Способы задания числовой последовательности. Определение числовой последовательности

Вида y = f (x ), x О N , где N – множество натуральных чисел (или функция натурального аргумента), обозначается y = f (n ) или y 1 , y 2 ,…, y n ,…. Значения y 1 , y 2 , y 3 ,… называют соответственно первым, вторым, третьим, … членами последовательности.

Например, для функции y = n 2 можно записать:

y 1 = 1 2 = 1;

y 2 = 2 2 = 4;

y 3 = 3 2 = 9;…y n = n 2 ;…

Способы задания последовательностей. Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n -го члена:

y n = f (n ).

Пример. y n = 2n – 1 последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n -й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n -й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y 1 = 3; y n = y n –1 + 4, если n = 2, 3, 4,….

Здесь y 1 = 3; y 2 = 3 + 4 = 7; y 3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: y n = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

Свойства числовых последовательностей.

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 y 2 y 3 y n y n +1

Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Пример 1. y 1 = 1; y n = n 2 – возрастающая последовательность.

Таким образом, верна следующая теорема (характеристическое свойство арифметической прогрессии). Числовая последовательность является арифметической тогда и только тогда, когда каждый ее член, кроме первого (и последнего в случае конечной последовательности), равен среднему арифметическому предшествующего и последующего членов.

Пример. При каком значении x числа 3x + 2, 5x – 4 и 11x + 12 образуют конечную арифметическую прогрессию?

Согласно характеристическому свойству, заданные выражения должны удовлетворять соотношению

5x – 4 = ((3x + 2) + (11x + 12))/2.

Решение этого уравнения дает x = –5,5. При этом значении x заданные выражения 3x + 2, 5x – 4 и 11x + 12 принимают, соответственно, значения –14,5, –31,5, –48,5. Это – арифметическая прогрессия, ее разность равна –17.

Геометрическая прогрессия.

Числовую последовательность, все члены которой отличны от нуля и каждый член которой, начиная со второго, получается из предыдущего члена умножением на одно и то же число q , называют геометрической прогрессией, а число q – знаменателем геометрической прогрессии.

Таким образом, геометрическая прогрессия – это числовая последовательность {b n }, заданная рекуррентно соотношениями

b 1 = b , b n = b n –1 q (n = 2, 3, 4…).

(b и q – заданные числа, b ≠ 0, q ≠ 0).

Пример 1. 2, 6, 18, 54, … – возрастающая геометрическая прогрессия b = 2, q = 3.

Пример 2. 2, –2, 2, –2, … геометрическая прогрессия b = 2, q = –1.

Пример 3. 8, 8, 8, 8, … геометрическая прогрессия b = 8, q = 1.

Геометрическая прогрессия является возрастающей последовательностью, если b 1 > 0, q > 1, и убывающей, если b 1 > 0, 0 q

Одно из очевидных свойств геометрической прогрессии состоит в том, что если последовательность является геометрической прогрессией, то и последовательность квадратов, т.е.

b 1 2 , b 2 2 , b 3 2 , …, b n 2,… является геометрической прогрессией, первый член которой равен b 1 2 , а знаменатель – q 2 .

Формула n- го члена геометрической прогрессии имеет вид

b n = b 1 q n– 1 .

Можно получить формулу суммы членов конечной геометрической прогрессии.

Пусть дана конечная геометрическая прогрессия

b 1 , b 2 , b 3 , …, b n

пусть S n – сумма ее членов, т.е.

S n = b 1 + b 2 + b 3 + … + b n .

Принимается, что q № 1. Для определения S n применяется искусственный прием: выполняются некоторые геометрические преобразования выражения S n q .

S n q = (b 1 + b 2 + b 3 + … + b n –1 + b n )q = b 2 + b 3 + b 4 + …+ b n + b n q = S n + b n q b 1 .

Таким образом, S n q = S n + b n q – b 1 и, следовательно,

Это формула суммы n членов геометрической прогрессии для случая, когда q ≠ 1.

При q = 1 формулу можно не выводить отдельно, очевидно, что в этом случае S n = a 1 n .

Геометрической прогрессия названа потому, что в ней каждый член кроме первого, равен среднему геометрическому предыдущего и последующего членов. Действительно, так как

b n = b n- 1 q;

b n = b n+ 1 /q,

следовательно, b n 2= b n– 1 b n+ 1 и верна следующаятеорема(характеристическое свойство геометрической прогрессии):

числовая последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого ее члена, кроме первого (и последнего в случае конечной последовательности), равен произведению предыдущего и последующего членов.

Предел последовательности.

Пусть есть последовательность {c n } = {1/n }. Эту последовательность называют гармонической, поскольку каждый ее член, начиная со второго, есть среднее гармоническое между предыдущим и последующим членами. Среднее геометрическое чисел a и b есть число

В противном случае последовательность называется расходящейся.

Опираясь на это определение, можно, например, доказать наличие предела A = 0 у гармонической последовательности {c n } = {1/n }. Пусть ε – сколь угодно малое положительное число. Рассматривается разность

Существует ли такое N , что для всех n ≥ N выполняется неравенство 1/N ? Если взять в качестве N любое натуральное число, превышающее 1, то для всех n ≥ N выполняется неравенство 1/n ≤ 1/N ε , что и требовалось доказать.

Доказать наличие предела у той или иной последовательности иногда бывает очень сложно. Наиболее часто встречающиеся последовательности хорошо изучены и приводятся в справочниках. Имеются важные теоремы, позволяющие сделать вывод о наличии предела у данной последовательности (и даже вычислить его), опираясь на уже изученные последовательности.

Теорема 1. Если последовательность имеет предел, то она ограничена.

Теорема 2. Если последовательность монотонна и ограничена, то она имеет предел.

Теорема 3. Если последовательность {a n } имеет предел A , то последовательности {ca n }, {a n + с} и {| a n |} имеют пределы cA , A + c , |A | соответственно (здесь c – произвольное число).

Теорема 4. Если последовательности {a n } и {b n } имеют пределы, равные A и B pa n + qb n } имеет предел pA + qB .

Теорема 5. Если последовательности {a n } и {b n }имеют пределы, равные A и B соответственно, то последовательность {a n b n } имеет предел AB.

Теорема 6. Если последовательности {a n } и {b n } имеют пределы, равные A и B соответственно, и, кроме того, b n ≠ 0 и B ≠ 0, то последовательность {a n / b n } имеет предел A/B .

Анна Чугайнова

Практическая работа № 13

Задание числовых последовательностей различными способами, вычисление членов последовательности. Нахождение пределов последовательностей и функций

Цель: научиться записывать числовые последовательности различными способами, описывать их свойства; находить пределы последовательностей и функций.

Краткая теория

Функция у=f (n) натурального аргумента n (n=1; 2; 3; 4;...) называется числовой последовательностью.

Существуют следующие способы задания числовой последовательности:

    Словесный способ. Представляет собой закономерность или правило расположения членов последовательности, описанный словами.

    Аналитический способ. Последовательность задается формулой n-го члена: у n =f(n). По этой формуле можно найти любой член последовательности.

    Рекуррентный способ. Задается формула, по которой каждый следующий член находят через предыдущие члены. В случае рекуррентного способа задания функции всегда дополнительно задается один или несколько первых членов последовательности.

Числовую последовательность называют возрастающей , если ее члены возрастают (у n+1 у n) и убывающей, если ее члены убывают (у n+1 n).

Возрастающая или убывающая числовые последовательности называются монотонными .

Пусть – точка прямой, а – положительное число. Интервал называется окрестностью точки , а число − радиусом окрестности.

Рассмотрим числовую последовательность, общий член которой приближается к некоторому числу b при увеличении порядкового номера n . В этом случае говорят, что числовая последовательность имеет предел. Это понятие имеет более строгое определение.

Число b называют пределом последовательности (у n), если в любой заранее выбранной окрестности точки b содержат все члены последовательности, начиная с некоторого номера

Теорема 1 Если , , то:

    Предел суммы/разности двух последовательностей равен сумме/разности пределов от каждой из них, если последние существуют:

    Предел произведения двух последовательностей равен произведению пределов от каждой из них, если пределы сомножителей существуют:

    Предел отношения двух последовательностей равен отношению пределов от каждой из них, если эти пределы существуют и предел знаменателя не равен нулю:

Для любого натурального показателя m и любого коэффициента k справедливо соотношение:

Теорема 1 Если , , то:

    Предел суммы/разности двух функций равен сумме/разности пределов от каждой из них, если последние существуют:

;

    Предел произведения двух функций равен произведению пределов от каждой из них, если пределы сомножителей существуют:

    Предел отношения двух функций равен отношению пределов от каждой из них, если эти пределы существуют и предел знаменателя не равен нулю:

    Постоянный множитель можно вынести за знак предела:

Функцию у=f(x) называют непрерывной в точке x=a, если предел функции у=f(x) при стремлении x к a равен значению функции в точке х=а.

Первый замечательный предел: .

Практические задания для аудиторной работы

    Задайте последовательность аналитически и найдите пять первых членов этой последовательности:

а) каждому натуральному числу ставится в соответствие противоположное ему число;

б) каждому натуральному числу ставится в соответствие квадратный корень из этого числа;

в) каждому натуральному числу ставится в соответствие число -5;

г) каждому натуральному числу ставится в соответствие половина его квадрата.

2. По заданной формуле n-го члена вычислите пять первых членов последовательности (y n):

3. Является ли последовательность ограниченной?

4. Является ли последовательность убывающей или возрастающей?

5. Запишите окрестность точки a=-3 радиуса r=0,5 в виде интервала.

6. Окрестностью какой точки и какого радиуса является интервал (2,1;2,3).

7. Вычислите предел последовательности:

8. Вычислите:

Самостоятельная работа

Вариант 1

Часть А

Часть В

Часть С

7. Вычислите:

Вариант 2

Часть А

Часть В

6. Вычислите предел последовательности:

Часть С

7. Вычислите:

Вариант 3

Часть А

Часть В

6. Вычислите предел последовательности:

Часть С

7. Вычислите:

Вариант 4

Часть А

Часть В

6. Вычислите предел последовательности:

Часть С

7. Вычислите:

Контрольные вопросы

    Что называют числовой последовательностью?

    Какими способами можно задавать числовую последовательность?

    Какая последовательность называется ограниченной сверху?

    Какая последовательность называется ограниченной снизу?

    Какая последовательность называется возрастающей?

    Какая последовательность называется убывающей?

    Что называют пределом числовой последовательности?

    Перечислите правила вычисления пределов последовательностей.

    Перечислите правила вычисления пределов функций.

Алгебра. 9 класс
Урок № 32
Дата:_____________
Учитель: Горбенко Алена Сергеевна
Тема: Числовая последовательность, способы ее задания и свойства
Тип урока: комбинированный
Цель урока: дать понятие и определение числовой последовательности, рассмотреть способы
задания числовых последовательностей
Задачи:
Образовательные: ознакомить учащихся с понятием числовой последовательности и членом
числовой последовательности; ознакомиться с аналитическим, словесным, рекуррентным и
графическим способами задания числовой последовательности; рассмотреть виды числовой
последовательности; подготовка к ВОУД;
Развивающие: развитие математической грамотности, мышления, техники вычисления, навыки
сравнения при выборе формулы; привитие интереса к математике;
Воспитательные: воспитание навыков самостоятельной деятельности; четкость и
организованность в работе; дать каждому ученику достичь успеха;
Оборудование: Школьные принадлежности, доска, мел, учебник, раздаточный материал.
Ход урока
I. Организационный момент
 Взаимное приветствие;
 Фиксация отсутствующих;
 Объявление темы урока;
 Постановка целей и задач урока учащимися.
Последовательность ­ одно из самых основных понятий математики. Последовательность может
быть составлена из чисел, точек, функций, векторов и т.д.
Сегодня на уроке мы познакомимся с понятием " числовая последовательность", узнаем, какие
могут быть последовательности, познакомимся со знаменитыми последовательностями.

II. Актуализация опорных знаний.
Вам известны функции, определённые на всей числовой прямой или на её непрерывных
III.
промежутках:
линейная функция у = кх+в,
квадратичная функция у = ах2+вх+с,


 функция у =



 функция у =|х|.
Подготовка к восприятию новых знаний
прямая пропорциональность у = кх,
обратная пропорциональность у =к/х,
кубическая функция у = х3,
,
Но бывают функции, заданные на других множествах.
Пример. Во многих семьях есть обычай, своего рода ритуал: в день рождения ребёнка
родители подводят его к дверному косяку и торжественно отмечают на нём рост именинника.
Ребёнок растёт, и на косяке с годами возникает целая лесенка отметок. Три, пять, два: Такова
последовательность приростов от года к году. Но есть и другая последовательность, и именно
её члены аккуратно выписывают рядом с засечками. Это ­ последовательность значений роста.
Две последовательности связаны друг с другом.
Вторая получается из первой сложением.
Рост ­ это сумма приростов за все предыдущие годы.
Рассмотреть ещё несколько задач.
Задача 1. На складе имеется 500 т угля, каждый день подвозят по 30 т. Сколько угля будет
на складе в 1 день? 2 день? 3 день? 4 день? 5 день?
(Ответы учащихся записываются на доске: 500, 530, 560, 590, 620).
Задача 2. В период интенсивного роста человек растёт в среднем на 5 см в год. Сейчас рост
у ученика С. ­ 180 см. Какого роста он будет в 2026 году? (2м 30 см). Но этого быть не
может. Почему?
Задача 3. Ежедневно каждый болеющий гриппом человек может заразить 4 окружающих.
Через сколько дней заболеют все ученики нашей школы (300 человек)? (Через 4 дня).
Это примеры функций, заданных на множестве натуральных чисел – числовые
последовательности.
Ставится цель урока: Найти способы нахождения любого члена последовательности.
Задачи урока: Выяснить, что такое числовая последовательность и как задаются
последовательности.
IV. Изучение нового материала
Определение: Числовая последовательность – это функция, заданная на множестве
натуральных чисел (последовательности составляют такие элементы природы, которые
можно пронумеровать).
Понятие числовой последовательности возникло и развилось задолго до создания учения о
функции. Вот примеры бесконечных числовых последовательностей, известных еще в
древности:
1, 2, 3, 4, 5, : ­ последовательность натуральных чисел;
2, 4, 6, 8, 10, :­ последовательность четных чисел;
1, 3, 5, 7, 9, : ­ последовательность нечетных чисел;
1, 4, 9, 16, 25, : ­ последовательность квадратов натуральных чисел;
2, 3, 5, 7, 11, : ­ последовательность простых чисел;
,
1,
Число членов каждого из этих рядов бесконечно; первые пять последовательностей ­
, :­ последовательность чисел, обратных натуральным.
,
монотонно возрастающие, последняя ­ монотонно убывающая.

Обозначение: у1, у2, у3, у4, у5,:
1, 2, 3, 4, 5, :п,:­порядковый номер члена последовательности.
(уп)­ последовательность, уп­ п­ый член последовательности.
(ап)­ последовательность, ап ­ п­ый член последовательности.
ап­1 ­предыдущий член последовательности,
ап+1 ­ последующий член последовательности.
Последовательности бывают конечными и бесконечными, возрастающие и убывающие.
Задания учащимся: Записать первые 5 членов последовательности:
От первого натурального числа увеличение на 3.
От 10 увеличение в 2 раза и уменьшение на 1.
От числа 6 чередовать увеличение на 2 и увеличение в 2 раза.
Эти числовые ряды тоже называются числовыми последовательностями.
Способы задания последовательностей:
Словесный способ.
Правила задания последовательности описываются словами, без указания формул или
когда закономерности между элементами последовательности нет.
Пример 1.Последовательность простых чисел: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, .... .
Пример 2. Произвольный набор чисел: 1, 4, 12, 25, 26, 33, 39, ... .
Пример 3. Последовательность чётных чисел 2, 4, 6, 8, 10, 12, 14, 16, ...
Аналитический способ.
Любой n­й элемент последовательности можно определить с помощью формулы.
Пример 1. Последовательность чётных чисел: y = 2n.
Пример 2.Последовательность квадрата натуральных чисел: y = n2;
1, 4, 9, 16, 25, ..., n2, ... .
Пример 3. Стационарная последовательность: y = C; C, C, C, ...,C, ...
Частный случай: y = 5; 5, 5, 5, ..., 5, ... .
Пример 4. Последовательность y = 2n;
2, 22, 23, 24, ..., 2n, ... .
Рекуррентный способ.
Указывается правило, позволяющее вычислить n­й элемент последовательности, если
известны её предыдущие элементы.
Пример 1. Арифметическая прогрессия: a1=a, an+1=an+d, где a и d – заданные числа, d ­
разность арифметической прогрессии. Пусть a1=5, d=0,7, тогда арифметическая прогрессия
будет иметь вид: 5; 5,7; 6,4; 7,1; 7,8; 8,5; ... .
Пример 2. Геометрическая прогрессия: b1= b, bn+1= bnq, где b и q – заданные числа, b
0,
0; q – знаменатель геометрической прогрессии. Пусть b1=23, q=½, тогда геометрическая
q
прогрессия будет иметь вид: 23; 11,5; 5,75; 2,875; ... .
4) Графический способ. Числовая последовательность
задается графиком, который представляет собой
изолированные точки. Абсциссы этих точек - натуральные
числа: n=1; 2; 3; 4; ... . Ординаты - значения членов
последовательности: a1; a2; a3; a4;…
Пример: Запишите все пять членов числовой последовательности,
заданной графическим способом.
Решение.
Каждая точки в этой координатной плоскости имеет
координаты (n; an). Выпишем координаты отмеченных точек
по возрастанию абсциссы n.
Получаем: (1; ­3), (2; 1), (3; 4), (4; 6), (5; 7).
Следовательно, a1= ­3; a2=1; a3=4; a4=6; a5 =7.

Ответ: ­3; 1; 4; 6; 7.
V. Первичное закрепление изученного материала
Пример 1. Составить возможную формулу n­го элемента последовательности (yn):
а) 1, 3, 5, 7, 9, 11, ...;
б) 4, 8, 12, 16, 20, ...;
Решение.
а) Это последовательность нечётных чисел. Аналитически эту последовательность можно
задать формулой y = 2n+1.
б) Это числовая последовательность, у которой последующий элемент больше предыдущего
на 4. Аналитически эту последовательность можно задать формулой y = 4n.
Пример 2. Выписать первые десять элементов последовательности, заданной рекуррентно: y1=1,
y2=2, yn = yn­2+yn­1, если n = 3, 4, 5, 6, ... .
Решение.
Каждый последующий элемент этой последовательности равен сумме двух предыдущих
элементов.
y1=1;
y2=2;
y3=1+2=3;
y4=2+3=5;
y5=3+5=8;
y6=5+8=13;
y7=8+13=21;
y8=13+21=34;
y9=21+34=55;
y10=34+55=89.
VI. Подведение итогов урока. Рефлексия
1. Что у вас удалось при выполнении задания?
2. Была ли работа слаженной?
3. Что не получилось, на ваш взгляд?






2. Определить арифметическое действие, с помощью которого из двух крайних чисел получено среднее, и вместо знака * вставить пропущенное число: ,3104,62,51043,60,94 1,7*4,43,1*37,2*0,8


3. Учащиеся решали задание, в котором требуется найти пропущенные числа. У них получились разные ответы. Найдите правила, по которым ребята заполнили клетки. Задание Ответ 1Ответ




Определение числовой последовательности Говорят, что задана числовая последовательность, если всякому натуральному числу (номеру места) по какому-либо закону однозначно поставлено в соответствие определенное число (член последовательности). В общем виде указанное соответствие можно изобразить так: y 1, y 2, y 3, y 4, y 5, …, y n, … … n … Число n есть n-ый член последовательности. Всю последовательность обычно обозначают (y n).








Аналитический способ задания числовых последовательностей Последовательность задана аналитически, если указана формула n-ого члена. Например, 1) y n= n 2 – аналитическое задание последовательности 1, 4, 9, 16, … 2) y n= С – постоянная (стационарная) последовательность 2) y n= 2 n – аналитическое задание последовательности 2, 4, 8, 16, … Решить 585


Рекуррентный способ задания числовых последовательностей Рекуррентный способ задания последовательности состоит в том, что указывают правило, позволяющее вычислить n-ый член, если известны ее предыдущие члены 1) арифметическая прогрессия задается рекуррентными соотношениями a 1 =a, a n+1 =a n + d 2) геометрическая прогрессия – b 1 =b, b n+1 =b n * q


Закрепление 591, 592 (a, б) 594, – 614 (a)




Ограниченность сверху Последовательность (y n) называют ограниченной сверху, если все ее члены не больше некоторого числа. Другими словами, последовательность (y n) ограничена сверху, если существует такое число M что для любого n выполняется неравенство y n M. M – верхняя граница последовательности Например, -1, -4, -9, -16, …, -n 2, …


Ограниченность снизу Последовательность (y n) называют ограниченной снизу, если все ее члены не меньше некоторого числа. Другими словами, последовательность (y n) ограничена сверху, если существует такое число m что для любого n выполняется неравенство y n m. m – нижняя граница последовательности Например, 1, 4, 9, 16, …, n 2, …


Ограниченность последовательности Последовательность (y n) называют ограниченной, если можно указать такие два числа A и B, между которыми лежат все члены последовательности. Выполняется неравенство Ay n B A – нижняя граница, B – верхняя граница Например, 1 – верхняя граница, 0 – нижняя граница



Убывающая последовательность Последовательность называется убывающей, если каждый ее член меньше предыдущего: y 1 > y 2 > y 3 > y 4 > y 5 > … > y n > … Например, y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> y 2 > y 3 > y 4 > y 5 > … > y n > … Например," title="Убывающая последовательность Последовательность называется убывающей, если каждый ее член меньше предыдущего: y 1 > y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> title="Убывающая последовательность Последовательность называется убывающей, если каждый ее член меньше предыдущего: y 1 > y 2 > y 3 > y 4 > y 5 > … > y n > … Например,"> 23


Проверочная работа Вариант 1Вариант 2 1. Числовая последовательность задана формулой а) Вычислите первые четыре члена данной последовательности б) Является ли членом последовательности число? б) Является ли членом последовательности число 12,25? 2. Составьте формулу -ого члена последовательности 2, 5, 10, 17, 26,…1, 2, 4, 8, 16,…

Числовая последовательность – частный случай числовой функции, поэтому ряд свойств функций рассматриваются и для последовательностей.

1. Определение. Последовательность {y n } называют возрастающей, если каждый ее член (кроме первого) больше предыдущего:

y 1 < y 2 < y 3 < … < y n < y n +1 < ….

2. Определение.Последовательность {y n } называют убывающей, если каждый ее член (кроме первого) меньше предыдущего:

y 1 > y 2 > y 3 > … > y n > y n +1 > … .

3. Возрастающие и убывающие последовательности объединяют общим термином – монотонные последовательности.

Например: y 1 = 1; y n = n 2…– возрастающая последовательность. y 1 = 1; – убывающая последовательность. y 1 = 1; – эта последовательность не является не возрастающей не убывающей.

4. Определение. Последовательность называется периодической, если существует такое натуральное число T, что начиная с некоторого n, выполняется равенство yn = yn+T . Число T называется длиной периода.

5. Последовательность называется ограниченной снизу, если все ее члены не меньше некоторого числа.

6. Последовательность называется ограниченной сверху, если все ее члены не больше некоторого числа.

7. Последовательность называется ограниченной, если она ограничена и сверху, и снизу, т.е. есть такое положительное число, что все члены данной последовательности по модулю не превосходят это число. (Но ее ограниченность с двух сторон не обязательно означает, что она конечная).

8. Последовательность может иметь только один предел.

9. Любая неубывающая и ограниченная сверху последовательность имеет предел (lim).

10. Любая невозрастающая и ограниченная снизу последовательность имеет предел.

Предел последовательности – такая точка (число), в окрестностях которой расположено большинство членов последовательности, они плотно подходят к этому пределу, но не достигают его.

Геометрическая и арифметическая прогрессии являются частными случаями последовательности.

Способы задания последовательности:

Последовательности можно задавать различными способами, среди которых особенно важны три: аналитический, описательный и рекуррентный.

1. Последовательность задана аналитически, если задана формула ее n-го члена:

Пример. yn = 2n – 1 – последовательность нечетных чисел: 1, 3, 5, 7, 9, …

2. Описательный способ задания числовой последовательности состоит в том, что объясняется, из каких элементов строится последовательность.

Пример 1. «Все члены последовательности равны 1». Это значит, речь идет о стационарной последовательности 1, 1, 1, …, 1, ….

Пример 2. «Последовательность состоит из всех простых чисел в порядке возрастания». Таким образом, задана последовательность 2, 3, 5, 7, 11, …. При таком способе задания последовательности в данном примере трудно ответить, чему равен, скажем, 1000-й элемент последовательности.

3. Рекуррентный способ задания последовательности состоит в том, что указывается правило, позволяющее вычислить n-й член последовательности, если известны ее предыдущие члены. Название рекуррентный способ происходит от латинского слова recurrere – возвращаться. Чаще всего в таких случаях указывают формулу, позволяющую выразить n-й член последовательности через предыдущие, и задают 1–2 начальных члена последовательности.

Пример 1. y1 = 3; yn = yn–1 + 4, если n = 2, 3, 4,….

Здесь y1 = 3; y2 = 3 + 4 = 7; y3 = 7 + 4 = 11; ….

Можно видеть, что полученную в этом примере последовательность может быть задана и аналитически: yn = 4n – 1.

Пример 2. y 1 = 1; y 2 = 1; y n = y n –2 + y n –1 , если n = 3, 4,….

Здесь: y 1 = 1; y 2 = 1; y 3 = 1 + 1 = 2; y 4 = 1 + 2 = 3; y 5 = 2 + 3 = 5; y 6 = 3 + 5 = 8;

Последовательность, составленную в этом примере, специально изучают в математике, поскольку она обладает рядом интересных свойств и приложений. Ее называют последовательностью Фибоначчи – по имени итальянского математика 13 в. Задать последовательность Фибоначчи рекуррентно очень легко, а аналитически – очень трудно. n -е число Фибоначчи выражается через его порядковый номер следующей формулой .

На первый взгляд, формула для n -го числа Фибоначчи кажется неправдоподобной, так как в формуле, задающей последовательность одних только натуральных чисел, содержатся квадратные корни, но можно проверить «вручную» справедливость этой формулы для нескольких первых n .

История Фибоначчи:

Fibonacci (Leonardo of Pisa), ок. 1175–1250

Итальянский математик. Родился в Пизе, стал первым великим математиком Европы позднего Средневековья. В математику его привела практическая потребности установить деловые контакты. Он издавал свои книги по арифметике, алгебре и другим математическим дисциплинам. От мусульманских математиков он узнал о системе цифр, придуманной в Индии и уже принятой в арабском мире, и уверился в ее превосходстве (эти цифры были предшественниками современных арабских цифр).

Леонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Будучи рожденным в Пизе в богатой купеческой семье, он пришел в математику благодаря сугубо практической потребности установить деловые контакты. В молодости Леонардо много путешествовал, сопровождая отца в деловых поездках. Например, мы знаем о его длительном пребывании в Византии и на Сицилии. Во время таких поездок он много общался с местными учеными.

Числовой ряд, носящий сегодня его имя, вырос из проблемы с кроликами, которую Фибоначчи изложил в своей книге «Liber abacci», написанной в 1202 году:

Человек посадил пару кроликов в загон, окруженный со всех сторон стеной. Сколько пар кроликов за год может произвести на свет эта пара, если известно, что каждый месяц, начиная со второго, каждая пара кроликов производит на свет одну пару?

Можете убедиться, что число пар в каждый из двенадцати последующих месяцев месяцев будет соответственно 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

Иными словами, число пар кроликов создает ряд, каждый член в котором - сумма двух предыдущих. Он известен как ряд Фибоначчи, а сами числа - числа Фибоначчи. Оказывается, эта последовательность имеет множество интересных с точки зрения математики свойств. Вот пример: вы можете разделить линию на два сегмента, так что соотношение между большим и меньшим сегментом будет пропорционально соотношению между всей линией и большим сегментом. Этот коэффициент пропорциональности, приблизительно равный 1,618, известен как золотое сечение. В эпоху Возрождения считалось, что именно эта пропорция, соблюденная в архитектурных сооружениях, больше всего радует глаз. Если вы возьмете последовательные пары из ряда Фибоначчи и будете делить большее число из каждой пары на меньшее, ваш результат будет постепенно приближаться к золотому сечению.

С тех пор как Фибоначчи открыл свою последовательность, были найдены даже явления природы, в которых эта последовательность, похоже, играет немаловажную роль. Одно из них - филлотаксис (листорасположение) - правило, по которому располагаются, например, семечки в соцветии подсолнуха. Семечки у подсолнуха упорядочены в две спирали. Числа, обозначающие количество семечек в каждой из спиралей, являются членами удивительной математической последовательности. Семечки упорядочены в два ряда спиралей, один из которых идет по часовой стрелке, другой против. И каково же число семян в каждом случае? 34 и 55.

Задача№1:

Напишите первые пять членов последовательности.

1. а n =2 n +1/2 n

а n =2 n +1/2 n

Задача№2:

Напишите формулу общего члена последовательности натуральных чисел, кратных 3.

Ответ: 0,3,6,9,12,15,.... 3n, а n =3n

Задача№3:

Напишите формулу общего члена последовательности натуральных чисел, которые при делении на 4 дают в остатке 1.

Ответ:5,9,13,17,21....... 4 n +1 , а n =4n+1

№19. Функция.

Функция (отображение, оператор, преобразование) - математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция - это «закон», по которому каждому элементу одного множества (называемому областью определения) ставится в соответствие некоторый элемент другого множества (называемого областью значений).

Функция – это зависимость одной переменной величины от другой. Другими словами, взаимосвязь между величинами.

Математическое понятие функции выражает интуитивное представление о том, как одна величина полностью определяет значение другой величины. Так значение переменной х однозначно определяет значение выражения , а значение месяца однозначно определяет значение следующего за ним месяца, также любому человеку можно сопоставить другого человека - его отца. Аналогично, некоторый задуманный заранее алгоритм по варьируемым входным данным выдаёт определённые выходные данные.

Часто под термином «функция» понимается числовая функция; то есть функция, которая ставит одни числа в соответствие другим. Эти функции удобно представляются на рисунках в виде графиков.

Можно дать и другое определение. Функция – это определенное действие над переменной.

Это означает, что мы берем величину , делаем с ней определенное действие (например, возводим в квадрат или вычисляем ее логарифм) – и получаем величину .

Дадим еще одно определение функции – то, что чаще всего встречается в учебниках.

Функция – это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один и только один элемент второго множества.

Например, функция каждому действительному числу ставит в соответствие число в два раза большее, чем .

Множество элементов некоторой Ф., подставляемых вместо х, называют областью ее определения, а множество элементов у некоторой Ф. называют областью ее значений.

История термина:

Термин «функция» (в некотором более узком смысле) был впервые использован Лейбницем (1692 год). В свою очередь, Иоганн Бернулли в письме к тому же Лейбницу употребил этот термин в смысле, более близком к современному. Первоначально, понятие функции было неотличимо от понятия аналитического представления. Впоследствии появилось определение функции, данное Эйлером (1751 год), затем - у Лакруа (1806 год) - уже практически в современном виде. Наконец, общее определение функции (в современной форме, но для числовых функций) было дано Лобачевским (1834 год) и Дирихле (1837 год). К концу XIX века понятие функции переросло рамки числовых систем. Первыми это сделали векторные функции, вскоре Фреге ввёл логические функции (1879), а после появления теории множеств Дедекинд (1887) и Пеано (1911) сформулировали современное универсальное определение.

№20. Способы задания функции.

Различают 4 способа задания функции:

1. табличный Довольно распространенный, заключается в задании таблицы отдельных

значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством.

Удобен, когда f --конечное множество, когда же f бесконечное, указывается лишь избранные пары (х,у).

При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции.

Достоинства : точность, быстрота, по таблице значений легко найти нужное значение функции. Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений.

Недостатки : неполнота, отсутствие наглядности. В некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

2. аналитический (формулы). Чаще всего закон, устанавливающий связь между

аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим. Является наиболее важным для МА (мат.анализа), поскольку методы МА (дифференциального, интегрального счисления) предполагают этот способ задания. Одна и та же функция может быть задана различными формулами: y =∣sin(x )∣y =√1−cos2(x ) Иногда в различных частях своих областей определяемая функция может быть задана различными формулами f (x )={f 1(x ),x D 1 fn (x ),x Dn nk =1Dk =D (f ) . Часто при этом способе задания функции область определения не указывается, тогда под областью определения понимается естественная область определения, т.е. множество всех значений x при которых функция принимает действительное значение.

Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью.

Частным случаем аналитического способа задания функции является задание функции уравнением вида F(x,y)=0 (1) Если это уравнение обладает свойством, что ∀x ∈Дсопоставляется единственное y , такое, что F (x ,y )=0, то говорят, что уравнение (1) на Д неявно задает функцию. Еще один частный случай задания функции -- параметрический, при этом каждая пара (x ,y )∈f задается с помощью пары функций x =ϕ(t ),y =ψ(t ) где t M .

Loading...Loading...