Умножитель напряжения на 8. Выпрямители с умножением напряжения

Все чаще и чаще радиолюбители стали интересоваться схемами питания, которые построены по принципу умножения напряжения. Этот интерес связан с появлением на рынке миниатюрных конденсаторов с большой емкостью и повышением стоимости медного провода, который используется для намотки катушек трансформаторов. Дополнительным плюсом упомянутых устройств являются их малые габариты, что значительно снижает конечные размеры проектируемой аппаратуры. А что же представляет собой умножитель напряжения? Этот прибор состоит из подключенных определенным образом конденсаторов и диодов. По сути, это преобразователь переменного напряжения низковольтного источника в высокое постоянное напряжение. А зачем нужен умножитель напряжения постоянного тока?

Область применения

Такое устройство нашло широкое применение в телевизионной аппаратуре (в источниках анодного напряжения кинескопов), медицинском оборудовании (при питании мощных лазеров), в измерительной технике (приборы измерения радиации, осциллографы). Кроме того, оно используется в устройствах ночного видения, в электрошоковых приборах, бытовой и офисной аппаратуре (ксерокопировальные аппараты) и т. д. Умножитель напряжения завоевал такую популярность благодаря возможности формировать напряжение до десятков и даже сотен тысяч вольт, и это при незначительных размерах и массе устройства. Еще один немаловажный плюс упомянутых приборов - это простота изготовления.

Типы схем

Рассматриваемые устройства делятся на симметричные и несимметричные, на умножители первого и второго рода. Симметричный умножитель напряжения получается путем соединения двух несимметричных схем. У одной такой схемы меняется полярность конденсаторов (электролитов) и проводимость диодов. Симметричный умножитель обладает лучшими характеристиками. Одним из главных достоинств является удвоенное значение частоты пульсаций выпрямляемого напряжения.

Принцип работы

На фото показана простейшая схема однополупериодного прибора. Рассмотрим принцип работы. При действии отрицательного полупериода напряжения через открытый диод Д1 начинает заряжаться конденсатор С1 до амплитудного значения поданного напряжения. В тот момент, когда наступает период положительной волны, заряжается (через диод Д2) конденсатор С2 до удвоенного значения поданного напряжения. При начале следующего этапа отрицательного полупериода происходит заряд конденсатора С3 - также до удвоенного значения напряжения, а при смене полупериода и конденсатор С4 также заряжается до указанного значения. Запуск устройства осуществляется за несколько полных периодов напряжения переменного тока. На выходе получается постоянная физическая величина, которая складывается из показателей напряжений последовательных, постоянно заряжаемых конденсаторов С2 и С4. В результате получим величину, в четыре раза большую, чем на входе. Вот по такому принципу и работает умножитель напряжения.

Расчет схемы

При расчете необходимо задать требуемые параметры: выходное напряжение, мощность, переменное входное напряжение, габариты. Не следует пренебрегать и некоторыми ограничениями: входное напряжение не должно превышать 15 кВ, частота его колеблется в пределах 5-100 кГц, значение на выходе - не более 150 кВ. На практике применяют устройства с выходной мощностью 50 Вт, хотя реально сконструировать умножитель напряжения с выходным показателем, приближающимся к 200 Вт. Значение выходного напряжения напрямую зависит от тока нагрузки и определяется по формуле:

U вых = N*U вх - (I (N3 + +9N2 /4 + N/2)) / 12FC, где

I - ток нагрузки;

N - число ступеней;

F - частота входного напряжения;

С - емкость генератора.

Таким образом, если задать значение выходного напряжения, тока, частоты и количества ступеней, возможно высчитать необходимую

В статье описаны основные варианты умножителей напряжения, применяемых в самых различных электронных устройствах, и приведены расчетные соотношения. Этот материал будет интересен радиолюбителям, занимающимся разработкой аппаратуры, в которой применяются умножители.

В современных радиоэлектронных устройствах умножители нашли широкое применение. Они используются в телевизионной и медицинской аппаратуре (источники анодного напряжения кинескопов, питания маломощных лазеров), в измерительной технике (осциллографы, приборы для измерения уровня и доз радиоактивного излучения), в приборах ночного видения и электрошоковых устройствах, бытовых и офисных электронных устройствах (ионизаторы, "люстра Чижевского", ксерокопировальные аппараты) и многих других областях техники. Произошло это благодаря главным свойствам умножителей - возможности формировать высокое, до нескольких десятков и сотен тысяч вольт, напряжение при малых габаритах и массе. Еще одно их важное преимущество - простота расчета и изготовления.

Умножитель напряжения состоит из включенных определенным образом диодов и конденсаторов и представляет собой преобразователь напряжения переменного тока низковольтного источника в высокое напряжение постоянного тока.

Принцип его работы понятен из рис. 1, на котором приведена схема однополупериодного умножителя. Рассмотрим происходящие в нем процессы поэтапно.

Во время действия отрицательного полупериода напряжения конденсатор С1 заряжается через открытый диод VD1 до амплитудного значения приложенного напряжения U. Когда к входу умножителя приложено напряжение положительного полупериода, конденсатор С2 через открытый диод VD2 заряжается до напряжения 2Ua. Во время следующего этапа - отрицательного полупериода - через диод VD3 до напряжения 2U заряжается конденсатор C3. И. наконец, при очередном положительном полупериоде до напряжения 2U заряжается конденсатор С4.

Очевидно, что запуск умножителя происходит за несколько периодов переменного напряжения. Постоянное выходное напряжение складывается из напряжений на последовательно включенных и постоянно подзаряжаемых конденсаторах С2 и С4 и составляет 4Ua.

Изображенный на рис. 1 умножитель относится к последовательным умножителям. Существуют также параллельные умножители напряжения, для которых требуется меньшая емкость конденсатора на ступень умножения. На рис. 2 приведена схема такого однополупериодного умножителя.

Наиболее часто применяют последовательные умножители. Они более универсальны, напряжение на диодах и конденсаторах распределены равномерно, можно реализовать большее число ступеней умножения. Имеют свои достоинства и параллельные умножители. Однако такой их недостаток, как увеличение напряжения на конденсаторах с увеличением числа ступеней умножения, ограничивает их применение до выходного напряжения примерно 20 кВ.

На рис. 3 и 4 приведены схемы двухполупериодных умножителей. К достоинствам первого (рис. 3) следует отнести следующие: к конденсаторам С1, C3 приложено только амплитудное напряжение, нагрузка на диоды равномерна, достигается хорошая стабильность выходного напряжения. Второй умножитель, схема которого приведена на рис. 4. отличают такие качества, как возможность обеспечения высокой мощности, простота в изготовлении, равномерное распределение нагрузки между компонентами, большое число ступеней умножения.

В таблице приведены типовые значения параметров и область применения умножителей напряжения.

При расчете умножителя следует задать его основные параметры: выходное напряжение, выходную мощность, входное переменное напряжение, требуемые габариты, условия работы (температура, влажность).

Кроме того, необходимо учесть некоторые ограничения: входное напряжение может быть не более 15 кВ, частота переменного напряжения ограничена в пределах 5... 100 кГц. выходное напряжение - не более 150 кВ, интервал рабочей температуры от -55 до +125*С, а влажности - 0...100 %. На практике разрабатывают и применяют умножители с выходной мощностью до 50 Вт, хотя реально достижимы значения в 200 Вт и более.

Выходное напряжение умножителя зависит от тока нагрузки. При условии, что входное напряжение и частота постоянны, оно определяется формулой: Uвых = N · Nвх - /12FC, где I - тoк нагрузки. A; N - число ступеней умножителя; F - частота входного напряжения. Гц; С - емкость конденсатора ступени, ф. Задавая выходное напряжение, ток. частоту и число ступеней, из нее вычисляют требуемую емкость конденсатора ступени.

Эта формула приведена для расчета последовательного умножителя. В параллельном для получения того же выходного тока необходимая емкость меньше. Так, если в последовательном емкость конденсатора 1000 пФ, то для трехступенчатого параллельного умножителя потребуется емкость 1000 пФ / 3 = 333 пФ. В каждой последующей ступени такого умножителя следует применять конденсаторы с большим номинальным напряжением.

Обратное напряжение на диодах и рабочее напряжение конденсаторов в последовательном умножителе равно полному размаху входного напряжения.

При практической реализации умножителя следует уделить особое внимание выбору его элементов, их размещению и изоляционным материалам. Конструкция должна обеспечивать надежную изоляцию во избежание возникновения коронного разряда, который снижает надежность умножителя, приводит к выходу его из строя.

Если требуется изменить полярность выходного напряжения, полярность включения диодов следует изменить на обратную.

Повышение напряжения без трансформатора. Умножители. Рассчитать онлайн. Преобразование переменного и постоянного тока (10+)

Бестрансформаторные источники питания - Повышающие

Этот процесс иллюстрирует рисунок:

Синим помечена область, где конденсаторы C заряжаются, а красным, где они отдают накопленный заряд в конденсатор C1 и в нагрузку.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Добрый вечер. Как ни старался, не смог по приведенным формулам для рис 1.2 пол учить значения ёмкостей конденсаторов С1 и С2 при приведенных значениях данных в вашей таблице (Uвх~220V, Uвых 15V, Iвых 100мА, f 50Hz). У меня проблема, включить катушку малогабаритного реле постоянного тока на рабочее напряжение -25V в сеть ~220V, рабочий ток катушки I= 35мА. Возможно я что то не

В настоящее время многие популярные радиолюбительские устройства содержат в своем составе умножитель напряжения , преобразующий напряжение электрической сети 220 В в высокое напряжение 2000...4000 В. Это могут быть устройства, предназначенные для борьбы с тараканами, устройства для ионизации воздуха. Схемы таких устройств неоднократно были опубликованы в радиолюбительской литературе, например, в .

В устройствах из для изготовления высоковольтного умножителя, который является основной частью этих конструкций, используют современные малогабаритные детали, поэтому габариты этих устройств незначительны. Однако следует отметить, что практически все малогабаритные высоковольтные детали, входящие в состав высоковольтного умножителя, являются достаточно дорогостоящими.

Часто нет необходимости в изготовлении малогабаритной версии этих устройств. В этом случае для изготовления умножителя напряжения можно использовать старые радиодетали, имеющие высокое рабочее напряжение - 600, 1000, 2000 В, но и большие габариты. Это могут быть старые конденсаторы типа МБГ, старые высоковольтные диодные столбы типа D1004-D1010 и им подобные радиодетали прошлого века, которые сейчас не используют в современной технике и продают на радиорынках по низким ценам. Стоимость устройств, выполненных с применением старых радиодеталей, тоже будет невысокой.

В простых умножителях высокого напряжения начальное напряжение для последующего умножения берется прямо из электрической сети 220 В. Однако в случае использования высоковольтных деталей для построения умножителей напряжения целесообразно использовать начальное напряжение умножения не из бытовой электрической сети, а повышенное в несколько раз, во столько, сколько смогут выдержать используемые высоковольтные детали. Использование повышенного входного напряжения на входе умножителя позволит сократить количество каскадов умножения и тем самым уменьшит количество используемых деталей для построения умножителя напряжения.

Наиболее просто первоначально "умножить" напряжение сети можно, используя резонансный метод, как это показано на рис.1. Как видно из этого рисунка, резонансный умножитель напряжения представляет собой последовательный контур, имеющий резонанс в области частот 50 Гц. Следовательно, на элементах этого контура, на катушке или конденсаторе, будет повышенное напряжение. Оно будет тем выше, чем резонанс цепи будет ближе к частоте 50 Гц, которая используется в электрической сети. Однако необходимо избегать равенства частот резонанса сети и контура, так как в этом случае на элементах контура L1 и С1 будет чрезвычайно высокое напряжение, которое может привести к выходу этих элементов из строя.

В качестве катушки индуктивности L1 используют дроссель фильтра лампового телевизора или приемника. Дроссели фильтра сейчас практически нигде не применяют, и их стоимость на рынках низка. Вполне можно использовать в качестве L1 первичную обмотку малогабаритного сетевого трансформатора или анодную обмотку старого "звукового" трансформатора от лампового приемника или телевизора, или первичную обмотку ТВК. Емкость конденсатора С1 зависит от величины индуктивности L1 и желаемого первоначального напряжения на входе умножителя напряжения. Емкость конденсатора целесообразно подбирать экспериментально, начиная с небольших значений, например с 0,1 мкФ. Резонансную частоту контура необходимо установить выше частоты электрической сети 50 Гц. Это скажется благоприятно на условиях работы катушки L1. Для большинства дросселей фильтра, используемых в старой аппаратуре для получения резонансного напряжения в пределах 600... 1000 В, емкость конденсатора С1 может находиться в пределах 0,25...2 мкФ. Конденсатор С1 должен иметь как можно большее рабочее напряжение, во всяком случае оно должно быть не менее, чем напряжение, существующее на конденсаторе во время резонанса.

Наибольшее напряжение будет на одном из элементов цепи, показанной на рис.1, причем на том элементе, который имеет более высокое сопротивление переменному току 50 Гц. В нашем случае, когда резонансная частота контура выше частоты сети, это будет конденсатор. На конденсаторе будет более высокое напряжение, чем на катушке индуктивности -это важное условие для надежной и долговременной работы этого элемента.

Как уже отмечалось, вполне реально получение напряжения на конденсаторе С1 в пределах 600... 1000 В. Это позволит в схеме из использовать не учетвери-тель, а удвоитель напряжения. Простой удвоитель напряжения показан на рис.2. В схеме из вместо умножения сетевого напряжения на 8 можно использовать утроение напряжения, существующего на конденсаторе С1 (см рис.1). Простой ут-роитель напряжения показан на рис.З. В некоторых случаях целесообразно использовать схему учетверения напряжения, которая показана на рис.4. Естественно, при конструировании подобных умножителей нельзя забывать, что они должны быть подключены к источнику высокого напряжения через токоограничивающие резисторы сопротивлением не менее 1 МОм. Это условие необходимо соблюдать для безопасности работы с высоковольтными источниками напряжения.

Но не всегда умножение напряжения сети на элементах резонансной цепи является оптимальным решением Иногда ситуация бывает иная. В распоряжении радиолюбителя есть много диодов и конденсаторов, которые имеют сравнительно низкое рабочее напряжение 200...300 В. В этом случае умножитель напряжения, собранный с их использованием, нельзя напрямую подключить к электрической сети 220 В. Ведь переменное напряжение электрической сети 220 В в пике при этом будет достигать 310 В! А это уже приведет к выходу из строя радиодеталей, используемых в этом умножителе напряжения!

В данном случае рационально использовать другой вариант: снизить напряжение на входе умножителя, но при этом увеличив количество умножающих цепочек. Напряжение на входе умножителя можно понизить, подключив этот умножитель напряжения к электрической сети через конденсаторный делитель напряжения, как это показано на рис.5. При этом соотношения емкостей, следовательно, и их реактивного сопротивления будут определять выходное напряжение на выходе делителя. Конечно, при увеличении числа умножающих цепочек габариты устройства возрастут. Но это может быть оправдано дешевизной используемых компонентов.

При построении умножителей напряжения следует помнить, что не рекомендуется соединять последовательно диоды и конденсаторы для увеличения их рабочего напряжения, поскольку надежность такой цепочки будет невелика. Надежнее для конструкции умножителя напряжения пойти по пути наращивания каскадов умножения.

Литература

1. Таракан; таракан , тараканище//Левша. - 1991. - №9. - С.20.

2. Белецкий. П. Умножитель - ионизатор воздуха//Радиолюбитель. - 1995. - №10. -С. 17.

И.Григорьев, Белгород

Все чаще и чаще радиолюбители стали интересоваться схемами питания, которые построены по принципу умножения напряжения. Этот интерес связан с появлением на рынке миниатюрных конденсаторов с большой емкостью и повышением стоимости медного провода, который используется для намотки катушек трансформаторов. Дополнительным плюсом упомянутых устройств являются их малые габариты, что значительно снижает конечные размеры проектируемой аппаратуры. А что же представляет собой умножитель напряжения? Этот прибор состоит из подключенных определенным образом конденсаторов и диодов. По сути, это преобразователь переменного напряжения низковольтного источника в высокое постоянное напряжение. А зачем нужен умножитель напряжения постоянного тока?

Область применения

Такое устройство нашло широкое применение в телевизионной аппаратуре (в источниках анодного напряжения кинескопов), медицинском оборудовании (при питании мощных лазеров), в измерительной технике (приборы измерения радиации, осциллографы). Кроме того, оно используется в устройствах ночного видения, в электрошоковых приборах, бытовой и офисной аппаратуре (ксерокопировальные аппараты) и т. д. Умножитель напряжения завоевал такую популярность благодаря возможности формировать напряжение до десятков и даже сотен тысяч вольт, и это при незначительных размерах и массе устройства. Еще один немаловажный плюс упомянутых приборов - это простота изготовления.

Типы схем

Рассматриваемые устройства делятся на симметричные и несимметричные, на умножители первого и второго рода. Симметричный умножитель напряжения получается путем соединения двух несимметричных схем. У одной такой схемы меняется полярность конденсаторов (электролитов) и проводимость диодов. Симметричный умножитель обладает лучшими характеристиками. Одним из главных достоинств является удвоенное значение частоты пульсаций выпрямляемого напряжения.

Принцип работы

На фото показана простейшая схема однополупериодного прибора. Рассмотрим принцип работы. При действии отрицательного полупериода напряжения через открытый диод Д1 начинает заряжаться конденсатор С1 до амплитудного значения поданного напряжения. В тот момент, когда наступает период положительной волны, заряжается (через диод Д2) конденсатор С2 до удвоенного значения поданного напряжения. При начале следующего этапа отрицательного полупериода происходит заряд конденсатора С3 - также до удвоенного значения напряжения, а при смене полупериода и конденсатор С4 также заряжается до указанного значения. Запуск устройства осуществляется за несколько полных периодов напряжения переменного тока. На выходе получается постоянная физическая величина, которая складывается из показателей напряжений последовательных, постоянно заряжаемых конденсаторов С2 и С4. В результате получим величину, в четыре раза большую, чем на входе. Вот по такому принципу и работает умножитель напряжения.

Расчет схемы

При расчете необходимо задать требуемые параметры: выходное напряжение, мощность, переменное входное напряжение, габариты. Не следует пренебрегать и некоторыми ограничениями: входное напряжение не должно превышать 15 кВ, частота его колеблется в пределах 5-100 кГц, значение на выходе - не более 150 кВ. На практике применяют устройства с выходной мощностью 50 Вт, хотя реально сконструировать умножитель напряжения с выходным показателем, приближающимся к 200 Вт. Значение выходного напряжения напрямую зависит от тока нагрузки и определяется по формуле:

U вых = N*U вх - (I (N3 + +9N2 /4 + N/2)) / 12FC, где

I - ток нагрузки;

N - число ступеней;

F - частота входного напряжения;

С - емкость генератора.

Таким образом, если задать значение выходного напряжения, тока, частоты и количества ступеней, возможно высчитать необходимую

Loading...Loading...