дороге, или окружающий мир перемещается с постоянной скоростью в противоположном направлении, а грузовик стоит на месте. Таким образом, состояние покоя и равномерного прямолинейного движения физически неотличимы друг от друга.

Второй закон Ньютона

По определению импульса:

где − масса, − скорость .

Если масса материальной точки остается неизменной, то производная по времени от массы равна нулю, и уравнение принимает вид:

Третий закон Ньютона

Для любых двух тел (назовем их тело 1 и тело 2) третий закон Ньютона утверждает, что сила действия тела 1 на тело 2, сопровождается появлением равной по модулю, но противоположной по направлению силы, действующей на тело 1 со стороны тела 2. Математически закон записывается так:

Этот закон означает, что силы всегда возникают парами «действие-противодействие». Если тело 1 и тело 2 находятся в одной системе, то суммарная сила в системе, обусловленная взаимодействием этих тел равна нулю:

Это означает, что в замкнутой системе не существует несбалансированных внутренних сил. Это приводит к тому, что центр масс замкнутой системы (то есть той, на которую не действуют внешние силы) не может двигаться с ускорением . Отдельные части системы могут ускоряться, но лишь таким образом, что система в целом остается в состоянии покоя или равномерного прямолинейного движения. Однако в том случае, если внешние силы подействуют на систему, то ее центр масс начнет двигаться с ускорением, пропорциональным внешней результирующей силе и обратно пропорциональным массе системы.

Фундаментальные взаимодействия

Все силы в природе основаны на четырех типах фундаментальных взаимодействий. Максимальная скорость распространения всех видов взаимодействия равна скорости света в вакууме . Электромагнитные силы действуют между электрически заряженными телами, гравитационные − между массивными объектами. Сильное и слабое проявляются только на очень малых расстояниях , они ответственны за возникновение взаимодействия между субатомными частицами , включая нуклоны , из которых состоят атомные ядра .

Интенсивность сильного и слабого взаимодействия измеряется в единицах энергии (электрон-вольтах), а не единицах силы , и потому применение к ним термина «сила» объясняется берущей из античности традицией объяснять любые явления в окружаемом мире действием специфических для каждого явления «сил».

Понятие силы не может быть применено по отношению к явлениям субатомного мира. Это понятие из арсенала классической физики, ассоциирующейся (пусть даже только подсознательно) с ньютоновскими представлениями о силах, действующих на расстоянии. В субатомной физике таких сил уже нет: их заменяют взаимодействия между частицами, происходящими через посредство полей, то есть каких-то других частиц. Поэтому физики высоких энергий избегают употреблять слово сила , заменяя его словом взаимодействие .

Каждый вид взаимодействия обусловлен обменом соответствующих переносчиков взаимодействия: гравитационное − обменом гравитонов (существование не подтверждено экспериментально), электромагнитное − виртуальных фотонов , слабое − векторных бозонов , сильное − глюонов (и на больших расстояниях - мезонов). В настоящее время электромагнитное и слабое взаимодействия объединены в более фундаментальное электрослабое взаимодействие . Делаются попытки объединения всех четырех фундаментальных взаимодействие в одно (так называемая теория великого объединения).

Всё многообразие проявляющих себя в природе сил в принципе может быть сведено к этим четырем фундаментальным взаимодействиям. Например, трение − это проявление электромагнитных сил, действующих между атомами двух соприкасающихся поверхностей, и принципа запрета Паули , который не позволяет атомам проникать в область друг друга. Сила, возникающая при деформации пружины , описываемая законом Гука , также является результатом действия электромагнитных сил между частицами и принципа запрета Паули, заставляющих атомы кристаллической решетки вещества удерживаться около положения равновесия. .

Однако на практике оказывается не только нецелесообразной, но и просто невозможной по условиям задачи подобная детализация рассмотрения вопроса о действии сил.

Гравитация

Гравитация (сила тяготения ) - универсальное взаимодействие между любыми видами материи . В рамках классической механики описывается законом всемирного тяготения , сформулированным Исааком Ньютоном в его труде «Математические начала натуральной философии ». Ньютон получил величину ускорения, с которым Луна движется вокруг Земли , положив при расчете, что сила тяготения убывает обратно пропорционально квадрату расстояния от тяготеющего тела. Кроме этого, им же было установлено, что ускорение, обусловленное притяжением одного тела другим, пропорционально произведению масс этих тел . На основании этих двух выводов был сформулирован закон тяготения: любые материальные частицы притягиваются по направлению друг к другу с силой , прямо пропорциональной произведению масс ( и ) и обратно пропорциональной квадрату расстояния между ними:

Здесь − гравитационная постоянная , значение которой впервые получил в своих опытах Генри Кавендиш . Используя данный закон, можно получить формулы для расчета силы тяготения тел произвольной формы. Теория тяготения Ньютона хорошо описывает движение планет Солнечной системы и многих других небесных тел. Однако, в ее основе лежит концепция дальнодействия , противоречащая теории относительности . Поэтому классическая теория тяготения неприменима для описания движения тел, перемещающихся со скоростью , близкой к скорости света, гравитационных полей чрезвычайно массивных объектов (например, черных дыр), а также переменных полей тяготения, создаваемых движущимися телами, на больших расстояниях от них .

Электромагнитное взаимодействие

Электростатическое поле (поле неподвижных зарядов)

Развитие физики после Ньютона добавило к трём основным (длина, масса, время) величинам электрический заряд с размерностью C. Однако, исходя из требований практики, основанных на удобствах измерения, вместо заряда нередко стал использоваться электрический ток с размерностью I, причём I = C T − 1 . Единицей измерения величины заряда является кулон, а силы тока ампер.

Поскольку заряд, как таковой, не существует независимо от несущего его тела, то электрическое взаимодействие тел проявляется в виде той же рассматриваемой в механике силы, служащей причиной ускорения. Применительно к электростатическому взаимодействию двух «точечных зарядов» в вакууме используется закон Кулона:

где - расстояние между зарядами, а ε 0 ≈ 8.854187817·10 −12 Ф/м. В однородном (изотропном) веществе в этой системе сила взаимодействия уменьшается в ε раз, где ε - диэлектрическая постоянная среды.

Направление силы совпадает с линией, соединяющей точечные заряды. Графически электростатическое поле принято изображать в виде картины силовых линий, представляющих собой воображаемые траектории, по которым бы перемещалась лишённая массы заряжённая частица. Эти линии начинаются на одном и заканчиваются на другом зарядах.

Электромагнитное поле (поле постоянных токов)

Существование магнитного поля признавалось ещё в средние века китайцами, использовавшим «любящий камень» - магнит, в качестве прообраза магнитного компаса. Графически магнитное поле принято изображать в виде замкнутых силовых линий, густота которых (так же, как и в случае электростатического поля) определяет его интенсивность. Исторически наглядным способом визуализации магнитного поля были железные опилки, насыпаемые, например, на лист бумаги, положенный на магнит.

Производные виды сил

Сила упругости - сила, возникающая при деформации тела и противодействующая этой деформации. В случае упругих деформаций является потенциальной. Сила упругости имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Сила упругости направлена противоположно смещению, перпендикулярно поверхности. Вектор силы противоположен направлению смещения молекул.

Сила трения - сила, возникающая при относительном движении твёрдых тел и противодействующая этому движению. Относится к диссипативным силам. Сила трения имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы трения направлен противоположно вектору скорости.

Сила сопротивления среды - сила, возникающая при движении твёрдого тела в жидкой или газообразной среде. Относится к диссипативным силам. Сила сопротивления имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Вектор силы сопротивления направлен противоположно вектору скорости.

Сила нормальной реакции опоры - сила упругости, действующая со стороны опоры на тело. Направлена перпендикулярно к поверхности опоры.

Силы поверхностного натяжения - силы, возникающие на поверхности фазового раздела. Имеет электромагнитную природу, являясь макроскопическим проявлением межмолекулярного взаимодействия. Сила натяжения направлена по касательной к поверхности раздела фаз; возникает вследствие нескомпенсированного притяжения молекул, находящихся на границе раздела фаз, молекулами, находящимися не на границе раздела фаз.

Осмотическое давление

Силы Ван-дер-Ваальса - электромагнитные межмолекулярные силы, возникающие при поляризации молекул и образовании диполей. Ван-дер-Ваальсовы силы быстро убывают с увеличением расстояния.

Сила инерции - фиктивная сила, вводимая в неинерциальных системах отсчёта для того, чтобы в них выполнялся второй закон Ньютона. В частности, в системе отсчёта , связанной с равноускоренно движущимся телом сила инерции направлена противоположно ускорению. Из полной силы инерции могут быть для удобства выделены центробежная сила и сила Кориолиса .

Равнодействующая

При расчёте ускорения тела все действующие на него силы заменяют одной силой, называемой равнодействующей. Это геометрическая сумма всех сил, действующих на тело. При этом действие каждой силы не зависит от действия других, то есть каждая сила сообщает телу такое ускорение, какое она сообщила бы в отсутствие действия других сил. Это утверждение носит название принципа независимости действия сил (принцип суперпозиции).

См. также

Источники

  • Григорьев В. И., Мякишев Г. Я. - «Силы в природе»
  • Ландау, Л. Д. , Лифшиц, Е. М. Механика - Издание 5-е, стереотипное. - М .: Физматлит , 2004. - 224 с. - («Теоретическая физика» , том I). - .

Примечания

  1. Glossary . Earth Observatory . NASA . - «Сила - любой внешний фактор, который вызывает изменение в движении свободного тела или возникновение внутренних напряжений в зафиксированном теле.» (англ.)
  2. Бронштейн И. Н. Семендяев К. А. Справочник по математике. М.: Издательство «Наука» Редакция справочной физико-математической литературы.1964.
  3. Feynman, R. P., Leighton, R. B., Sands, M. Lectures on Physics, Vol 1 - Addison-Wesley, 1963. (англ.)

Света. Эта статья раскроет читателям свойства фотонов, которые позволят определить, почему свет бывает разной яркости.

Частица или волна?

В начале двадцатого века ученых озадачивало поведение квантов света - фотонов. С одной стороны, интерференция и дифракция говорили об их волновой сущности. Следовательно, свет характеризовали такие свойства, как частота, длина волны и амплитуда. С другой стороны, убедили научное сообщество в том, что фотоны передают поверхностям импульс. Это было бы невозможно, не обладай частицы массой. Таким образом, физикам пришлось признать: электромагнитное излучение одновременно и волна, и материальный объект.

Энергия фотона

Как доказал Эйнштейн, масса и есть энергия. Этот факт доказывает наше центральное светило, Солнце. Термоядерная реакция превращает массу сильно сжатого газа в чистую энергию. Но как определить мощность испускаемого излучения? Почему утром, например, сила света солнца ниже, чем в полдень? Описанные в предыдущем параграфе характеристики связаны между собой конкретными соотношениями. И все они указывают на энергию, которую несет электромагнитное излучение. Эта величина меняется в большую сторону при:

  • уменьшении длины волны;
  • возрастании частоты.

В чем кроется энергия электромагнитного излучения?

Фотон отличается от остальных частиц. Его масса и, следовательно, энергия существуют, только пока он движется сквозь пространство. При столкновении с препятствием квант света повышает его внутреннюю энергию или придает ему кинетический момент. Но сам фотон при этом перестает существовать. В зависимости от того, что именно выступает препятствием, происходят различные изменения.

  1. Если препятствие - твердое тело, то чаще всего свет нагревает его. Также возможны следующие сценарии: фотон изменяет направление движения, стимулирует химическую реакцию или заставляет один из электронов покинуть свою орбиту и перейти в другое состояние (фотоэффект).
  2. Если препятствие - единственная молекула, например, из разреженного облака газа в открытом космосе, то фотон заставляет все ее связи колебаться сильнее.
  3. Если препятствие - массивное тело (например, звезда или даже галактика), то свет искажается и меняет направление движения. На этом эффекте основана возможность «заглянуть» в далекое прошлое космоса.

Наука и человечность

Научные данные часто кажутся чем-то абстрактным, неприменимым к жизни. Происходит это и с характеристиками света. Если речь идет об эксперименте или измерении излучения звезд, ученым требуется знать абсолютные величины (они называют фотометрическими). Эти понятия, как правило, выражаются в терминах энергии и мощности. Напомним, под мощностью подразумевается скорость изменения энергии в единицу времени, и в целом она показывает количество работы, которое может производить система. Но человек ограничен в способности ощущать реальность. Например, кожа чувствует тепло, но глаз не видит фотон инфракрасного излучения. Та же проблема и с единицами силы света: мощность, которую излучение демонстрирует на самом деле, отличается от мощности, которую способен воспринимать человеческий глаз.

Спектральная чувствительность человеческого глаза

Напоминаем, что речь ниже пойдет об усредненных показателях. Все люди разные. Некоторые вообще не воспринимают отдельные цвета (дальтоники). Для других культура цвета не совпадает с общепринятой научной точкой зрения. Например, японцы не различают зеленый и голубой, а англичане - голубой и синий. В этих языках разные цвета обозначаются одним словом.

Единица силы света зависит от спектральной чувствительности среднего человеческого глаза. Максимум дневного света приходится на фотон с длиной волны 555 нанометров. Это означает, что при свете солнца человек лучше всего видит зеленый цвет. Максимум ночного зрения - это фотон с длиной волны 507 нанометров. Следовательно, при Луне люди лучше видят голубые объекты. В сумерках все зависит от освещения: чем оно лучше, тем более «зеленым» становится максимум цвета, который человек воспринимает.

Строение человеческого глаза

Почти всегда, когда речь заходит о зрении, мы говорим, что видит глаз. Это неверное утверждение, ибо в первую очередь воспринимает мозг. Глаз - это только инструмент, который передает информацию о световом потоке в главный компьютер. И, как любой инструмент, вся система восприятия цветов имеет свои ограничения.

В сетчатке человека есть два различных типа клеток - колбочки и палочки. Первые отвечают за дневное зрение и лучше воспринимают цвета. Вторые предоставляют ночное зрение, благодаря палочкам человек различает свет и тень. Но они плохо воспринимают цвета. Палочки также более чувствительны к движениям. Именно поэтому, если человек идет по освещенному луной парку или лесу, он замечает каждое покачивание ветвей, каждый вздох ветра.

Эволюционная причина такого разделения проста: у нас одно солнце. Луна светит отраженным светом, а значит, ее спектр не сильно отличается от спектра центрального светила. Поэтому день делится на две части - освещенную и темную. Если бы люди жили в системе двух или трех звезд, то наше зрение, возможно, имело бы больше компонентов, каждый из которых был приспособлен к спектру одного светила.

Надо сказать, на нашей планете есть существа, чье зрение отличается от человеческого. Пустынные жители, например, глазами улавливают инфракрасный свет. Некоторые рыбы видят ближний ультрафиолет, так как это излучение проникает в толщу воды глубже всего. Наши домашние питомцы кошки и собаки иначе воспринимают цвета, и их спектр урезан: они лучше приспособлены к светотени.

Но и люди все разные, как мы уже упоминали выше. Некоторые представители человечества видят ближний инфракрасный свет. Нельзя сказать, что им были бы не нужны тепловизоры, но они способны воспринимать чуть более красные оттенки, чем большинство. У других развита ультрафиолетовая часть спектра. Такой случай описывается, например, в фильме «Планета Ка-Пэкс». Главный герой утверждает, что он прибыл из другой звездной системы. Обследование выявило у него способность видеть ультрафиолетовое излучение.

Доказывает ли это, что Прот - инопланетянин? Нет. Некоторым людям это под силу. К тому же ближний ультрафиолет вплотную прилегает к видимому спектру. Неудивительно, что кто-то воспринимает чуть больше. А вот Супермен точно не с Земли: рентгеновский спектр слишком далеко от видимого, чтобы такое зрение можно было объяснить с человеческой точки зрения.

Абсолютная и относительные единицы для определения светового потока

Независящая от спектральной чувствительности величина, которая показывает поток света в известном направлении, называется «кандела». Единица измерения мощности уже с более «человеческим» отношением произносится так же. Отличие состоит только в математическом обозначении этих понятий: абсолютное значение имеет нижний индекс «е», относительно человеческого глаза - «υ». Но не стоит забывать, что величины этих категорий буду сильно различаться. Это необходимо учитывать при решении реальных задач.

Перечисление и сопоставление абсолютных и относительных величин

Чтобы понять, в чем измеряется сила света, необходимо сопоставить «абсолютные» и «человеческие» значения. Справа приводятся понятия чисто физические. Слева располагаются величины, в которые они превращаются при прохождении сквозь систему человеческого глаза.

  1. Сила излучения становится силой света. Понятия измеряются в канделах.
  2. Энергетическая яркость превращается в яркость. Величины выражаются в канделах на квадратный метр.

Наверняка читатель увидел здесь знакомые слова. Много раз за свою жизнь люди говорят: «Очень яркое солнце, уйдем в тень» или «Сделай монитор поярче, фильм слишком мрачный и темный». Надеемся, статья слегка прояснит, откуда взялось это понятие, а также как называется единица силы света.

Особенности понятия «кандела»

Чуть выше мы уже упоминали этот термин. Также мы объяснили, почему одним и тем же словом называют совершенно разные понятия физики, связанные с мощностью электромагнитного излучения. Итак, единица измерения силы света называется «кандела». Но чему она равна? Одна кандела - это сила света в известном направлении от источника, который испускает строго монохроматическое излучение с частотой 5,4*10 14 , причем энергетическая сила источника в этом направлении равна 1/683 Ватт в единицу телесного угла. Перевести частоту в длину волны читатель вполне может сам, формула очень легкая. Подскажем: результат лежит в видимой области.

Единица измерения силы света носит название «кандела» неспроста. Те, кто знает английский язык, помнят, что candle - это свеча. Раньше многие области человеческой деятельности измерялись в естественных параметрах, например, лошадиных силах, миллиметрах ртутного столба. Так что неудивительно, что единица измерения силы света - это кандела, одна свеча. Только свеча это весьма своеобразная: со строго заданной длиной волны, и производящая конкретное число фотонов в секунду.

Loading...Loading...