Термодинамика адсорбции. Взаимодействия при физической адсорбции Термодинамика адсорбции

Текущая страница: 6 (всего у книги 19 страниц) [доступный отрывок для чтения: 13 страниц]

Шрифт:

100% +

34. Природа адсорбционных сил

Взаимодействие между молекулами адсорбтива с поверхностью адсорбента при т. н. физической адсорбции может быть обусловлена различными причинами. Тогда потенциал, который обусловливает взаимодействие одной молекулы адсорбента с одним атомом неполярного адсорбтива, можно выразить так:

θ = − Сr 6 + Br 12 ,

где r – расстояние между центрами частиц; С – константа дисперсионного притяжения; В – константа, которая характеризует энергию сил отталкивания.

Совершенно очевидно, что на сравнительно отдаленных расстояниях должны преобладать силы притяжения, а на расстояниях близких – силы отталкивания. Также на определенных расстояниях эти силы должны быть равными, что будет соответствовать минимуму свободной энергии. Но важно отметить, что при адсорбции дисперсионные силы действуют одновременно между каждой неполярной частицей.

Поскольку энергия взаимодействия частиц может быстро убывать с расстоянием, то для определения потенциала адсорбционных сил достаточно провести суммирование на ближайших атомах адсорбента. Важным является то, что при адсорбции сложных неполярных молекул потенциальную энергию можно приближенно подсчитать как сумму всех потенциальных энергий адсорбции звеньев молекулы.

Если же адсорбент состоит из ионов, то к действию уже известных дисперсионных сил может прибавляться действие индукционных сил притяжения диполей которые индуцированы в молекулах адсорбтива электрическим полем, которое, в свою очередь, создается ионами решетки адсорбента.

При таком взаимодействии доля индукционных сил в адсорбционном взаимодействии может быть пропорциональна поляризуемости молекулы адсорбтива и квадрату напряженности поля на этой поверхности адсорбента.


Если же на полярном адсорбенте происходит адсорбция полярных молекул адсорбтива, то диполи в этом случае поляризуют атомы адсорбента, т. е. как бы индуцируют в них электрические моменты. Вследствие такого влияния индукционное взаимодействие добавляется к дисперсионному.

Само индукционное взаимодействие обычно мало и в зависимости от диполя молекулы адсорбтива и поляризуемости адсорбента может достигать больших значений. В случае, если молекулы адсорбируются на адсорбенте, который имеет на поверхности ионы или диполи, возникает т. н. взаимодействие ионов или диполей адсорбтива с электростатическим полем самого адсорбента.

При этом молекулы адсорбтива могут даже ориентироваться в поле адсорбента, при этом происходит ориентационное кулоновское взаимодействие. Обычно бывает, что энергии индукционного и ориентационного взаимодействия меньше энергии дисперсионного взаимодействия, и поэтому принимается, что энергия межмолекулярного притяжения определяется энергией дисперсионного притяжения.

Также причиной адсорбции может служить образование водородной связи. Связь такого типа может возникать при адсорбции на адсорбентах, которые содержат на поверхности гидроксильные группы таких молекул, как молекулы воды, спиртов, аммиака и аминов. При образовании водородной связи энергия взаимодействия адсорбтива с адсорбентом может быть довольно большой, и теплота, которая выделяется при такой адсорбции, значительно больше теплоты адсорбции веществ, которые сходны по форме и размеру молекул, но не образуют водородной связи.

Важно отметить, что, зная термодинамическое описание поверхностного слоя на границе «адсорбент – адсорбтив», его строение, природу различных видов сил, динамику процесса, можно переходить к изучению более сложных процессов адсорбции.

35. Адсорбция как самопроизвольное концентрирование на поверхности раздела фаз веществ, снижающих межфазное натяжение

Поверхностно-активные вещества делятся на две большие группы: активные и инактивные вещества.

Поверхностно-активные вещества способны накапливаться в поверхностном слое, и при этом происходит положительная адсорбция Г > 0.

Такие виды веществ должны обладать поверхностным натяжением, которое, в свою очередь, должно быть меньше поверхностного натяжения растворителя, или в противном случае накопление вещества в поверхностном слое будет невыгодно, и должны обладать сравнительно малой растворимостью. При достаточно хорошей растворимостью молекулы поверхностно-активных веществ стремятся уйти с поверхности в глубь раствора. Следовательно, поверхностно-активные вещества будут преимущественно выталкиваться из объема жидкости на поверхность.

Но при накоплении веществ на границе раствора в молекулах этих веществ, которые слабо взаимодействуют друг с другом, межмолекулярное взаимодействие в поверхностном слое будет уменьшаться, а поверхностное натяжение будет падать.

Поверхностно-активными веществами относительно водного слоя являются многие виды органических соединений, жирные кислоты с достаточно большим углеводородным радикалом, соли этих кислот (мыла), сульфокислоты и их соли, а также различные виды спиртов и аминов. Характерной особенностью большинства молекул является их дифильность: молекула состоит из двух частей полярной группы и неполярного углеводородного радикала. Обладающая значительным дипольным моментом и хорошо гидратирующая полярная группа может обусловливать сродство поверхностно-активного вещества к водной среде. Но углеводородный радикал является причиной, которая понижает растворимость этих соединений.

Поверхностно-инактивные вещества ПАВ – эти виды вещества, стремящиеся уйти с поверхности жидкости в ее объем, в результате происходит т. н. отрицательная адсорбция Г < 0. Поверностно-инактивные вещества также обладают значительным поверхностным натяжением, значительно большим, чем натяжение у растворителя (иначе эти вещества способны самопроизвольно накапливаться в поверхностном слое), также обладают высокой растворимостью, что способствует их стремлению уйти с поверхности жидкости в объем. Взаимодействие между молекулами поверхностно-инактивного вещества и растворителя всегда больше, чем взаимодействие между самими молекулами растворителя, поэтому они и стремятся перейти в объем раствора. Поверхностно-инактивными веществами в отношении воды являются многие неорганические электролиты: кислоты, щелочи, соли. Молекулы поверхностно-инактивных веществ не имеют гидрофобной части и могут распадаться в воде на хорошо гидратирующие ионы.

Примерами поверхностно-инактивных веществ являются и некоторые органические соединения, у которых неполярная часть молекулы отсутствует или очень мала. К таким веществам можно отнести муравьиную, аминоуксусную кислоты.

В неводных растворителях неорганические электролиты также способны повышать поверхностное натяжение, причем это зависит от растворителя.

Например , при введении иодида натрия в метанол сильно повышается поверхностное натяжение, для этанола поверхностное натяжение больше примерно в 2 раза. Поверхностная активность веществ может зависеть не только от природы вещества, но также от свойств растворителя. Если какой-либо растворитель обладает большим поверхностным натяжением, то данное растворенное вещество может проявлять значительную поверхностную активность.

36. Теории адсорбции

Рассмотрим наиболее распространенные теории адсорбции, описывающие отдельные виды адсорбции на поверхности раздела «твердое тело – газ» или «твердое тело – раствор».

Теория мономолекулярной адсорбции И. Ленгмюра.

1. Адсорбция является локализованной и вызывается силами, близкими к химическим.

2. Адсорбция происходит только на активных центрах – выступах или впадинах на поверхности адсорбента, характеризующихся наличием свободных валентностей. Активные центры считаются независимыми и тождественными.

3. Каждый активный центр способен взаимодействовать только с одной молекулой адсорбата; на поверхности может образоваться только один слой адсорбированных молекул.

4. Процесс адсорбции является обратимым и равновесным; адсорбированная молекула удерживается активным центром некоторое время, после чего десорбируется; через некоторое время устанавливается динамическое равновесие.

Максимально возможная величина адсорбции Г о достигается при условии, что все активные центры заняты молекулами адсорбата. Уравнение изотермы мономолекулярной адсорбции, связывающее величину адсорбции Г с концентрацией адсорбата С , имеет вид:



где b – постоянная для данной пары «адсорбент – адсорбат» величина (отношение констант скоростей десорбции и адсорбции), численно равная концентрации адсорбата, при которой занята половина активных центров.



График изотермы адсорбции Ленгмюра приведен на рисунке 2. Константу b определим графически, проведя касательную к изотерме адсорбции в точке С = 0. При описании процесса адсорбции газов в уравнении концентрация может быть заменена пропорциональной величиной парциального давления. Теория мономолекулярной адсорбции И. Ленгмюра применима для описания процессов адсорбции газов и растворенных веществ при небольших давлениях (концентрациях) адсорбата.

Теория полимолекулярной адсорбции Поляни описывает s-образные изотермы адсорбции, форма которых свидетельствует о возможном взаимодействии адсорбированных молекул с адсорбатом.

1. Адсорбция вызвана физическими силами.

2. Поверхность адсорбента однородна, нет активных центров; адсорбционные силы образуют непрерывное силовое поле вблизи поверхности адсорбента.

3. Адсорбционные силы действуют на расстоянии, большем размера молекулы адсорбата, т. е. у поверхности адсорбента существует некоторый адсорбционный объем, который при адсорбции заполняется молекулами адсорбата.

4. Притяжение молекулы адсорбата поверхностью адсорбента не зависит от наличия в адсорбционном объеме других молекул, вследствие чего возможна полимолекулярная адсорбция.

5. Адсорбционные силы не зависят от температуры, и, следовательно, с изменением температуры адсорбционный объем не меняется.

Уравнение Фрейндлиха. Поверхность адсорбента неоднородна, между адсорбированными частицами происходит взаимодействие, активные центры не являются полностью независимыми друг от друга. Г. Фрейндлих предположил, что число молей адсорбированного газа или растворенного вещества, приходящееся на единицу массы адсорбента (т. н. удельная адсорбция х /m ), должно быть пропорционально равновесному давлению (для газа) или равновесной концентрации (для веществ, адсорбируемых из раствора) адсорбента, возведенной в некоторую степень, которая всегда меньше единицы:

x / m = aP n ; x / m = aC n .

Показатели степени n и коэффициент пропорциональности а определяются экспериментально.

37. Термодинамика процесса адсорбции. Уравнение адсорбции Гиббса

Для изучения явления адсорбции на границе «раствор – газ» нужно установить связь между избытком адсорбированного вещества в слое на поверхности (Г ), концентрацией ПАВ в растворе (с ) и поверхностным натяжением (σ ) на границе раздела фаз «раствор – газ». Целесообразнее рассматривать явления с термодинамических позиций и связывать адсорбцию растворенного вещества с изменением свободной энергии поверхности или ее поверхностного натяжения. Эту связь вывел В. Гиббс в 1876 г, которая получила название «уравнение адсорбции Гиббса» :

Г = – с / RT x / dc .

Еще можно представить уравнение Гиббса, основанное на термодинамике, с использованием изобарно-изотермического потенциала G , химических потенциалов μ 1 и μ 2 , а также с использованием n 1 и n 2 числом молей компонентов. Проанализировав его с учетом энтропии S , объема V и давления P , можно записать следующее уравнение:

dG = – SdT + VdP + σds + μ 1 d n 1 +μ 2 dn 2 .

Приравняем его к нулю, и с учетом постоянной температуры и давления оно упрощается в уравнение вида:

sdσ + n 1 dμ 1 + n 2 dμ 1 = 0.

С учетом того, что для разбавленных растворов химический потенциал второго компонента выражается так:

μ 2 = μ 2 0 + RT lnc ,

а с учетом того, что температура постоянна

dμ 2 = RTdnc,

подставляя это уравнение в



получаем искомое уравнение адсорбции Гиббса. Исходя из уравнения, можно заметить, что если поверхностное натяжение σ увеличивается с концентрацией с , то концентрация растворенного вещества на поверхностном слое меньше, чем в объеме раствора (т. н. отрицательная адсорбция), и если поверхностное натяжение σ уменьшается с увеличением концентрации с , тогда концентрация в слое больше, чем в объеме (оположительная адсорбция), и, наконец, если σ не зависит от с , то концентрация вещества в слое на поверхности и в объеме одинакова. Уравнение Гиббса было выведено с использованием термодинамики. Практически проверить это уравнение сложно, что связано со сложностью определения концентрации растворенного вещества в слоена поверхности. Опытным путем Б. Мак-Бен установил, что с поверхности раствора с помощью прибора срезался очень тонкий слой жидкости. Дальнейшее определение всех параметров уравнения Гиббса показало, что экспериментально найденные значения адсорбции в пределах ошибки опыта совпадали со значениями, которые вычисляли по уравнению Гиббса. Из-за однородности и гладкости поверхности всякой жидкости при изучении адсорбции на ее поверхности совершенно неприложимы обычные представления об активных центрах. При критической температуре исчезает различие между граничащими фазами, поверхностное натяжение, как правило, становится равным нулю. Адсорбция газов и паров имеет настолько большое практическое применение, что в литературе, особенно в технической, можно встретить это понятие, которое применяют только по отношению к процессам на поверхности твердых тел.

Это понятие, как и наиболее общие закономерности адсорбции, как рассмотренное уравнение Гиббса, применимо ко всем границам раздела фаз. Пользуясь уравнением Гиббса и всеми вытекающими из него положениями, определив величину Г, можно построить изотерму адсорбции.

38. Особенности адсорбции на микропористых материалах. Потенциальная теория Поляни. Адсорбционный потенциал

Теория Поляни рассматривает нелокализованную физическую адсорбцию, которая непосредственно обусловлена вандерваальсовыми силами между адсорбентом и адсорбатом (это можно считать первым положением). Вторым положением этой теории является представление о силовом, (или потенциальном) поле адсорбента, которое распространяется на значительное расстояние от поверхности; слой адсорбции, который возникает в этом поле, полимолекулярен. Если рассматривать адсорбцию газов, тогда плотность этого слоя убывает по определенной нормали от поверхности. Если рассматривать адсорбцию паров, тогда на поверхности образуется жидкий слой определенной толщины. Поле в теории Поляни рассматривают как ряд эквипотенциальных поверхностей, каждая поверхность соответствует определенному значению потенциала ε , причем каждая последующая поверхность будет меньше, чем предыдущая. Каждая такая поверхность в пространстве вырезает слои определенного объема, обозначенного как v i . Задачей теории Поляни является нахождение перехода от обычных координат изотермы (x, p ) к параметрам поля ε i и v i , с дальнейшим установлением связи между этими основными параметрами. Первая часть задачи, которую заложил Поляни, достаточно сложна, и во множестве случаев не может иметь определенных решений, но для случая адсорбции паров эта часть задачи решается в первом приближении очень просто. Для жидкого адсорбционного слоя заполненная часть объема будет равна:

v i = х(М/d) ,

где d – плотность вещества в жидком состоянии.

В своей теории M. Поляни вводит еще одно положение об отсутствии т. н. экранирования поля в процессе адсорбции, величина ε в данной теории пространства является величиной постоянной (что-то наподобие гравитационного потенциала) независимо от того, существуют ли определенные молекулы адсорбата между данной точкой и твердой поверхностью или же все пространство является свободным. Поляни вводит понятие адсорбционного потенциала ε , который представляет собой изотермическую работу сжатия пара при переводе его от равновесного давления р в объемной фазе вдали от поверхности в область поверхностного слоя с давлением насыщенного пара р 0 тогда выражение для определения потенциала будет иметь вид:

ε = RT lnр 0 / р .

При помощи такого уравнения можно перейти от координат x, p к координатам ε и v и получить кривую, которая получила название «характеристическая». Поляни в своих опытах обнаружил, что такие кривые, построенные по экспериментальным данным полученных изотерм, обладают таким свойством: они инвариантны по отношению к Т, или, говоря иначе, все кривые такого типа могут ложиться на одну кривую ε −ε .

Такое положение М. Поляни принял в качестве постулата, т. е.:



Указанное свойство Поляни имеет огромное практическое значение, оно может по одной экспериментальной изотерме адсорбции построить семейство изотерм.

Теория Поляни не дает аналитического выражения для изотермы или функции потенциала от объема, но позволяет вычислить координату для любой заданной температуры, если известна хотя бы одна изотерма. Такой результат очень важен для технологических расчетов, потому что для сходных газов на одном адсорбенте кривые адсорбции могут оказаться близкими друг к другу и могут быть во многих случаях совмещены.

39. Характеристическая кривая адсорбции. Температурная инвариантность и аффинность характеристических кривых

Силовое поле, которое возникает у поверхности адсорбента, во многом может быть схоже с гравитационным полем. В адсорбционном поле можно представить потенциальные поверхности, т. е. поверхности для которых характерен один и тот же адсорбционный потенциал. Под понятием адсорбционного потенциала θ следует понимать не что иное, как работу, совершаемую против сил адсорбции при перемещении 1 моля адсорбтива из определенной точки поля в некоторую газовую фазу. Максимальный адсорбционный потенциал будет существовать на границе «адсорбент – адсорбционный объем». Но на границе «объем – газовая фаза» (именно там кончается действие адсорбционных сил) потенциал адсорбции должен быть равен нулевому значению. Изменение адсорбционного потенциала при изменении адсорбционного объема можно представить в виде кривых. Впервые это сделал М. Поляни. Подобные типы кривых не зависят от температуры и могут быть характерны для каждого конкретного адсорбента, такие типы кривых принято называть характеристическими кривыми адсорбции. Теория полимолекулярной адсорбции принимает, что для объема адсорбции применимо уравнение состояния газа. Следовательно, изотермы, которые характеризуют зависимость плотности адсорбтива от объема для разной температуры, напоминают изотермы зависимости давления от объема. При низкой температуре силы адсорбции на поверхности могут вызвать конденсацию пара в жидкость определенной плотности. При температурах более низких, чем критическая, при конденсации весь адсорбционный объем будет заполнен жидкостью. В этом случае кривая адсорбции будет идти почти параллельно оси абсцисс, которая связана с малой сжимаемостью жидкости. Затем кривая адсорбции на границе «объем – газовая фаза» резко опускается вниз, и, соответственно, плотность адсорбтива достигает значения некоторой плотности газовой фазы. При температурах более высоких, чем критическая, адсорбтив может вести себя как идеальный газ, и график будет выражаться как изотерма зависимости для идеального газа при условии, что pV = RT . При таких условиях адсорбированный газ будет иметь максимальную плотность у самой поверхности адсорбента и иметь минимальную при непосредственной близости от газовой фазы. Причем в этом случае важно отметить, что плотность адсорбтива в адсорбционном слое нигде не достигает плотности самой жидкости. И если температура очень близка к критической, зависимость плотности от объема будет выражаться кривой, близкой по виду к изотерме, которая описывается уравнением Ван-дер-Ваальса. При таком раскладе часть адсорбированного вещества будет находиться в адсорбированном объеме в жидком состоянии, а часть адсорбированного вещества – в газообразном. Тогда кривая будет наиболее резко снижаться в участке, который отвечает переходу от жидкости к газу. Если построить характеристическую кривую по опытной изотерме адсорбции одного из адсорбтивов, а зная соответствующие коэффициенты аффинности для какого-нибудь другого адсорбтива, можно найти изотерму адсорбции и построить ее для другого адсорбтива. Потенциальная теория адсорбции дает возможность вычислить различные изотермы адсорбции различных паров на одном и том же адсорбенте, причем по характеристической кривой, которая получена из изотермы адсорбции одного пара, т. к. соотношение адсорбционного потенциала не зависит от адсорбционных объемов.

Аффинность (от лат. affinis – «родственный») – хроматография по сродству. Метод очистки и разделения белков основан на их избирательном взаимодействии с лигандом, ковалентно связанным с инертным носителем (аффинная хроматография). Измерение аффинности токсиканта к рецептору, по сути, представляет собой экспериментальное изучение зависимости между количеством вещества, добавляемого в инкубационную среду, и количеством образующегося в результате взаимодействия токсикант-рецепторного комплекса.

Адсорбция как самопроизвольное концентрирование молекул на поверхности сопровождается понижением энтропии системы. Так как критерием самопроизвольности процесса являет­ся

∆Н - T· ∆S = ∆G< 0,

то адсорбция возможна только при ∆Н < 0 (экзотермический процесс). Равновесие определяется условием ∆Н = T· ∆S. При повышении температуры равновесие смещается в сто­рону эндотермического процесса, т. е. десорбции.

Адсорбция на поверхности твердого тела

1. Мономолекулярная адсорбция.

По теории Ленгмюра молекулы адсорбтива взаимодействуют с поверхностью адсорбента, образуя в итоге мономолекулярный слой. B этом случае степень заполнения () поверхности адсорбируе­мым веществом при адсорбции из газовой фазы

из жидкости

где К - константа равновесия (константа адсорбции);

р - парциальное давление адсорбируемого газа;

с - концентрация адсорбируемого вещества.

Зависимость β от р (или с) представлена графиком (изотерма адсорбции, Т = const) на рис. 1.3.

Рис. 1.3. Степень заполнения поверхности адсорбируемым веществом

При малых концентрациях и парциальных давлениях адсорбция пропорциональна концентрации или парциальному давлению:

р<< 1, β ≈ К· р илис<< 1, β ≈ К· с, т.е. начальный участок изотермы приблизительно линеен, причем tg α = К(tg α определяют по наклону кривой при р (или с) → 0: или ).

Если - количество молей адсорбированного вещества на 1 г адсорбента; - максимально возможное количество молей адсорбированного вещества на 1 г адсорбента ("емкость мо­нослоя"), то

Подставляя β в уравнение (1.3) (для случая адсорбции из газовой фазы концентрацию с в уравнениях следует заменить на давление р ), получаем:

(1.6)

Так как и К в данной паре адсорбент-адсорбтив являются константами (при T =const), то по зависимости можно найти и К (рис. 1.4).

Рис. 1.4. Графическое решение уравнения адсорбции

получают путем экстраполяции экспериментальной линейной зави­симости к () = 0; и, так как , то , .

Величину можно использовать для определения удельной поверхности адсорбента УД (в м 2 на 1 г адсорбента), если из­вестна площадь ω, занимаемая на поверхности одной молекулой адсорбтива (определяется из размеров молекулы):

УД = · ω · Nа, (1.7)

где Nа - число Авогадро (Nа = 6,02 · 10 23).

В свою очередь, известную величину УД можно использовать для расчета или ωлюбого вещества по его адсорб­ции на данном адсорбенте.



2. Полимолекулярная адсорбция.

Уравнение (1.5) описывает кривую с насыщением, т.е. при

р (или с) → ∞ стремится к предельному значению, равному (рис. 1.5,а).

Рис.1.5. Изотермы адсорбции:

а – адсорбция с насыщением; б – полимолекулярная адсорбция

Однако в некоторых случаях изотермы адсорбции выглядят как показано на рис. 1.5,б, т.е. не достигает предела даже при высоких р (или с).

Зависимости типа показанной на рис. 1.5,б соответствуют по­лимолекулярной адсорбции. Как правило, такие изотермы характерны для веществ с сильными межмолекулярными взаимодействиями (например, для во­ды). Когда центры адсорбции на поверхности адсорбента заняты (мономолекулярный слой насыщен), "посадка" следующих молекул адсорбата происходит за счет межмолекулярных взаимодействий с уже адсорбированными молекулами (рис.1.6). Теплота такой адсорбции близка по абсолютной величине, но противопо­ложна по знаку теплоте испарения соответствующей жидкости (подумайте, почему).

Рис.1.6. Схема адсорбции:

а - мономолекулярная адсорбция; б - полимолекулярная адсорбция

По мере приближения р к давлению насыщенного пара адсор­бируемого вещества оно начинает конденсироваться на поверхнос­ти адсорбента, в результате быстро растет с ростом р .

«УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ «ТЕРМОДИНАМИКА АДСОРБЦИИ ГАЗОВ, ПАРОВ И РАСТВОРОВ (СПЕЦКУРС). А. М. ТОЛМАЧЕВ 2012Г. Аннотация В лекциях подробно проанализировано описание адсорбционных...»

-- [ Страница 1 ] --

Химический факультет московского

государственного университета

им. М. В. Ломоносова

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

«ТЕРМОДИНАМИКА АДСОРБЦИИ ГАЗОВ,

ПАРОВ И РАСТВОРОВ

(СПЕЦКУРС).

А. М. ТОЛМАЧЕВ

Аннотация

В лекциях подробно проанализировано описание

адсорбционных равновесий на макро- и микропористых



адсорбентах как в рамках «метода избытков Гиббса», так и в рамках «метода полного содержания». В последнем случае рассмотрение проведено на основании разработанной автором термодинамической теории стехиомерической адсорбции индивидуальных веществ и бинарных и многокомпонентных растворов.

Подробно рассмотрены методы теоретического (априорного) расчета адсорбционных равновесий и описание изотерм «абсолютной» и «избыточной» адсорбции газов, паров и компонентов бинарных растворов неэлектролитов различными уравнениями, полученными в рамках феноменологических, решеточных и эмпирических моделей.

Рассмотрены методы количественного описания изотерм адсорбции и топологического анализа супрамолекулярных структур адсорбатов на микропористых активных углях методом молекулярной динамики.

На основании сопоставления численного и физического эксперимента доказана возможность использования уравнений теории объемного заполнения микропор (ДубининаРадушкевича, Дубинина-Астахова), уравнений решеточных моделей и др. при сверхкритических температурах.

Представлен разработанный под руководством автора компьютерный банк данных по адсорбции.

Настоящая разработка является изложением материала специального курса лекций, который автор в течение ряда лет читает студентам, дипломникам и аспирантам, специализирующимся в области адсорбции. Автор надеется, что это учебно-методическое пособие восполнит пробел, который имеется в научной и учебной литературе по рассматриваемой теме, и поможет начинающим исследователям познакомится с основными проблемами и достижениями науки об адсорбции – этом сложнейшем разделе термодинамики.

В предлагаемом варианте разработки не рассмотрены такие важные разделы, как адсорбция на мезопористых адсорбентах, сопровождающаяся процессами капиллярной конденсации, и квантово-химические методы анализа адсорбционных явлений. Автор надеется осуществить необходимые дополнения в дальнейшем и будет признателен за все замечания и предложения по улучшению данного пособия.

E.mail: [email protected], [email protected] Заслуженный профессор МГУ А.М.Толмачев Оглавление.

Лекция 1. Метод избытков Гиббса

Лекция 2. Метод полного содержания

Лекция 3. Термодинамика адсорбции.

Стехиометрическая теория адсорбции...............52 Лекция 4. Термодинамика адсорбированных растворов

Лекция 5. Описание адсорбционных равновесий растворов, газов и паров на макро и микропористых адсорбентах

Лекция 7. Исследование адсорбции на микропористых углеродных адсорбентах численными методами.

Изотермы адсорбции и молекулярные наноструктуры сорбатов..........178 Лекция 8. Компьютерный банк данных по адсорбции......226.

–  –  –

Количественное описание изотерм адсорбции индивидуальных веществ и компонентов смесей флюидов на адсорбентах различных типов и априорный расчет адсорбционных равновесий в таких системах, широко применяемых в разнообразных процессах разделения и глубокой очистки веществ в химической технологии, медицине, при решении экологических проблем, является одной из сложных и, одновременно, важных задач теории адсорбции, поскольку экспериментальный поиск соответствующих высокоселективных систем достаточно трудоемок.

Основной трудностью построения строгой термодинамической модели адсорбционных систем является проблема разделения системы на две фазы, точнее определение координат поверхности, разделяющей объемную и адсорбционную фазы. Точное проведение разделяющей поверхности невозможно , поэтому в теоретических работах рассматриваются два подхода: термодинамически строгий, но мало информативный метод избытков Гиббса, не разделяющий систему на объемную и адсорбционную фазы и позволяющий анализировать лишь свойства системы в целом, и метод полного содержания Ленгмюра, основанный на выбираемой тем или иным способом модели (размеров, емкости) адсорбционной фазы и использовании реальных (абсолютных) концентраций компонентов в этой фазе. Хотя последний метод менее строг, он существенно более информативен, т. к.

рассматривает адсорбционную систему, как двухфазную и позволяет анализировать свойства каждой из фаз в отдельности и, в частности, сопоставлять результаты, полученные термодинамическими и молекулярно-статистическими (или основанными на молекулярных моделях) методами, поскольку последние всегда требуют задания “структуры” адсорбционной фазы. Термин «полное содержание» появился в литературе в последней четверти прошлого века, однако, по мнению автора его основы были впервые сформулированы именно Ленгмюром, хотя он эту терминологию и не использовал.

Действительно, широко известная классическая модель идеальной адсорбции Ленгмюра основывалась на двух определяющих положениях: задании ограниченной монослоем емкости адсорбционной фазы, рассматриваемой именно в качестве отдельной фазы адсорбционной системы, и рассмотрении адсорбента, как компонента этой фазы, концентрация которого изменялась при адсорбции за счет перехода свободных адсорбционных центров поверхности в адсорбционные комплексы адсорбат – адсорбент.

Адсорбция – это сгущение вещества у границы раздела фаз, обусловленное ненасыщенностью связей поверхностных атомов или молекул и, как следствие этого, существованием адсорбционного поля, распространяющегося, строго говоря, до бесконечно удаленных от поверхности адсорбента точек в объемной фазе. Это обстоятельство приводит к необходимости учитывать следующие особенности таких систем:

1. Разделение системы на адсорбционную и объемную фазы не может быть проведено строго .

2. Адсорбционная фаза, выделенная на основании каких-либо дополнительных (всегда приближенных) соображений, будет энергетически неоднородна (она будет находиться в неоднородном адсорбционном поле) и, поскольку эта неоднородность не может быть учтена в рамках феноменологической термодинамики, описание свойств адсорбционной фазы приходится проводить с использованием средних по фазе значений параметров (концентраций, химических потенциалов и т. д.) .

Параметры адсорбционной фазы: концентрации – с, x, коэффициенты активности -, химические потенциалы - отмечаются либо чертой над соответствующим символом, либо подстрочным индексом R.

3. Наличие адсорбционного поля необходимо учитывать в выражении для химического потенциала, т. е. использовать полные химические потенциалы для компонентов адсорбционной фазы :

Для объемной газовой или паровой фазы:

–  –  –

где: поверхность (объем пор) адсорбента, Wповерхностное натяжение (внутреннее давление).

Используя уравнения Максвелла, получим:

–  –  –

Полезно обратить внимание на две формы уравнения Гиббса- Дюгема, широко используемых для адсорбционных растворов в рамках метода полного содержания. В более старых моделях адсорбент часто не рассматривался в качестве компонента адсорбционного раствора, а только как источник адсорбционного поля (поверхностной энергии). В этом случае, например, при адсорбции однокомпонентного пара уравнение

Гиббса-Дюгема имеет вид (P,T=const.):

с i d i Wd 0 (1.7) (W- площадь поверхности адсорбента, i - полный химический потенциал адсорбата).

В современных моделях адсорбент (R) является компонентом адсорбционного раствора. Он вводится либо в виде адсорбционных центров (как в моделях Ленгмюра и Толмачева), либо в виде вакансий (свободных пустот определенных размеров в адсорбционном растворе).

В этом случае уравнение Гиббса-Дюгема может быть представлено в двух эквивалентных формах (однокомпонентный пар, P,T=const.):

с i d i c R d R Wd 0 (1.8) и поскольку s(ст.), то в рамках модели “жесткого” раствора (мольные площадки компонентов - s=const., s i +sR=W) (1.8) сводится к виду:

с i d i c R d R (si sR)d Wd с i d iR c R d R 0 (1.9) Уравнения (1.7), (1.8) позволяют использовать равенство полных потенциалов в равновесных фазах, а (1.9) более удобно для анализа свойств адсорбционного раствора.

Указанные выше особенности адсорбционных систем привели к разработке двух вариантов их термодинамического описания:

1. Метода избытков Гиббса - термодинамически строгого описания изменения при адсорбции свойств всей системы в целом на основе экспериментально определяемых избыточных величин адсорбции (см. ниже) без ее разделения на две фазы. Этот метод, очевидно, не позволяет получать какую-либо информацию о свойствах адсорбционной фазы и, поэтому, недостаточно информативен, особенно, при решении практических задач, поскольку не дает информации о емкости адсорбента по отношению к компонентам объемной фазы, о ее структуре, свойствах и т. п..

2. Метода полного содержания , основанного на разделении системы на две фазы (см. ниже) и описании ее свойств, как гетерогенной системы с использованием абсолютных концентраций компонентов в каждой из равновесных фаз. Термодинамически этот метод менее строг, т.к. он основан на модельном приближении, определяющем проведение границы раздела между объемной и адсорбционной фазами, но он, очевидно, значительно более информативен, т.к.

позволяет получать характеристики адсорбционной фазы, что исключительно важно с практической точки зрения, и, кроме того, позволяет сопоставлять их с рассчитываемыми на основе различных молекулярных моделей, обязательно связанных с заданием конкретного расположения молекул у поверхности адсорбента.

В этой связи значительная часть современной информации об адсорбции представляется в рамках метода полного содержания, а метод избытков используется для получения первичной информации и как критериальный (см. ниже) при выборе модели для перехода к методу полного содержания. Длительное время внимание исследователей было привлечено к изучению адсорбции газов и паров при относительно низких давлениях, при которых значения избыточной и абсолютной адсорбции практически совпадали, и проблема выбора метода термодинамического анализа адсорбционных явлений активно не обсуждалась.

Интерес к этой проблеме вновь проявился в последней четверти прошлого века в связи с активным использованием в промышленности адсорбционных процессов при высоких давлениях. В этот период появилось значительное число работ, посвященных экспериментальному и теоретическому исследованию адсорбционных равновесий в широких интервалах изменения температур и давлений и детальному анализу путей пересчета экспериментально определяемых величин избыточной адсорбции в абсолютные.

Поскольку в нашу задачу не входит подробный анализ различных вариантов термодинамического рассмотрения адсорбционных явлений, мы ограничимся лишь кратким сопоставлением двух отмеченных выше подходов, обратив основное внимание на проблемы метода полного содержания, в рамках которого разработаны практически все методы описания и априорного расчета адсорбционных равновесий.

Метод избытков Гиббса.

Краткое изложение основ «Метода избытков Гиббса» начнем с двух цитат, достаточно полно излагающих основную идею метода и отражающих два подхода к оценке значения этого метода в современной теории адсорбционных явлений:

«Особенность подхода Гиббса заключается в том, что он сразу отказался от попытки характеризовать адсорбцию какими-либо абсолютными величинами, т. е. рассматривать межфазный слой как некоторый физический объект, имеющий естественные границы и, следовательно, содержащий определенное количество вещества в определенном объеме, которое можно было бы приравнять измеряемой величине адсорбции. Такое рассмотрение противоречило бы принципам измерения адсорбции. Преимуществом избыточных величин является то, что они непосредственно измеряются в эксперименте и поэтому не связаны ни с какими моделями. С их помощью можно построить термодинамическую теорию, которая будет включать только экспериментальные величины» ;

«Некоторые особенности предложенного в термодинамического формализма для описания адсорбционных явлений находятся, как нам кажется, в резком несоответствии с современным состоянием учения об адсорбции. Избыточная величина адсорбции определяется непосредственно из адсорбционного опыта, и в любом уравнении адсорбционной теории Гиббса разрешается пользоваться только этой величиной.

С нашей точки зрения, использование во всех случаях только избыточной адсорбции поставило метод Гиббса в непримиримое противоречие с адсорбционной наукой конца XX века. В самом деле, в любом уравнении изотермы адсорбции (например, уравнении Ленгмюра) или уравнении состояния адсорбционной фазы, опирающихся на молекулярнокинетические представления, входит не число избыточных молекул, а полное число реальных молекул в области неоднородности. Определяемые на опыте теплоты адсорбции связаны с изменением энтальпии при попадании всех, а не только избыточных молекул в поле адсорбента. В двумерных фазовых переходах участвуют не только избыточные, а все адсорбированные молекулы. Наконец, применяя для описания адсорбционных явлений метод статистической термодинамики, следует помнить, что в статистической физике вообще нет «избыточных» молекул. Таким образом, практически при любом современном исследовании адсорбции необходимо вводить в рассмотрение все молекулы адсорбата, в то время как в термодинамических уравнениях по Гиббсу во имя эфемерной «строгости» надо учитывать только избыточную адсорбцию» .

Разделяя, в основном, точку зрения, изложенную во второй цитате, отметим, что метод Гиббса сохранил свое значение для анализа поверхностных явлений на границах раздела газжидкость и жидкость-жидкость, для которых он и был изначально разработан, поскольку в этих случаях поверхностное натяжение (), входящее в знаменитое адсорбционное уравнение Гиббса, – экспериментально измеряемая величина.

Суть этого метода рассмотрим сначала на примере адсорбции однокомпонентного газа.

Введем в три (I, II, III) одинаковых сосуда (рис. 1.1) с объемами V0 одинаковые количества молей газа n0. Пусть стенки сосуда I абсолютно не адсорбируют данный газ – тогда его давление в сосуде I будет Р0, молярная плотность 0, а количество молей n0=0V0. Пусть в сосуде II нижняя стенка будет адсорбирующей поверхностью. Тогда у поверхности плотность газа увеличится, а вдали от поверхности в объеме сосуда уменьшится до.

–  –  –

Поскольку адсорбционная фаза не выделяется, объем сосуда не изменяется, а количество газа в этом объеме уменьшается до V0, если считать, что плотность распространяется вплоть до нижней адсорбирующей поверхности (адсорбционная фаза отождествляется с геометрической поверхностью, расположенной на нижней стенке сосуда II).

Изменение количества газа в объеме сосуда II по сравнению с сосудом I:

ne V00 V0 (1.10),

–  –  –

Поскольку при небольших (до нескольких атмосфер) давлениях последние термы в правых частях уравнений (1.13) и (1.14) исчезающе малы по сравнению с избыточной адсорбцией, при описании адсорбции газов и паров часто не делают различия между абсолютными и избыточными величинами. Только в экспериментах с высокими давлениями адсорбтивов эти различия становятся заметными.

Действительно, абсолютные величины адсорбции растут с увеличением давления, стремясь к некоторому пределу:

–  –  –

где v - мольный объем адсорбата в адсорбционной фазе (обычно его принимают равным мольному объему чистого жидкого адсорбтива).В то же время избыточная адсорбция с ростом давления проходит через максимум, а затем уменьшается до нуля, т. к. плотность объемной фазы становится такой же, как и вблизи поверхности.

Рис. 1.2. Изотермы избыточной адсорбции метана на активном угле при различных температурах.

В некоторых случаях плотность в объемной фазе может даже превысить плотность у поверхности из-за ограничения подвижности молекул у поверхности и, как следствие этого, меньшую компактность их упаковки (избыточная адсорбция будет при этом отрицательной). Примеры изотерм избыточной адсорбции приведены на рис. 1.2 , а изотерм полного содержания на рис. 1.3 :

–  –  –

Рис. 1.3. Изотермы адсорбции углеводородов и CO2 на активном угле Nuxit при 293К. Обозначения: – метан, – этилен, - этан, – пропилен, – пропан, - CO2.

Рассмотрим теперь адсорбцию одного из компонентов бинарного жидкого раствора:

Если избыточную адсорбцию компонента раствора определять аналогично избыточной адсорбции газа, то необходимо учитывать изменение объема раствора за счет его сжатия в адсорбционном поле (не разделяя при этом объем системы на

–  –  –

Исходя из (1.24), адсорбционное уравнение Гиббса, являющееся основой термодинамического описания адсорбционных систем в рамках метода избытков, может быть с учетом (1.17) и (1.18), а также соотношений, очевидно следующих из уравнения Гиббса-Дюгема, записанного для объемного раствора с использованием молярных концентраций или мольных долей:

–  –  –

Нижние пределы интегрирования в (1.25) и (1.26) определяются выбором значений адсорбции, при которых поверхностное натяжение принимается равным 0. Например,

–  –  –

поверхностно активных) является важной характеристикой таких систем.

Поскольку изменение поверхностного натяжения при адсорбции приводит к изменению полных химических потенциалов адсорбатов и, следовательно, термодинамических функций, из (1.25) и (1.26) можно получить (мы не будем рассматривать соответствующие выводы) соотношения для расчета избыточных термодинамических функций адсорбции (Ge, He, Se), характеризующих изменение соответствующих свойств всей системы в целом в результате процесса адсорбции по сравнению с соответствующей системой сравнения. Важно подчеркнуть, что эти расчеты проводятся с использованием экспериментально определяемых избыточных величин адсорбции и не связаны с выбором какой-либо модели адсорбционной фазы.

Применительно к адсорбции на твердых адсорбентах уравнения (1.25) и (1.26) не находят широкого применения, а метод избытков Гиббса используется, в основном, как критериальный при выборе термодинамически допустимого объема адсорбционной фазы в методе полного содержания.

Наиболее полезными в этом смысле оказались уравнения, описывающие зависимости избыточных термодинамических функций для адсорбционной системы в целом от состава двухкомпонентных объемных (в основном жидких) фаз. Если в качестве отсчетного состояния выбрать адсорбент, смоченный чистым вторым компонентом, то соответствующее уравнение для изменения избыточного изобарного потенциала

Гиббса (G e) имеет вид :

–  –  –

Если имеются экспериментальные данные по температурной зависимости адсорбции, то из (1.27) легко могут получены уравнения для соответствующих зависимостей избыточных энтальпий и энтропий системы.

Попытки представить зависимости соответствующих «изостерических» термодинамических функций от величин иэбыточной адсорбции наглядно демонстрируют трудности их физической интерпретации, что хорошо видно на примере соответствующей зависимости для дифференциальных изостерических избыточных теплот адсорбции метана на цеолите Rho от заполнения и температуры адсорбции, приведенной на рис. 1.3 .

Как следует из рисунка, в «изостерических» условиях с ростом температуры дифференциальные избыточные теплоты адсорбции сначала постоянны (кривые 1,2,3), а затем резко возрастают, расходясь веером вследствие неидеальности газовой фазы. Величина теплот достигает значений, превышающих 150 кДж/моль.



Рис.1.4. Зависимость изостерической избыточной теплоты адсорбции метана на цеолите Rho от температуры при Г 1 (ммоль/г): 0.5 (1,4); 0.535 (2,5); 0.645 (3,6).

x Дальнейший ход теплот адсорбции обусловлен наличием максимума на изотермах избыточной адсорбции и проявлением разрыва производной к изостере при переходе через эту точку. Теплоты приобретают отрицательный знак и в области высоких давлений постепенно приближаются к оси абсцисс.

Ясно, что сопоставление этих результатов с экспериментально наблюдаемыми калориметрическими теплотами адсорбции, зависящими от полного количества адсорбированных молекул, по меньшей мере, затруднено.

Однако, несмотря на эти трудности, метод избытков Гиббса неоднократно анализировался и уточнялся. «Геометрический»

формализм Гиббса был развит Гугенгеймом и Адамом , позднее Хансен и Гудрич разработали «алгебраический» формализм, который для границы жидкостьжидкость не требовал в явном виде введения геометрической поверхности раздела. Важным этапом развития метода Гиббса явились работы Тикоди и, особенно, Шая , в которых была рассмотрена адсорбция на твердых адсорбентах. Итог этим многолетним исследованиям подведен в фундаментальной монографии Лопаткина , детально проанализировавшего и уточнившего все проблемы применения «метода избытков» к анализу адсорбционных равновесий на твердых адсорбентах различной структуры.

Литература.

1. Гиббс Дж.В.. //Термодинамика. Статистическая механика.

Наука. Москва,.

2. Лопаткин А.А.. //Теоретические основы физической адсорбции, Изд-во МГУ, 1983.

3. Tolmachev A.M.// Langmuir, 1991, № 7, p.1400;

Толмачев А.М. // Вестн.Моск. Ун-та. Серия 2. Химия, 1990, T. 31, № 6, c. 529; Толмачев А.М. //Вестн. Моск. Ун-та.

Cер. 2. Химия, 1994, T. 35, № 2, c. 115.

4. Ларионов О.Г. /Дис. д-ра. хим. наук. ИФХ АН СССР, Москва, 1975.

5. Серпинский В.В., Якубов Т.С.// Изв. АН СССР. Сер.хим., 1985, c.12.

6. Фомкин А.А. //Дис. д-ра. физ-мат. наук. ИФХ РАН, Москва, 1993.

7. Прибылов А.А., Якубов Т.С., Стекли Г.Ф., Кюрри Л., Калинникова И.А, Шеховцова Л.Г. //Изв. АН. Сер.хим.

8. Szepesy L., Illes V.// Acta Chim. Hung., 1963, vol. 35, pp. 37, 54, 245, 373.

9. Guggengeim E.A.// Modern Thermodynamics Stated According to Gibbs Method), Moscow-Leningrad: GNTI, 1941.

10.Guggenheim E.A., Adam N.K. // Proc. Roy. Soc.,1933, vol.

11. Hansen R.S. // J. Phys. Chem., 1962, vol. 66, p. 410.

12. Goodrich F.C. // Trans. Faraday Soc., 1968, vol. 64, p. 3403.

13. Tykodi R.J. // J. Chem. Phys., 1954, vol. 22, p. 1647.

14. Shay G.A. // Pure Appl. Chem., 1976, vol. 48, p. 393.

Лекция 2. Метод полного содержания.

Введение.

Недостаточная информативность метода избытков Гиббса, трудности с интерпретацией получаемых на его основе термодинамических характеристик адсорбционных систем, практическая необходимость анализа свойств области неоднородности (адсорбционной фазы) обусловили появление серии исследований, в которых математическая граница раздела фаз Гиббса заменялась на реальную фазу со своими физическими и термодинамическими характеристиками.

Первоначально эти исследования развивались в рамках метода слоя конечной толщины, а позднее были развиты в рамках метода полного содержания.

Рассмотрение переходной области неоднородности как некоторого слоя конечной толщины, отделенного от гомогенных объемных фаз двумя поверхностями, т. е. как отдельной фазы, имеющей свою энергию, энтропию, массу и объем, с реальными, «абсолютными» концентрациями компонентов было начато в работах , а также в .

Детальная разработка и подробный анализ этого подхода был проведен в работах А.И. Русанова , который следуя, в основном, методу Гиббса, вывел все необходимые соотношения для термодинамического анализа поверхностных явлений и свойств слоя конечной толщины (как с плоскими, так и с искривленными поверхностями) с использованием не избыточных, а полных концентраций компонентов в слое. Так для адсорбции бинарного жидкого раствора на плоской поверхности твердого адсорбента было получено строгое термодинамическое уравнение (2.1) :

–  –  –

где: x 1, x 1 - равновесные мольные доли первого компонента в слое конечной толщины и в объемном растворе; i, i соответствующие химические потенциалы компонентов в равновесных фазах; A - поверхность раздела, приходящаяся на один моль смеси.

Интегрирование (2.1) для простейшего случая, когда обе фазы принимаются идеальными, а A является аддитивной функцией площадок каждого из компонентов (s 0 i), приводит к уравнению равновесия типа закона действующих масс:

x 1 (1 x 1) K (2.2), x 1 (1 x 1) s 01 где: К – константа; - стехиометрический коэффициент s 02 взаимного вытеснения компонентов.

В рамках метода слоя конечной толщины не были разработаны максимально строгие и точные методы определения его толщины (емкости). Кроме того, он был развит, в основном, для бинарных (и многокомпонентных) объемных фаз и анализа свойств поверхностных фаз. Поэтому для анализа собственно адсорбционных равновесий широкое распространение получил метод полного содержания, который принципиально не отличается от метода слоя конечной толщины, но опирается на разработанные методы определения «размеров» (емкости) адсорбционной фазы и использование аппарата химических потенциалов, позволяющего более простым путем получать соотношения, аналогичные (2.2), в том числе и для адсорбции из однокомпонентных объемных фаз. В рамках метода полного содержания были получены практически все известные уравнения изотерм адсорбции из одно- и многокомпонентных объемных фаз, поэтому рассмотрим основные особенности этого метода более подробно.

Метод полного содержания.

Первой работой, в которой был введен метод полного содержания, является, как уже отмечалось, работа Ленгмюра . Однако рассмотрение задачи в общем виде и термодинамическое обоснование метода было проведено во второй половине прошлого века в серии исследований, в которых был рассмотрены методы определения «размеров»

(объема, емкости) адсорбционной фазы и способы пересчета избыточных величин адсорбции в полные (абсолютные), а также термодинамика адсорбции в рамках метода полного содержания.

Для расчетов абсолютных величин адсорбции в методе полного содержания необходимо выбрать объем или предельную емкость адсорбционной фазы.

Сама возможность такого выбора ставилась под сомнение на основании следующих рассуждений :

Поскольку адсорбционный потенциал стремится к нулю при бесконечном удалении от поверхности, полное содержание при адсорбции индивидуальных газов следовало бы определить, как определенный интеграл:

–  –  –

сходится.

Однако, всегда можно выбрать расстояние от поверхности (z0), на котором увеличение плотности флюида за счет адсорбционного поля компенсируется равновесной флуктуацией плотности флюида, т.е. адсорбция равна нулю. С учетом этого обстоятельства полное содержание следует определить в виде сходящегося интеграла

–  –  –

Поскольку выбор размеров адсорбционной фазы при переходе к методу полного содержания различен для адсорбентов различных типов, рассмотрим основные типы адсорбентов:

–  –  –

В соответствии с широко используемой классификацией типов адсорбентов, предложенной М.М. Дубининым , все адсорбенты разделяются на три группы:

микропористые адсорбенты с узким распределением микропор по размерам (0.5 r 1.5 нм.): активные угли, цеолиты.

микропористые адсорбенты с бимодальным распределением микропор по размерам (0.5 r 1.5 и 1.5 r 2.0 нм.): некоторые типы активных углей.

мезопористые адсорбенты (2.0 r 20 нм.): силикагели, оксиды алюминия, железа и т.п.

макропористые адсорбенты (r 20 нм.): графитированные сажи, силикагели, поверхности монокристаллов и т.п.

В соответствии с теорией объемного заполнения микропор (ТОЗМ) молекулы адсорбатов в любой точке в микропоре находятся в зоне действия адсорбционного потенциала стенок поры и, поэтому, в отличие от мезопор, в них невозможны фазовые переходы I рода (жидкий адсорбат – пар). В этой связи отметим, что квантово-химические расчеты показывают, что адсорбционный потенциал резко убывает с расстоянием от адсорбирующей поверхности и, как хорошо видно из рис. 2.1, заметно проявляется на расстояниях до 0.8-1нм., что соответствует принятым максимальным размерам микропор 1.6 – 2.0 нм. В классической термодинамике принимают, обычно, что потенциал взаимодействия адсорбат-адсорбент убывает с номером адсорбционного слоя (n) в соответствии с формулой:

–  –  –

4,0 Рис. 2.1. Профли энергии взаимодействия между молекулами пропена (0), бензола (1) и метанола (2) с углеродной поверхностью, рассчитанные квантово-химическим методом (DFT PBE0/6 311G).

Прежде чем рассматривать проблему определения объема адсорбционной фазы получим соотношения, аналогичные (1.13, 1.14) для адсорбции из бинарных жидких растворов.

Соответствующие расчетные формулы легко могут быть получены на основании балансовых соотношений .

–  –  –

Различные варианты выбора значений V или c i подробно обсуждены в литературе. Мы кратко рассмотрим наиболее широко применяемые способы, применительно к адсорбции на адсорбентах различной структуры.

Адсорбция на гладких поверхностях (макропористые и мезопористые адсорбенты).

В соответствии с (2.6) при адсорбции газов адсорбционная фаза всегда представляет монослой. Однако, для определения предельной адсорбции (емкости монослоя c i a m моль.см-2) необходимо знать площадь поверхности адсорбента (A) и площадь, приходящуюся на одну молекулу адсорбата ():

am A / Na (2.11) Вместе с тем, уравнение (2.11) используется для определения площади поверхности по «экспериментальным» значениям a m, находимым как параметр уравнений, описывающих изотермы полимолекулярной адсорбции паров (эти уравнения мы подробно рассмотрим ниже), в то время как для описания изотерм адсорбции газов удовлетворительных уравнений пока не предложено (классическое уравнение Ленгмюра в реальных системах неприменимо). Далее, на основании различных оценок (квантово-химические расчеты, Ван-дер-Ваальсовы радиусы и.т.п.) с учетом возможных ориентаций молекул у поверхности находят значения и рассчитывают a m для адсорбции газов. Таким образом, при термодинамическом анализе адсорбции газов на макропористых адсорбентах в рамках метода полного содержания следует учитывать трудности точного определения a m, а также возможность изменения ориентации молекул при адсорбции смесей газов.

В случае полимолекулярной адсорбции паров на макропористых адсорбентах объем сорбционной фазы величина переменная, поскольку конденсация адсробтива во втором и последующих слоях из-за наличия адсорбционного поля (хотя и резко убывающего с расстоянием от поверхности) наступает при давлениях, меньших давления насыщенного пара (Ps). В этой связи термодинамический анализ в рамках метода полного содержания таких систем затруднен и ограничивается использованием уравнений изотерм избыточной адсорбции (главным образом для определения поверхности адсорбентов) в тех случаях, когда значения Ps невелики и избыточная адсорбция может быть приравнена к абсолютной:

Наиболее широко применяются двухпараметрические уравнения БЭТ и Арановича (подробнее см. лекцию 5), одним из параметров которых является a m. Следует подчеркнуть, что при адсорбции газов определяется не объем адсорбционной фазы - объем монослоя, который при адсорбции смесей газов может быть величиной переменной изза различия эффективных радиусов молекул, а термодинамически более важная величина - емкость монослоя при постоянной площади поверхности (см. лекцию 3), т. е.

рассматривается двумерная задача.

В случае адсорбции жидких растворов на макропористых адсорбентах адсорбционная фаза, как правило, также ограничивается монослоем, значительно реже необходимо ее рассматривать, как двухслойную. Для определения объема (емкости) адсорбционной фазы в этом случае используются два способа:

1. Универсальный термодинамический метод О. Г.

Ларионова ,

2. Метод, основанный на уравнении Арановича-Толмачева .

Первый из них основан на сопоставлении изменений

–  –  –

и, при наличии сответствующих данных для разных температур, H e, S e при переходе от адсорбента, смоченного чистым компонентом 2 к растворам состава x 1, для адсорбционной системы в целом, т.е. в рамках метода избытков Гиббса, с аналогичными зависимостями, рассчитанными в рамках метода полного содержания. Поскольку в последнем случае изменение термодинамических функций системы в целом будет зависеть от разделения системы на две фазы (на объем адсорбционной фазы V и объем фазы раствора V- V):

G(x 1) (VG адс. (V V)G объемн.)(x 1) (2.13), то варьируя значения V, можно найти объем (емкость) адсорбционной фазы, при которых соответствующие зависимости в методе избытков и в методе полного содержания будут совпадать.

Анализ большого количества адсорбционных систем этим методом показал, что адсорбционная фаза, как правило, представляет собой монослой и, относительно редко, два слоя (например, в случае спиртов, характеризующихся сильным взаимодействием адсорбат – адсорбат).

Второй метод, основанный на использовании решеточной модели Оно-Кондо и полученного в рамках этой модели уравнения Арановича - Толмачева, был предложен в работе .

В этой работе показано, что количественное описание изотерм избыточной адсорбции компонентов растворов неэлектролитов на макропористых адсорбентах с физически достоверными значениями параметров (энергии взаимодействия, емкость монослоя, состав слоев) может быть получено на основании системы уравнений АрановичаТолмачева.

Соответствующие уравнения будут представлены в лекции 5.

Параметры уравнений (а1,m, / kT, B) находятся численным методом (минимизацией отклонений рассчитываемых и экспериментальных значений Г1). Далее с помощью специальной программы рассчитывают составы первых двух слоев адсорбата. Результаты представлены в таблице 2.1. Из таблицы видно, что для систем с / kT, характеризующих различия в энергиях взаимодействия одинаковых и разных молекул раствора, меньших 0.04 (таких систем большинство!) состав только первого слоя X1(n=1) отличается от состава объемной фазы X1(oo), т.е. адсорбционная фаза монослойна, что согласуется с выводами, полученными методом Ларионова.

Таблица 2.1 Зависимость X1(n) от X1()при 303К для систем:

I- CCl4-изо-C8H18-графит. cажа (/kT теор.=0.01), II- C6H5CH3C6H5Cl-силикагель (/kT теор.=0.04), III- ц-C6H12-С6H5NO2Al2O3 (/kT теор.=0.16) –  –  –

Адсорбция на микропористых адсорбентах (активных углях, цеолитах) изучалась и продолжает интенсивно изучаться, поскольку широкое применение адсорбционных технологий для разделения и глубокой очистки веществ, защиты окружающей среды, в разнообразных каталитических процессах основано на использовании именно микропористых адсорбентов.

С другой стороны микропористые адсорбенты удобный объект для разнообразных теоретических исследований. Таким образом, интересы фундаментальной науки и практики удачно сочетаются.

В частности метод полного содержания наиболее строго и успешно применяется именно для исследования адсорбции на микропористых адсорбентах, поскольку объем (емкость) адсорбционной фазы в этом случае определяется достаточно строго.

Определение объема (емкости) адсорбционной фазы:

Наиболее просто «предельная» емкость адсорбционной 1.

фазы, за которую естественно принять объем микропор, определяется при использовании уравнений, описывающих изотермы адсорбции паров, параметром которых она является.

Это, прежде всего, уравнения теории объемного заполнения микропор (ТОЗМ): Дубинина - Радушкевича (микропористые угли) и Дубинина – Астахова (цеолиты) и уравнения Толмачева-Арановича (микропористые угли и цеолиты), одним из параметров которых является предельная емкость адсорбционной фазы при давлении адсорбтива равного давлению его насыщенного пара (Рs). Конечно, необходимо использовать адсорбтивы, имеющие при температуре опыта давления насыщенных паров меньшие одной атмосферы, чтобы избыточная и абсолютная адсорбции совпадали. Подробный анализ этих и других уравнений будет рассмотрен в 5 главе.

2. При адсорбции растворов объем (емкость) адсорбционной фазы может быть определен по методу Ларионова, описанному выше. Применение этого метода во всех случаях приводит к объему (емкости) адсорбционной фазы, практически совпадающему с объемом (емкостью) микропор, определенному по адсорбции паров.

3. Интересный способ определения абсолютной адсорбции в рамках метода полного содержания был предложен Фомкиным . В этом способе, требующем специальной аппаратуры для экспериментального определения избыточной адсорбции жидкости и пара при давлении равном Рs, показана возможность достаточно точного определения абсолютной адсорбции без определения объема микропор.

–  –  –

Рис. 2.2. Схема определения абсолютной адсорбции.

На первом этапе в адсорбционный сосуд объема V помещается навеска микропористого адсорбента (схема представлена на рис. 2.2) и проводится обычная калибровка с использованием гелия при высокой температуре (400-500К), когда его адсорбцией можно пренебречь. При этом определяется не истинный объем адсорбента с микропорами, а несколько больший объем V (на рис. показан пунктирной линией), поскольку атомы гелия имеют собственный объем.

На втором этапе проводится определение избыточной адсорбции из насыщенного пара и жидкости. Очевидно, что абсолютная адсорбция в обоих случаях одинакова и поэтому

–  –  –

что дает возможность рассчитывать абсолютную адсорбцию без определения истинного объема микропор. Оценки, которые можно сделать в случае цеолитов, для которых геометрический объем микропор может быть рассчитан из данных рентгеноструктурного анализа показывают, что доступный объем микропор на 20-30% меньше геометрического.

Подчеркнем в связи с рассмотрением этого метода, что в методе полного содержания именно емкость (предельная емкость) адсорбционной фазы, расчет которой может быть проведен достаточно точно, является основной характеристикой, используемой при термодинамическом анализе. Постоянство объема микропор или поверхности в случае макропористых адсорбентов является при этом важным условием, позволяющим охарактеризовать адсорбционную фазу, как фазу ограниченной емкости по отношению к компонентам системы. При этом в точном определении объема микропор или поверхности часто нет необходимости.

Заметим в заключение, что за предельную емкость или предельное заполнение адсорбционной фазы обычно принимают абсолютную адсорбцию пара или чистой жидкости при давлении насыщенного пара.

Однако, в соответствии с квазихимической моделью Ленгмюра-Толмачева предельное насыщение адсорбционной фазы может быть достигнуто только при давлении, стремящемся к бесконечности. Кроме того, экспериментально показано, что при увеличении гидростатического давления на жидкость предельная адсорбция в микропорах может увеличиваться на 10-15% за счет перестройки структуры адсорбата .

Поэтому, при термодинамическом анализе адсорбционных систем необходимо точно определять понятие предельной емкости адсорбционной фазы.

Изменение предельной адсорбции с изменением состава адсорбированного раствора при адсорбции жидких растворов рассчитывается с использованием модели «жесткого» раствора.

Как уже отмечалось - это вынужденное приближение, поскольку данных о парциальных мольных объемах практически нет.

Однако, если принять, что объем адсорбционной фазы при адсорбции на цеолитах равен объему полостей, то «абсолютная» адсорбция в методе полного содержания может быть найдена не расчетом по уравнениям (2.10), а экспериментально при адсорбции из растворов (пикнометрическим методом) как для чистых адсорбтивов, так и для растворов.

Очевидно, что модель жесткого раствора должна приводить к линейной зависимости абсолютной суммарной адсорбции

–  –  –

Из пяти изученных к настоящему времени систем соответствующие линейные зависимости с хорошим приближением выполняются для четырех (см. например рис.

2.3а), однако, в одной системе отклонения от линейности заметны (см. рис. 2.3б)

–  –  –

При термодинамическом анализе подобные отклонения от модели жесткого раствора формально учитываются в коэффициентах активности компонентов адсорбированного раствора, которые, по меткому выражению В.С. Солдатова, становятся в этом случае «коэффициентами нашего незнания».

Отметим в заключение, что метод полного содержания оказывается необходимым и весьма плодотворным при анализе адсорбции газов, паров и жидкостей на микропористых адсорбентах в широких интервалах температур и давлений.

Особенности адсорбции в микропорах.

Физическая адсорбция газов, паров и жидкостей на микропористых адсорбентах существенно отличается от адсорбции на открытой поверхности. В микропорах адсорбционный потенциал сильно возрастает из-за наложения адсорбционных полей противоположных стенок. Эти особенности микропористой системы адсорбента резко меняет свойства вещества, находящегося в адсорбированном состоянии. Адсорбционное поле микропористого адсорбента навязывает свою структуру и диспергирует вещество так, что в адсорбате отсутствуют фазовые переходы первого рода типа конденсации. Однако с ростом адсорбции в нем становятся возможными процессы перестройки структуры, аналогичные фазовым переходам второго рода.

Адсорбционное взаимодействие молекул адсорбата с поверхностью твердого тела в общем случае всегда приводит к изменению состояния самого твердого тела. Это изменение может быть более или менее значительным, в зависимости от того насколько сильно развита поверхность твердого тела, имеются ли на ней высокоэнергетические адсорбционные центры, проявляющие специфическое взаимодействие, велики ли энергии межмолекулярных связей атомов или молекул, составляющих твердое тело. При адсорбции на микропористых адсорбентах, адсорбент и адсорбат являются равноправными участниками адсорбционного процесса.

Особенности свойств адсорбционных систем и адсорбата в микропористых адсорбентах особенно заметно проявляются в поведении изотерм и изостер адсорбции, адсорбционной деформации адсорбента и термодинамических функций адсорбционных систем при изучении их в широких интервалах давлений и температур.

Подробное изучение этих процессов выполнено в работах А.А. Фомкина и сотр. .В этих работах было показано:

Адсорбция газов, паров и жидкостей в микропористых адсорбентах плавно растет с ростом давления при переходе через критическую температуру и при фазовых переходах в адсорбтиве.

Рис. 2.4. Изотермы адсорбции воды (1-3) и бензола (4,5) на цеолите NaX при Т (К): 1-303; 2-313; 3-323; 4-303, 5-323.

–  –  –

гидростатического давления до 100 МПа), а на рис. 2.5 изотермы метана при температурах меньших и больших Ткр.

Как следует из рис. 2.5, изотермы адсорбции симбатно изменяются с ростом температуры при переходе через температуру критической точки адсорбтива: Ткрит. = 190.55К, что свидетельствует об отсутствии конденсационных эффектов в адсорбате.

a[ммоль.г-1]

1 0 1 2 3 4 5 6 lgP(P[ Pa]) Рис. 2.5. Изотермы адсорбции СН4 на микропористом углеродном адсорбенте PAU-10, при Т, К: 1 - 120; 2 - 130; 3 Изостеры адсорбции в координатах lnP=f(1/T)a остаются линейными в широких интервалах давлений и температур и не изменяют своего наклона при переходе через критическую температуру газовой фазы. Это хорошо видно из данных, приведенных на рис. 2.6.

Из рис. 2.6 видно, что во всем изученном интервале давлений и температур изостеры остаются линейными, причем, что особенно важно, изостеры, прекращающиеся у линии давления насыщенного пара, далее линейно продолжаются в закритической области, а изостеры адсорбции, начинающиеся в области пара, линейно продолжаются в области состояния сжатой жидкости.

Рис. 2.6. Изостеры адсорбции Хе на цеолите NaX при адсорбции, ммоль/г: 1 – 0.1; 2 - 0.2; 3- 0.4; 4 - 1.0; 5 - 2.5; 6 - 3.5;

7 - 4.0; 8-4.5:9-4.7; 10-4.9; 11-5.15; 12-5.3; 13 - 5.5; 14 - 5.8. ln Ps

– линия давления насыщенного пара.

Линейность изостер адсорбции в области, где газы имеют значительные отклонения от идеальности, линейное их продолжение в области жидкого состояния адсорбтива и в закритической области - все это указывает на то, что адсорбат в микропористом адсорбенте - это особое состояние вещества.

Это положение подтверждается также исследованиями адсорбции разнообразных жидкостей на цеолите NaX вдоль линии давления насыщенного пара, выполненного М.М.Дубининым и сотр.. Основные результаты этих исследований таковы: средняя плотность адсорбированных углеводородов (СН4, н-С4Н10, н-С5Н12, н-С9Н20, СF3Cl) и инертных газов (Xe, Kr, Ar) в области низких температур - меньше, а вблизи критической температуры - больше плотности жидкого адсорбтива. Температура, при которой они равны между собой, составляет примерно 0,8 Ткр.. Средние плотности адсорбированных полярных веществ (H2O, C6H6, C2H5OH) в изученном интервале температур 273 473 К больше плотности жидкости и значительно медленнее меняются с температурой. Показательно, что для адсорбированной воды кривая плотности не имеет максимума при 277.15 К, свойственного обычной воде.

Дифференциальная мольная изостерическая теплота адсорбции при высоких давлениях зависит от температуры как вследствие неидеальности газовой фазы, так и неинертности адсорбента, т.е. интенсивности его температурной и адсорбционной деформации (рис. 2.7.) . Аналогичные результаты были получены и для других систем .

Дифференциальные мольные изостерические теплоемкости адсорбционных систем (рис. 2.8.) при высоких величинах адсорбции имеют максимумы, свидетельствующие о наличии процессов перестройки структуры (фазовых переходов второго рода) в адсорбате.

Аналогичные зависимости изостерической теплоемкости получены и для других адсорбционных систем. Основной причиной, вызывающей появление максимумов на кривых изостерической теплоемкости, по-видимому, являются особенности свойств адсорбированного вещества в микропорах адсорбентов. На это указывают, прежде всего, температурные интервалы, в которых развиваются экстремальные явления. Из рис. 2.8 следует, что максимумы начинают возникать в интервале температур примерно на 100 - 200К превышающих критическую температуру сорбирующегося газа. Аналогичные зависимости получены и для других исследованных систем. С ростом адсорбции, а следовательно, и среднего количества молекул в полостях микропористых адсорбентов максимумы изостерической теплоемкости становятся все более резко выраженными и сдвигаются в область низких температур.

Рис. 2.7. Зависимость дифференциальной мольной теплоты адсорбции Хе на цеолите NaX с учетом адсорбционной деформации от величины адсорбции при Т(К): 1- 150; 2-210;3Штрихами показан вид кривых без учета адсорбционной деформации).

Рис.2.8. Температурные зависимости дифференциальной мольной изостерической теплоемкости адсорбционной системы «Хе – цеолит NaX» при различных величинах адсорбции, ммоль/г: 1-1.0; 2 – 2.0; 3 – 4.0; 4 – 4.5; 5 – 4.7; 6 – 4.9; 7 – 5.0; 8 – 5.15; 9 – 5.30.

При малых заполнениях, согласно расчетам карт потенциальной энергии взаимодействия в порах адсорбента молекулы находятся в глубоких потенциальных "ямах". Однако с ростом температуры в изостерических условиях при средних и высоких заполнениях, из-за роста кинетической энергии молекул все более вероятным становится процесс перехода молекул с центров адсорбции в объем микропор с образованием ассоциатов. В частности, такой механизм адсорбции, то есть переход от частично локализованной адсорбции к делокализованной, был обнаружен А.А.Фомкиным и сотр. при анализе адсорбции гелия в цеолите NaX .

Похожие работы:

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ивановский государственный химико-технологический университет» Утверждаю: Ректор _ В.А. Шарнин « _» 2014 г. Номер внутривузовской регистрации Основная образовательная программа высшего образования Направление подготовки 27.04.04 «Управление в технических системах» Наименование магистерской программы «Автоматизация и управление...»

« ПРОГРАММА ВЫСШЕГО ОБРАЗОВАНИЯ Направление подготовки 15.04.02 ТЕХНОЛОГИЧЕСКИЕ МАШИНЫ И ОБОРУДОВАНИЕ Программы подготовки ПРОЕКТИРОВАНИЕ ОБОРУДОВАНИЯ НЕФТЕГАЗОПЕРЕРАБОТКИ И НЕФТЕХИМИИ Квалификация выпускника МАГИСТР Нормативный срок обучения 2 ГОДА Форма обучения ОЧНАЯ МОСКВА, 2014 г. Назначение ООП ВО ООП ВО представляет собой систему...»

«СОЦИАЛЬНЫЙ ОТЧЁТ химической промышленности о реализации международной программы устойчивого развития Responsible Care “Ответственная Забота” в России 2007 200 Содержание Актуальность темы развития корпоративной социальной ответственности Диалог российской химической промышленности с международными организациями Развитие системы социальной отчетности Рамки отчета 1. Международная программа устойчивого развития Responsible Care – «Ответственная Забота» 2. Социальная ответственность химических...»

«Аннотация к рабочей программе по химии 8-9 класс Рабочая программа составлена на основании «Программы курса химии для 8-9 классов общеобразовательных учреждений», допущенной Министерством образования и науки Российской Федерации и соответствующей федеральному компоненту государственного образовательного стандарта. Авторы Н.Е. Кузнецова, И.М. Титова, Н.Н. Гара; из расчета 2 ч. в неделю; всего – 68 ч в 8 классе и 68 ч в 9 классе. 8 класс Основное содержание курса химии 8 класса составляют...»

«Кировское областное государственное автономное образовательное учреждение дополнительного образования детей – «ЦЕНТР ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ ОДАРЕННЫХ ШКОЛЬНИКОВ» _ ХИМИЯ, 2013 ЗАДАНИЯ, РЕШЕНИЯ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ по проверке и оценке решений II (муниципального) этапа Всероссийской олимпиады школьников по химии в Кировской области в 2013/2014 учебном году Киров Печатается по решению учебно-методического совета КОГАОУ ДОД – «Центр дополнительного образования одаренных школьников» и...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Институт цветных металлов и материаловедения Кафедра физической и неорганической химии С.В. Сайкова МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ ХИМИЧЕСКИХ ОТКРЫТИЙ УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ Направление 020100.62 – Химия Красноярск ОГЛАВЛЕНИЕ ОБЩИЕ СВЕДЕНИЯ 4 1. СТРУКТУРА САМОСТОЯТЕЛЬНОЙ РАБОТЫ 9 2....»

«Московский городской Дворец детского (юношеского) творчества Центр экологического образования Фонд отраслевых информационно-методических изданий (ОИМИ) с 1962 по 2010 гг. Секция №1 Секция №2 Секция №3 Секция №4 Издания ЦЭО Издания ЦЭО Издания МГДД(Ю)Т Издания ДНТТМ с 1992 по 2010 гг. с 1962 по 1991 гг. с 1962 по 2010 гг. с 1988 по 2010 гг. 110 наименований 90 наименований 80 наименований 50 наименований Секция №5 Секция №6 Секция №7 Секция №8 Издания учреждений Издания учреждений Издания ООПТ...»

«Информационная справка Школа: МБОУ Ульяновская СШ 1. Учитель: Перевозов Алексей Александрович 2. Название факультатива: Систематизация знаний по химии в рамках подготовки к ЕГЭ 3. Класс: 10К-во часов в неделю по учебному плану: 0, 5. Общее к-во часов: 3 6.Программа: программы курса химии для 8-11 классов общеобразовательных учреждений/О.С. Габриелян. – М.: 7. Дрофа, Аннотация к рабочей программе факультатива по химии «Систематизация знаний по химии в рамках подготовки к ЕГЭ» Рабочая программа...»

« аспекты повышения необходимо применение органических удобрений. продуктивности сельскохозяйственных культур. – Список литературы: М.:Агроконсалт, 2002. –№116. –С.63-66. 1. Гамзиков, Г.П. Баланс и превращение азота 7. Серова, Л.В. О мкости и химизме удобрений/Г.П. Гамзиков, Г.И. Кострик, В.Н. биологического круговорота элементов питания в...»

«МИНИСТЕРСТВО СПОРТА РОССИйСКОй ФЕДЕРАЦИИ МИНИСТЕРСТВО ПО ДЕЛАМ МОЛОДЕЖИ, СПОРТУ И ТУРИЗМУ РЕСПУБЛИКИ ТАТАРСТАН ПОВОЛЖСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ФИЗИЧЕСКОй КУЛьТУРЫ, СПОРТА И ТУРИЗМА МЕЖДУНАРОДНАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ «ФИЗИОЛОГИЧЕСКИЕ И БИОХИМИЧЕСКИЕ ОСНОВЫ И ПЕДАГОГИЧЕСКИЕ ТЕХНОЛОГИИ АДАПТАЦИИ К РАЗНЫМ ПО ВЕЛИЧИНЕ ФИЗИЧЕСКИМ НАГРУЗКАМ» Том II 29-30 ноября 2012 года УДК 612.0+796.011.3 ББК 28.70+75.10 Ф 48 Физиологические и биохимические основы и педагогические технологии Ф 48...»

«Министерство образования и науки Российской Федерации Самарский государственный университет Химический факультет Утверждаю: Ректор И.А. Носков «»2011_ г. Основная образовательная программа высшего профессионального образования Направление подготовки 020100.62 -Химия Квалификация Бакалавр Самара 2011 г.1. Общие положения 1.1. Основная образовательная программа высшего профессионального образования (ООП ВПО) по направлению подготовки 020100.62 Химия (бакалавр) является системой...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО Томский государственный университет Утверждаю: Ректор ТГУ профессор Г. В. Майер _ «»2011 г. Номер внутривузовской регистрации Основная образовательная программа высшего профессионального образования Направление подготовки 020100 – Химия Химия твердого тела _ (наименование магистерской программы) Квалификация (степень) Магистр Томск 201 СОДЕРЖАНИЕ 1. Общие положения 1.1. Основная образовательная программа (ООП) магистратуры...»

«Федеральное агентство по образованию Ангарская государственная техническая академия Кафедра «Машины и аппараты химических производств» С.А. Щербин, И.А. Семёнов, Н.А. Щербина ОСНОВЫ ГИДРАВЛИКИ Учебное пособие Ангарск 2009 УДК 532 (075.8) С.А. Щербин, И.А. Семёнов, Н.А. Щербина. Основы гидравлики. – Учебное пособие. Ангарск: Издательство Ангарской государственной технической академии, 2009. – 94 с. Рассмотрены основные законы гидравлики и их практическое применение. Приведены необходимые...»

«Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина ТЕХНИКА ЗАЩИТЫ ОКРУЖАЮЩЕЙ СРЕДЫ Методические указания к практическим занятиям Рекомендовано методическим советом УрФУ для студентов, обучающихся по направлениям подготовки 241000 «Энергои ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии», 280201 «Охрана окружающей среды и рациональное использование природных ресурсов» Екатеринбург...»

«Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Воронежский государственный университет» (ФГБОУ ВПО «ВГУ») Методические указания к проведению производственной практики «Изготовление лекарственных форм в аптечных условиях» Воронеж Издательский дом ВГУ Утверждено научно методическим советом фармацевтического факультета 23 декабря 2014 протокол № Рецензент к.фармацев.н., доцент Брежнева Т.А. Методические указания подготовлены на кафедре...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА ИМЕНИ И.М. ГУБКИНА АННОТАЦИЯ ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Направление подготовки 240100 ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ Профиль подготовки ТЕХНОЛОГИЯ ПРОИЗВОДСТВА МАСЕЛ И СМАЗОК Квалификация выпускника БАКАЛАВР Нормативный срок обучения 4 ГОДА Форма обучения ОЧНАЯ МОСКВА, 2011 г. Назначение ООП ВПО ООП ВПО представляет собой систему документов,...»

«НОВЫЕ ПОСТУПЛЕНИЯ В БИБЛИОТЕКУ Естественные науки Hungary / . Budars: Д H92 Gart, 2014. 95 с. : ил., карты, фот. Х98 Экземпляры: всего:1 ЧЗ(1). Буслаев, Юрий Александрович. Б92 Избранные труды. В 3 Т. Т. 2: Стереохимия координационных соединений фторидов непереходных элементов II-VII групп в растворах / Ю. А. Буслаев; [сост. Е. Г. Ильин] ; Рос. акад. наук, Ин-т общей и неорган. химии им. Н. С. Курнакова. Москва: Наука, 2014....»

«Книги, поступившие в библиотеки Централизованной библиотечной системы г. Апатиты в январе-апреле 2015 года.В списке использованы следующие сиглы: ОО – отдел обслуживания центральной городской библиотеки (Пушкина, 4, тел: 2-08-02) ГДЮБ городская детско-юношеская библиотека (Дзержинского, 53, тел.: 2-09-21) ГБ 1городская библиотека №1 (Сидоренко, 30, тел.: 7-87-37) ГБ 2 городская библиотека № 2 (Зиновьева, 8, тел.: 2-06-60) ГБ 3 городская библиотека им. Л. А. Гладиной (Ленина, 24,тел.: 6-11-10)...»

«ПРОГРАММА ООН ПО ОКРУЖАЮЩЕЙ СРЕДЕ Методическое руководство по выявлению и количественной оценке выбросов диоксинов и фуранов Воздух Вода Почва Продукты Остатки 1 Выпуск Май 2003 года Подготовлено Подпрограммой ЮНЕП по химическим веществам Женева, Швейцария МЕЖОРГАНИЗАЦ ИОННАЯ ПРОГРАММА ПО ОБОСНОВАННОМУ IOMC УПРАВЛЕНИЮ ХИМИЧЕСКИМИ ВЕЩЕСТВАМИ Совместное соглашение ЮНЕП, МОТ, ФАО, ВОЗ, ЮНИДО, ЮНИТАР и ОЭСР Целью настоящей публик ации является помощь странам в создании реестров полихлорированных...»

«Программа вступительного экзамена по химии и методике ее обучению по направлению подготовки 44.04.01 Педагогическое образование, Магистерская программа Химическое образование Общая и неорганическая химия Основные закономерности стехиометрии и их использование для проведения химических расчетов. Методы исследования в химической науке: химический эксперимент, наблюдение, моделирование, научное прогнозирование, работа с литературой, использование современных информационных технологий. Расчетные...»

СПИСОК ЛИТЕРАТУРЫ

1. Pope M.T, Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines // Angew. Chem. Int. Ed. Engl. - 1991. - V. 30. - P. 34-48.

2. Поп М.С. Гетерополи- и изополиметаллаты. - Новосибирск: Наука, 1990. - 232 с.

3. Максимов Г.М. Достижения в области синтеза полиоксометал-латов и изучение гетерополикислот // Успехи химии. - 1995. -Т 64. - № 5. - С. 480-493.

4. Добрынина Н.А. Изополи- и гетерополисоединения // Журнал неорганической химии. - 2002. - Т. 47. - № 4. - С. 577-587.

5. Картмелл Э., Фоулс Г.В.А. Валентность и строение молекул. -М.: Химия, 1979. - С. 272.

6. Fedotov M.A., Samokhvalova E.P., Kazansky L.P. 17O and 183W NMR diamagnetic and paramagnetic shifts in heterodecatungstates XW10O36- (X=Ln, Th, U) in aqueous solitions // Polyhedron. -1996. - V. 15. - № 19. - P. 3341-3351.

7. Shiozaki R., Inagaki A., Ozaki A., Kominami H., Yamaguchi S., Ichiha-ra J., Kera Y. Catalytic behavior of series of lanthanide decatungstates for H2O2 - oxidations of alcohols and olefins. Some chemical effects ofthe 4fn - electron in the lanthanide(III) ion on the catalyses // J. Alloys Compounds. -1997. - V. 261. - P. 132-139.

8. Казанский Л.П., Голубев А.М., Бабурина И.И., Торченко-ва Е.А., Спицын В.И. Колебательные спектры гетерополи-

анионов XW10O36n- // Известия АН СССР. Сер. хим. - 1978. -№ 10. - С. 2215-2219.

9. Коленкова М.А., Крейн О.Е. Металлургия рассеянных и легких редких металлов. - М.: Металлургия, 1977. - С. 12.

10. Казиев Г.З., Дутов А.А., Ольгин К.С., Бельский В.К., Завод-ник В.Е., Эрнандес-Пэрес Т., Канаев А.А. Синтез и рентгеноструктурное исследование декамолибденодикобальтата(Ш) калия // Журнал неорганической химии. - 2004. - Т. 49. - № 5.

11. Химия и технология редких и рассеянных элементов // Под ред. К.А. Большакова. - М.: Высшая школа, 1976. - Ч. 2. -С. 166, 174; Ч. 3. - С. 176, 233, 170, 171, 228.

12. Загребин П.А., Борзенко М.И., Васильев С.Ю., Цирлина Г.А. Кинетика электровосстановления центрального иона в це-рий(ГУ)-декавольфрамате // Электрохимия. - 2004. - Т. 40. -№ 5. - С. 565-575.

13. Сафронов С.М., Березина Е.М., Терентьева ГА., Чернов Е.Б., Филимошкин А. Г. Нелинейная экстраполяция концентрационных зависимостей приведенной вязкости и структура растворов полимеров // Высокомолекулярные соединения. -2001. - сер. Б. - Т. 43. - № 4. - С. 751-754.

14. Романова ТА., Краснов П.О., Качин С.В., Аврамов П.В. Теория и практика компьютерного моделирования нанообъектов.

Красноярск: ИПЦ КГТУ, 2002. - 223 с.

УДК 544.3:622.331

ТЕРМОДИНАМИКА АДСОРБЦИИ СОЕДИНЕНИЙ НА ГУМИНОВЫХ КИСЛОТАХ

С.Г. Маслов, Л.И. Тарновская

Томский политехнический университет E-mail: [email protected]

Исследован процесс адсорбции органических соединений (н-алканов, циклоалканов, алкенов, простых, сложных и циклических эфиров, кетонов, спиртов, ароматических и хлорзамещенных углеводородов) на гуминовых кислотах исходного и термообработанного торфов газохроматографическим методом с целью определения адсорбционных и термодинамических параметров. Характеристика гуминовых кислот дана общепринятыми в химии твердых горючих ископаемых методами с использованием ЯМР-спектроскопии.

Выявлены зависимости между физико-химическими характеристиками и параметрами удерживания на адсорбенте. Установлены различия процессов адсорбции на гуминовых кислотах исходного и термообработанного торфов за счет повышенного содержания кислородсодержащих групп и ароматических фрагментов в термообработанных образцах. Показана взаимосвязь термодинамической вероятности процесса адсорбции на гуминовых кислотах и полярности адсорбатов.

Введение

Литературной информации об адсорбционных свойствах гуминовых кислот (ГК) явно недостаточно. Традиционная точка зрения, что процесс адсорбции, с одной стороны, носит объемный характер, а с другой стороны, специфический - за счет наличия различных функциональных групп, не дает ясного представления о механизме этого явления. Существуют сведения , что носителями адсорбционных свойств могут быть и конденсированные ароматические ядра. Необходимо отметить, что большинство авторов исследовали процесс адсорбции на ГК ионов металлов и неорганических веществ . Работ, посвященных исследованию адсорбционной способности ГК по отношению к органическим соединениям очень мало и они не носят систематического характера.

Целью данной работы является исследование адсорбционной способности ГК по отношению к ряду органических соединений.

Эксперимент и методика

В качестве объекта исследования использовали осоковый торф со степенью разложения 35 % Таганского месторождения Томской области.

ГК получали по прописи Института торфа и характеризовали как по общепринятым в химии твердых горючих ископаемых методам, так и методом ЯМР-спектроскопии . Адсорбционные свойства ГК изучали модифицированным газохроматографическим методом .

Исследование проводили на хроматографе «Цвет-100» с детектором по теплопроводности при

использовании в качестве газа-носителя гелия. Хроматограф снабжен образцовым манометром для измерения градиента давления в колонке и внесения поправки на сжимаемость. Образцы ГК истирали в агатовой ступке и выделяли фракцию

0,5...0,25 мм. Стальную колонку длиной 1 м и диаметром 4,2 мм заполняли приготовленными ГК в количестве 6.7 г при давлении 10-3 Па. Нагрев образцов проводили в линейном режиме от 333 до 363 К со скоростью 2 град/мин. В качестве адсорба-тов использовали органические соединения: алка-ны, циклоалканы, хлорзамещенные алканы, арены, спирты, алкены, кетоны, простые, сложные и циклические эфиры. Анализируемые пробы вводили с помощью микрошприца в хроматограф.

Таблица 1. Характеристика осокового торфа, мас. %

Технический и элементный состав Групповой состав на органическую массу

№э Аа V1э" С^э" Н1э" ЛГ Б ВРВ ЛГВ ГК ФК Ц НО

6,7 7,9 68,4 53,4 5,9 2,1 38,5 2,6 1,8 30,9 35,1 11,2 2,1 15,5

Примечание: № - влажность аналитическая; А1 - зольность на сухое топливо; V11" - выход летучих на горючую массу; Б - битумы; ВРВ и ЛГВ - водорастворимые и легкогидролизуемые вещества; ФК - фульвокислоты; Ц - целлюлоза; НО - негидролизуемый остаток

Таблица 2. Характеристика гуминовых кислот торфа

ГК торфа Элементный состав, % Содер- жание, мг.экв./г

Весовые Атомные Атомные соотноше- ния □= о о С СООН, ОН,

С1э" Н1э" КОЛЗ" С Н О/С н/с

Исходного 54,84 6,66 35,60 35,28 48,41 15,84 0,45 1,37 2,56 6,00

Термообра- ботанного 60,09 5,22 34,69 40,48 41,90 17,01 0,42 1,03 3,06 6,89

Таблица 3. Содержание структурных фрагментов ГК по данным ЯМР-спектроскопии, %

ГК торфа с и □= С 1 1 0 1 Чп □= 1 0 и □= С 1 1 0 1 о < □= 1 о < о < 1 0 1 о Г си 1? 1 1? 1

Исходного 25,0 5,3 8,1 3,0 21,4 19,8 4,8 3,6 3,0 6,0 0,275

Термообра- ботанного 22,0 3,2 4,1 3,3 19,5 33,3 3,3 2,4 2,4 6,5 0,456

Примечание: " - ароматичность

Из хроматограмм рассчитывали времена удерживания (^), с, и величины исправленных удерживаемых объемов:

где I - расстояние на хроматограмме от момента ввода пробы в колонку до момента выхода максимума пика, м; Щ - скорость диаграммной ленты, м/с.

Таблица 4. Времена удерживания органических соединений на ГК при линейном нагреве от 333 до 363 К

Адсорбаты Мо- леку- ляр- ный вес Температура кипения, °С Ди- поль- ный мо- мент Поля- ризуе- мость, А3 Ад- сор- бент ГК Времена удер-жива-ния, с

Пентан 72,2 36,1 0 10,0 исх. 16,7

Гексан 86,2 68,7 0 11,9 исх. 21,9

Гептан 100,2 93,6 0 13,7 исх. 29,7

Изооктан 114,2 99,3 0 исх. 34,9

Циклоалканы

Циклогексан 84,2 81 0 11,0 исх. 28,1

Гептен 98,2 93,6 исх. 29,5

Простые эфиры

Диэтиловый эфир 74,1 35,6 1,18 10,0 исх. 18,5

Дипропиловый эфир 102,2 91,0 13,7 исх. 21,5

Сложные эфиры

Этилацетат 88,1 77,2 1,81 9,0 исх. 37,7

Бутилформиат исх. 43,6

Циклические эфиры

Диоксан 88,1 101,3 0 9,6 исх. 39,9

Ацетон 58,1 56,2 1,66 6,6 исх. 21,1

Метилэтилкетон 72,1 79,6 исх. 20,2

Бутанол-2 74,1 99,5 1,65 9,5 исх. 47,2

Ароматические

Бензол 78,1 80,1 0 10,4 исх. 29,1

Толуол 92,1 110,6 0,36 12,4 исх. 34,2

Хлорзамещенные

Четыреххлористый углерод 153,8 76,8 11,2 исх. 14,3

V = Щярглт Р0т,

где Ж1 - объемная скорость газа-носителя, м/с; Р1, Т1- давление и температура в измерителе расхода газа-носителя, Па и К; Р0 - давление газа у выхода из колонки, Па; Т - температура колонки, К; ] - поправка на перепад давления в колонке; т - навеска адсорбента, кг.

] = 3[(Р/Р0)2 -1]/2[(Р/Р0)3-1], где Р1 - давление газа у входа колонки, Па.

Изучение термодинамических характеристик адсорбции базировалось на выполнении условия: равновесие газ-адсорбент должно устанавливаться за время не более 60 с. Условию равновесной хроматографии для ГК, как показали исследования , соответствуют симметричные пики. Эти авторы установили, что скорость газа-носителя и величина пробы адсорбата не оказывают влияния на удерживаемые объемы, т.е. достигается термодинамическое равновесие в системе.

Рассчитанные величины удерживаемых объемов при разных температурах позволили рассчитать теплоты адсорбции и другие термодинамические характеристики в условиях равновесного состояния.

В основе газохроматографического метода лежит представление об установлении равновесия газ - конденсированная фаза для адсорбата, характеризуемого коэффициентом распределения К:

Теплоту адсорбции (энтальпия) определяли по формуле:

АН = Я ё 1п(Кд/Т), кДж/моль.

Энтропия адсорбции определялась уравнением А5=(АЯ-АО)/Т, Дж/молыК, где АО - свободная энергия адсорбции (энергия Гиббса) -АО=ЯТ 1пК, кДж/моль.

Результаты и обсуждение

С точки зрения молекулярно-статистической теории адсорбции ГК за счет наличия карбоксильных групп, фенольных гидроксилов, хиноидных, карбонильных групп, кетонов, карбонильных групп, альдегидов и других, по-видимому, можно отнести к слабоспецифическому адсорбенту. В твердом состоянии плоские молекулы ГК “упакованы” в пачки по несколько слоев, что является локальным проявлением частичной упорядоченности. Система полисопряжения, обусловленная делокализацией ж-электронов, приводит к усилению взаимного влияния атомов, но все же наличие различных групп создает химическую неоднородность поверхности, которая и связана со слабой специфичностью.

Как видно из данных, приведенных в табл. 4, времена удерживания практически для всех адсор-батов на ГК из термообработанного торфа меньше таковых на ГК исходного торфа.

Наибольшие удерживаемые объемы наблюдаются у спиртов, циклических и сложных эфиров, ароматических; наименьшие - у алканов, хлорза-мещенных, кетонов и простых эфиров.

Молекулярно-статистическая теория адсорбции связывает времена удерживания и удерживаемые объемы с межмолекулярными электростатическими взаимодействиями диполей. Поэтому неодно-

родная картина для разных классов органических соединений обуславливается наличием или отсутствием у молекул дипольных моментов. Как известно молекулы спиртов, сложных эфиров и ароматических обладают значительным дипольным моментом, а алканы имеют нулевой дипольный момент. Однако, однозначно связывать времена удерживания с дипольным моментом веществ нельзя. Например, ацетон имеет дипольный момент, равный 1,66, а толуол - 0,36, при этом время удерживания ацетона значительно меньше, чем у толуола.

Вероятно, в этом случае в адсорбционном взаимодействии играет роль не только межмолекуляр-ные, но и электростатические взаимодействия, но большой вклад вносит неспецифическое вазаимо-действие адсорбента с адсорбатом, которое определяется величинами Ван-дер-ваальсовых радиусов и величинами поляризуемости, которая для толуола (табл. 4) выше, по сравнению с ацетоном почти в 2 раза . Это объясняется неоднороднопористой структурой ГК. Исследования показали, что радиус пор ГК колеблется в пределах 10.70 А с преобладанием пор малых размеров 10.15 А, что соизмеримо с линейными размерами «первичного» фрагмента структуры ГК. У толуола диаметр молекулы значительно меньше, поэтому его молекулы легко проникают в поры адсорбента.

Из табл. 4 видно, что закономерного изменения величин удерживаемых объемов от температуры кипения органических соединений не наблюдается. Это объяснимо тем, что температура кипения связана с взаимодействием молекул друг с другом в жидкости, а в случае адсорбции взаимодействие происходит с адсорбентом.

Судя по полученным данным, алканы проявляют в среднем небольшую адсорбционную способность, которая заметно выше на ГК термообработанного торфа. Среди алканов несколько большие значения удерживаемых объемов у изооктана. Алканы, имеющие ст-связи, взаимодействуют с адсорбентами неспецифически. Величины электронных поляризуемостей в ряду алканов от пентана к гек-сану линейно увеличиваются, также увеличиваются и значения удерживаемых объемов (УО).

Циклизация цепи алканов приводит к уменьшению значений объемов у циклогексана вследствие уменьшения числа атомов водорода и отклонения расположения атомов углерода от компланарности. Звенья углеродного скелета, вероятно, не могут одновременно касаться базисной грани адсорбента.

Весьма высокие УО наблюдаются у ароматических углеводородов, в большей степени у толуола. Причем, значения одинаково высокие для обоих типов ГК. Такое поведение толуола можно объяснить наличием метильной группы, которая вследствие проявления положительного индуктивного электронного эффекта и эффекта сверхсопряжения увеличивает электронную плотность в бензольном кольце и снижает ее на метильной группе.

Спирты, обладающие большим дипольным моментом, имеют большие значения УО, которые особенно увеличиваются при проведении адсорбции на ГК термообработанного торфа.

Кетоны и простые эфиры, как вещества с более слабой полярностью, имеют меньшие УО. Это связано с меньшим вкладом энергии водородной связи в удерживание кетонов и простых эфиров, хотя дипольный момент, например, у ацетона равен ди-польному моменту бутилового спирта.

Для сложных циклических эфиров характерны самые высокие УО, вследствие более четко выраженной поляризации связей в кислородсодержащих фрагментах по сравнению с простыми эфирами, и как следствие большей способностью к образованию водородных связей.

Однако во всех этих случаях химическая индивидуальность молекулы сохраняется, т.е. взаимодействие имеет “молекулярный”, а не “химический” характер .

Как было отмечено выше, адсорбционые свойства ГК термообработанного торфа выше по сравнению с ГК исходного, что наиболее отчетливо проявляется для случая полярных адсорбатов. Такой характер свойств, вполне, объясним изменениями, происходящими с ГК в процессе низкотемпературного термолиза торфа. По данным химических анализов и ЯМР-спектроскопии наблюдается небольшое увеличение кислородсодержащих групп (карбоксильных, фенольных гидроксилов) и глю-козидных фрагментов.

Как видно из данных табл. 5, теплоты адсорбции для дипольных молекул (эфиров, кетонов) и для слабо-дипольных молекул (ароматических углеводородов и спиртов) выше теплот адсорбции н-алка-нов, имеющих нулевой дипольный момент и неспособных к специфическому молекулярному взаимодействию. Необходимо отметить, как указывали авторы , что суммарная теплота адсорбции любых органических молекул состоит из двух составляющих: теплоты адсорбции за счет взаимодействия с активными центрами адсорбента и теплоты взаимодействия адсорбированных молекул друг с другом. Однако разделить и рассчитать теплоты по этим результатам не представляется возможным.

Из экспериментальных данных видно, что в ряду н-алканов увеличение длины углеродной цепи приводит к возрастанию теплоты адсорбции и их поляризуемости. Значение теплоты адсорбции для н-ал-канов соизмеримы со значениями энергии ван-дер-ваальсового взаимодействия (<5 кДж/моль), вероятно, взаимодействие между ГК и н-алканами осуществляется за счет ван-дер-ваальсовых сил.

Из данных табл. 5 видно, что теплоты адсорбции эфиров, спиртов, кетонов и ароматических соединений на ГК лежат в пределах 5 кДж/моль, которые характерны для энергий типичных водородных связей, следовательно, адсорбция протекает через образование водородных связей.

Таблица 5. Термодинамические характеристики адсорбции и удерживаемые объемы

Адсорбаты Ад-сорбенты, ГК Удерживаемый объем при 333.363 К, ^■103, м3/кг -АН, кДж/моль -А5, Дж/моль -АG, кДж/моль

Пентан исх. 4,8 1,9 10,1 5,3

тер. 9,3 3,8 19,5 10,2

Гексан исх. 6,2 2,5 13,0 6,8

тер. 11,2 4,5 23,5 12,2

Гептан исх. 9,0 3,6 18,9 9,9

тер. 13,2 5,3 27,7 14,5

Изооктан исх. 11,5 4,6 24,1 12,6

тер. 16,7 6,7 35,0 18,3

Циклоалканы

Циклогексан исх. 2,3 1,0 4,8 2,5

тер. 9,3 3,8 19 ,5 10,2

Гептен исх. 8,4 3,4 17,6 9,2

тер. 10,1 4,1 21,2 11,1

Простые эфиры

Диэтиловый эфир исх. 6,8 2,7 14,3 7,5

тер. 13,5 5,4 28,3 14,8

Дипропило-вый эфир исх. 11,5 4,6 24,1 12,6

тер. 17,4 7,0 36,5 19,1

Сложные эфиры

Этилацетат исх. 19,7 8,0 41,3 21,6

тер. 28,2 11,4 59,1 30,9

Бутилфор- миат исх. 24,3 9,8 51,0 26,7

тер. 30,5 12,3 64,0 33,5

Циклические эфиры

Диоксан исх. 26,5 10,7 55,6 29,1

тер. 27, 8 11,2 58,3 30,5

Ацетон исх. 10,1 4,1 21,2 11 ,1

тер. 14,3 5,8 30,0 15,7

Метилэтил- кетон исх. 9,7 3,9 20,3 10,6

тер. 10,1 4,0 21,1 11,0

Бутанол-2 исх. 39,2 15,8 82,2 43,0

тер. 40,2 16,2 84,3 44,1

Ароматические

Бензол исх. 18,4 7,4 38,6 20,2

тер. 19,2 7,7 40,3 21,1

Толуол исх. 20,2 8,1 42 ,4 22,2

тер. 25,4 10,2 53,3 27,9

Хлорзамещенные

Четыреххло- ристый углерод исх. 4,2 1,7 8,8 4,6

тер. 8,4 3 , 4 17,6 9,2

Для диэтилового эфира характерна низкая теплота адсорбции, соизмеримая с таковой для гек-сана. Вероятно, проявлению сильного специфического взаимодействия функциональных групп ГК с диэтиловым эфиром препятствует расположение в

нем кислорода посередине углеводородной цепи, что затрудняет его контакт с адсорбентом. Для молекул сложных эфиров теплоты адсорбции выше по сравнению с простыми эфирами за счет наличия групп С=0, которые придают повышенную полярность, и происходит более тесный контакт с функциональными группами адсорбента. На поверхности ГК, вероятно, электронная плотность локально сосредоточена на периферии функциональных групп, что обеспечивает высокую специфичность адсорбции молекул спиртов, сложных и циклических эфиров и ароматических соединений. Как отмечают авторы , необходимо учитывать влияние водородной связи на теплоту адсорбции адсорбат-адсорбент. Теплота адсорбции веществ, образующих водородные связи, будет всегда больше теплоты адсорбции веществ близкого строения, но не образующих ее. Так, например, дипропило-вый эфир имеет теплоту адсорбции выше по сравнению с диэтиловым эфиром за счет более сильной водородной связи. Молекулы ГК выступают донором протона (акцептором электронов за счет ОН-, и в меньшей мере СООН-групп), а молекулы простых и сложных эфиров - донором электронов (акцептором протона), за счет простой эфирной связи (-О-) с образованием ассоциата, но полного перехода протона при этом не происходит. Электродонорные свойства эфирной связи дипропилового эфира выше по сравнению с диэтиловым. Следовательно, вклад в теплоту адсорбции за счет водородной связи выше у дипропилового эфира. Необходимо отметить, что для ГК термообработанного торфа характерны, вероятно, повышенные электронная плотность на периферии функциональных групп и электроноакцепторные свойства по сравнению с ГК исходного торфа.

Известно , что расчет энтропии адсорбции производится с целью установления степени подвижности адсорбированных молекул. Изменение энтропии включает энтропию поступательного, вращательного и колебательного движения молекул.

По данным (табл. 5) наблюдается взаимосвязь между |-АН| и |-А6| для разных веществ: алифатических, ароматических углеводородов, спиртов, эфиров и кетонов. Можно предположить, что взаимодействие перечисленных адсорбатов с ГК имеет одинаковую картину. Большие отрицательные значения характерны для спиртов, сложных и циклических эфиров, что связано с выраженной полярностью молекул. Для ГК термообработанного торфа отрицательная энтропийная характеристика ниже по сравнению с исходным торфом. Вероятно, в структуре ГК термообработанного торфа имеется более широкое распределение по перемещению, вращению и колебанию молекул адсорбатов. По данным чем ближе мольный объем адсорбата к предельному объему сорбционного пространства адсорбента, тем более заторможено поступательное, вращательное движение молекулы адсорбата, тем больше по абсолютной величине отрицательные значения А£

Для гуминовых кислот значение сорбционного объема составляет 4,0.10-4 м3/кг, которое близко к мольным объемам бутанола-2, этилацетата, дио-ксана, бензола и толуола, лежащих в пределах от 2,5 до 3,0.10-4 м3/кг, поэтому для них характерны низкие значения А£ Для н-алканов, алкенов и хлорзамещенных углеводородов мольные объемы ниже 2,5.10-4 м3/кг, для которых значения А£ выше.

Значения энергии Гиббса свидетельствуют о возможности протекания процесса адсорбции, а также о равновесном состоянии системы. Самые высокие значения АО получены для спирта, сложных циклических эфиров и ароматических углеводородов. Если сравнить значения АО на ГК исходного и термообработанного торфа, то для последнего значения несколько выше. Вероятно, процесс адсорбции на ГК исходного торфа более смещен в сторону десорбции по сравнению с термообработанным торфом.

Анализ термодинамических характеристик адсорбции свидетельствует о том, что адсорбаты можно расположить в ряд по мере убывания их адсорбционной способности: спирты > сложные эфиры > циклические эфиры > ароматические кетоны > простые эфиры, алкены, алканы

1. Показано, что активными адсорбционными центрами в ГК являются функциональные группы: карбоксильные, фенольные гидроксилы, глюкозидные и ароматические фрагменты. Поскольку ГК из термообработанного торфа имеют высокое содержание вышеперечисленных групп, то они обладают повышенной адсорбционной способностью.

2. Показано, что адсорбционная способность ГК по отношению к полярным соединениям (спирты, сложные и циклические эфиры, ароматические, кетоны) выше, чем к неполярным адсорбатам (алканы, алкены).

3. Получены зависимости между некоторыми физико-химическими характеристиками (поляризуемость, дипольный момент) адсорбатов и параметрами удерживания.

4. Доказано, что повышенная адсорбционная способность ГК термообработанного торфа объясняется увеличенным содержанием кислородсодержащих групп (карбоксильных, фенольных гидроксилов), глюкозидных и ароматических фрагментов в структуре по сравнению с исходными ГК.

5. Выявлено, что термодинамические характеристики (-АД-А^Аб) для ГК исходного и термообработанного торфов взаимосвязаны между собой для всех исследуемых адсорбатов.

6. Установлено, что термодинамическая вероятность течения адсорбции на ГК осуществляется в ряду: спирты > сложные эфиры > циклические эфиры > ароматические кетоны > простые эфиры, алкены, алканы.

СПИСОК ЛИТЕРАТУРЫ

1. Комиссаров И.Д., Логинов Л.Ф. Гуминовые вещества в биосфере. - М.: Наука, 1993. - 352 с.

2. Лиштван И.И., Круглицкий Н.Н., Третинник В.Ю. Физикохимическая механика гуминовых веществ. - Минск: Наука и техника, 1976. - 264 с.

3. Pal U.K., Chakravarti S.K. Объемное поглощение этилдиамино-вого комплекса Со на почвенных и торфяных гуминовых кислотах // Journal of Indian Chemical Society. - 1986. - V. 63. -№ 10. - P. 883-889.

4. Пилипенко А.Т., Васильев Н.Г., Бунтова МА., Савкин А.Г Механизм и прочность сорбции катионов переходных металлов гумино-выми кислотами // Доклады АН УССР. - 1986. - № 7. - С. 42-45.

5. Гамаюнов Н.И., Масленников Б.И., Шульман Ю.А. Ионный обмен в гуминовых кислотах // Химия твердого топлива. -1991. - № 3. - С. 32-39.

6. Александров И.В., Канделаки ГИ., Куликова И.П. Цеолит-гу-миновые сорбенты для очистки сточных вод // Химия твердого топлива. - 1994. - № 4-5. - С. 136-142.

7. Bratasevszskij A., Gaidarob O., Gordienko Sz. Исследование процесса комплексообразования гуминовых кислот потенциометрическим методом // Agrochem. es tobaj. - 1971. - V. 2. - № 2.

8. Пархоменко В.В., Кудра А.А. О расчете термодинамических функций процесса адсорбции метилового спирта гуминовыми кислотами и гуматами по одной изотерме // Поверхностные явления в дисперсных системах. - Киев: Наукова думка, 1974.

Вып. 3. - С. 35-43.

9. Тарновская Л.И., Маслов С.Г, Смольянинов С.И. Химический состав органических веществ твердых остатков пиролиза торфа // Химия твердого топлива. - 1988. - № 3. - С. 26-29.

10. Лиштван И.И., Король Н.Т Основные свойства торфа и методы их определения. - Минск: Наука и техника, 1975. - 320 с.

11. Базин Е.Т, Копенкин В.Д., Косов В.И. и др. Технический анализ торфа. - М.: Недра, 1992. - 431 с.

12. Тарновская Л.И., Маслов С.Г. Изменение химического состава гуминовых кислот в процессе термолиза торфа // Химия твердого топлива. - 1994. - № 4-5. - С. 33-39.

13. Киселев А.В., Яшин Я.И. Физико-химическое применение газовой хроматографии. - М.: Химия, 1973. - 214 с.

14. Вигдергауз М.С., Измайлов Р.И. Применение газовой хроматографии для определения физико-химических свойств веществ.

М.: Наука, 1970. - 159 с.

15. Сталл Д., Вестрам Э., Зинке Г. Химическая термодинамика органических соединений. - М.: Мир, 1971. - 807 с.

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРОМЫШЛЕННОЙ ЭКСПЛУАТАЦИИ УСТАНОВОК РИФОРМИНГА ЛЧ-35-11/1000 И ЛГ-35-8/300Б ПО «КИНЕФ» НА ОСНОВЕ СИСТЕМЫ КОНТРОЛЯ РАБОТЫ КАТАЛИЗАТОРА

Д.И. Мельник, С.А. Галушин, А.В. Кравцов, Э.Д. Иванчина, В.Н. Фетисова

Томский политехнический университет E-mail: [email protected]

Рассмотрена перспектива использования на основе заводских информационных сетей и баз данных автоматизированной системы управления технологическим процессом системы контроля работы катализатора. Показана возможность снижения коксооб-разования при работе на оптимальной активности с помощью метода математического моделирования. Описана существующая и разрабатываемая схема автоматизации получения и анализа технологических данных, необходимых для расчетов.

Эффективность промышленного производства определяющим образом зависит от управляемости технологическими процессами, в первую очередь, от возможности оперативного доступа к показателям работы катализатора и обеспечения контроля, анализа и прогнозирования технологических параметров процесса .

Заводские информационные сети автоматизированной системы управления технологическим процессом (АСУТП) решают только проблемы сбора, архивирования, накопления, структурирования данных с последующим предоставлением этой информации тем пользователям, чьи решения должны основываться на ее базе. АСУТП объединяет в единое информационное пространство большое количество распределенных систем. Нижний уровень данной системы представлен коммуникационными серверами, выполняющими функции разделения управляю-

щих и информационных сетей и передачи технологической информации на следующий уровень. В зоне информационной сети, охватывающей все предприятие, находится сервер сбора технологической информации, позволяющий хранить большие массивы данных о технологическом процессе. Пользователи имеют доступ как к архивной информации на сервере, так и к информации реального времени на коммуникационных серверах. Для обобщения информации, поступающей из различных источников в «ООО ПО «Киришинефтеоргсинтез» разработан и внедрен совместно со специализированной инжиниринговой компанией «Севзапмонтажавтоматика» программный комплекс - «Единая тематическая витрина данных (ЕТВД)», предоставляющая пользователю удобный графический интерфейс доступа к данным лабораторного контроля, характеризующим его и их совокупное представление .

Loading...Loading...