Решение квадратного уравнения через теорему виета. Формула теоремы виета, и примеры решения

В квадратных уравнениях существует целый ряд соотношений. Основными являются отношения между корнями и коэффициентами. Также в квадратных уравнениях работает ряд соотношений, которые задаются теоремой Виета.

В этой теме мы приведем саму теорему Виета и ее доказательство для квадратного уравнения, теорему, обратную теореме Виета, разберем ряд примеров решения задач. Особое внимание в материале мы уделим рассмотрению формул Виета, которые задают связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.

Yandex.RTB R-A-339285-1

Формулировка и доказательство теоремы Виета

Формула корней квадратного уравнения a · x 2 + b · x + c = 0 вида x 1 = - b + D 2 · a , x 2 = - b - D 2 · a , где D = b 2 − 4 · a · c , устанавливает соотношения x 1 + x 2 = - b a , x 1 · x 2 = c a . Это подтверждает и теорема Виета.

Теорема 1

В квадратном уравнении a · x 2 + b · x + c = 0 , где x 1 и x 2 – корни, сумма корней будет равна соотношению коэффициентов b и a , которое было взято с противоположным знаком, а произведение корней будет равно отношению коэффициентов c и a , т. е. x 1 + x 2 = - b a , x 1 · x 2 = c a .

Доказательство 1

Предлагаем вам следующую схему проведения доказательства: возьмем формулу корней, составим суму и произведение корней квадратного уравнения и затем преобразуем полученные выражения для того, чтобы убедиться, что они равны - b a и c a соответственно.

Составим сумму корней x 1 + x 2 = - b + D 2 · a + - b - D 2 · a . Приведем дроби к общему знаменателю - b + D 2 · a + - b - D 2 · a = - b + D + - b - D 2 · a . Раскроем скобки в числителе полученной дроби и приведем подобные слагаемые: - b + D + - b - D 2 · a = - b + D - b - D 2 · a = - 2 · b 2 · a . Сократим дробь на: 2 - b a = - b a .

Так мы доказали первое соотношение теоремы Виета, которое относится к сумме корней квадратного уравнения.

Теперь давайте перейдем ко второму соотношению.

Для этого нам необходимо составить произведение корней квадратного уравнения: x 1 · x 2 = - b + D 2 · a · - b - D 2 · a .

Вспомним правило умножения дробей и запишем последнее произведение следующим образом: - b + D · - b - D 4 · a 2 .

Проведем в числителе дроби умножение скобки на скобку или же воспользуемся формулой разности квадратов для того, чтобы преобразовать это произведение быстрее: - b + D · - b - D 4 · a 2 = - b 2 - D 2 4 · a 2 .

Воспользуемся определением квадратного корня для того, чтобы осуществить следующий переход: - b 2 - D 2 4 · a 2 = b 2 - D 4 · a 2 . Формула D = b 2 − 4 · a · c отвечает дискриминанту квадратного уравнения, следовательно, в дробь вместо D можно подставить b 2 − 4 · a · c:

b 2 - D 4 · a 2 = b 2 - (b 2 - 4 · a · c) 4 · a 2

Раскроем скобки, приведем подобные слагаемые и получим: 4 · a · c 4 · a 2 . Если сократить ее на 4 · a , то остается c a . Так мы доказали второе соотношение теоремы Виета для произведения корней.

Запись доказательства теоремы Виета может иметь весьма лаконичный вид, если опустить пояснения:

x 1 + x 2 = - b + D 2 · a + - b - D 2 · a = - b + D + - b - D 2 · a = - 2 · b 2 · a = - b a , x 1 · x 2 = - b + D 2 · a · - b - D 2 · a = - b + D · - b - D 4 · a 2 = - b 2 - D 2 4 · a 2 = b 2 - D 4 · a 2 = = D = b 2 - 4 · a · c = b 2 - b 2 - 4 · a · c 4 · a 2 = 4 · a · c 4 · a 2 = c a .

При дискриминанте квадратного уравнения равном нулю уравнение будет иметь только один корень. Чтобы иметь возможность применить к такому уравнению теорему Виета, мы можем предположить, что уравнение при дискриминанте, равном нулю, имеет два одинаковых корня. Действительно, при D = 0 корень квадратного уравнения равен: - b 2 · a , тогда x 1 + x 2 = - b 2 · a + - b 2 · a = - b + (- b) 2 · a = - 2 · b 2 · a = - b a и x 1 · x 2 = - b 2 · a · - b 2 · a = - b · - b 4 · a 2 = b 2 4 · a 2 , а так как D = 0 , то есть, b 2 - 4 · a · c = 0 , откуда b 2 = 4 · a · c , то b 2 4 · a 2 = 4 · a · c 4 · a 2 = c a .

Чаще всего на практике теорема Виета применяется по отношению к приведенному квадратному уравнению вида x 2 + p · x + q = 0 , где старший коэффициент a равен 1 . В связи с этим и формулируют теорему Виета именно для уравнений такого вида. Это не ограничивает общности в связи с тем, что любое квадратное уравнение может быть заменено равносильным уравнением. Для этого необходимо поделить обе его части на число a , отличное от нуля.

Приведем еще одну формулировку теоремы Виета.

Теорема 2

Сумма корней в приведенном квадратном уравнении x 2 + p · x + q = 0 будет равна коэффициенту при x , который взят с противоположным знаком, произведение корней будет равно свободному члену, т.е. x 1 + x 2 = − p , x 1 · x 2 = q .

Теорема, обратная теореме Виета

Если внимательно посмотреть на вторую формулировку теоремы Виета, то можно увидеть, что для корней x 1 и x 2 приведенного квадратного уравнения x 2 + p · x + q = 0 будут справедливы соотношения x 1 + x 2 = − p , x 1 · x 2 = q . Из этих соотношений x 1 + x 2 = − p , x 1 · x 2 = q следует, что x 1 и x 2 – это корни квадратного уравнения x 2 + p · x + q = 0 . Так мы приходим к утверждению, которое является обратным теореме Виета.

Предлагаем теперь оформить это утверждение как теорему и провести ее доказательство.

Теорема 3

Если числа x 1 и x 2 таковы, что x 1 + x 2 = − p и x 1 · x 2 = q , то x 1 и x 2 являются корнями приведенного квадратного уравнения x 2 + p · x + q = 0 .

Доказательство 2

Замена коэффициентов p и q на их выражение через x 1 и x 2 позволяет преобразовать уравнение x 2 + p · x + q = 0 в равносильное ему .

Если в полученное уравнение подставить число x 1 вместо x , то мы получим равенство x 1 2 − (x 1 + x 2) · x 1 + x 1 · x 2 = 0 . Это равенство при любых x 1 и x 2 превращается в верное числовое равенство 0 = 0 , так как x 1 2 − (x 1 + x 2) · x 1 + x 1 · x 2 = x 1 2 − x 1 2 − x 2 · x 1 + x 1 · x 2 = 0 . Это значит, что x 1 – корень уравнения x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0 , и что x 1 также является корнем равносильного ему уравнения x 2 + p · x + q = 0 .

Подстановка в уравнение x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0 числа x 2 вместо x позволяет получить равенство x 2 2 − (x 1 + x 2) · x 2 + x 1 · x 2 = 0 . Это равенство можно считать верным, так как x 2 2 − (x 1 + x 2) · x 2 + x 1 · x 2 = x 2 2 − x 1 · x 2 − x 2 2 + x 1 · x 2 = 0 . Получается, что x 2 является корнем уравнения x 2 − (x 1 + x 2) · x + x 1 · x 2 = 0 , а значит, и уравнения x 2 + p · x + q = 0 .

Теорема, обратная теореме Виета, доказана.

Примеры использования теоремы Виета

Давайте теперь приступим к разбору наиболее типичных примеров по теме. Начнем с разбора задач, которые требуют применения теоремы, обратной теореме Виета. Ее можно применять для проверки чисел, полученных в ходе вычислений, на предмет того, являются ли они корнями заданного квадратного уравнения. Для этого необходимо вычислить их сумму и разность, а затем проверить справедливость соотношений x 1 + x 2 = - b a , x 1 · x 2 = a c .

Выполнение обоих соотношений свидетельствует о том, что числа, полученные в ходе вычислений, являются корнями уравнения. Если же мы видим, что хотя бы одно из условий не выполняется, то данные числа не могут быть корнями квадратного уравнения, данного в условии задачи.

Пример 1

Какая из пар чисел 1) x 1 = − 5 , x 2 = 3 , или 2) x 1 = 1 - 3 , x 2 = 3 + 3 , или 3) x 1 = 2 + 7 2 , x 2 = 2 - 7 2 является парой корней квадратного уравнения 4 · x 2 − 16 · x + 9 = 0 ?

Решение

Найдем коэффициенты квадратного уравнения 4 · x 2 − 16 · x + 9 = 0 . Это a = 4 , b = − 16 , c = 9 . В соответствии с теоремой Виета сумма корней квадратного уравнения должна быть равна - b a , то есть, 16 4 = 4 , а произведение корней должно быть равно c a , то есть, 9 4 .

Проверим полученные числа, вычислив сумму и произведение чисел из трех заданных пар и сравнив их с полученными значениями.

В первом случае x 1 + x 2 = − 5 + 3 = − 2 . Это значение отлично от 4 , следовательно, проверку можно не продолжать. Согласно теореме, обратной теореме Виета, можно сразу сделать вывод о том, что первая пара чисел не является корнями данного квадратного уравнения.

Во втором случае x 1 + x 2 = 1 - 3 + 3 + 3 = 4 . Мы видим, что первое условие выполняется. А вот второе условие нет: x 1 · x 2 = 1 - 3 · 3 + 3 = 3 + 3 - 3 · 3 - 3 = - 2 · 3 . Значение, которое мы получили, отлично от 9 4 . Это значит, что вторая пара чисел не является корнями квадратного уравнения.

Перейдем к рассмотрению третьей пары. Здесь x 1 + x 2 = 2 + 7 2 + 2 - 7 2 = 4 и x 1 · x 2 = 2 + 7 2 · 2 - 7 2 = 2 2 - 7 2 2 = 4 - 7 4 = 16 4 - 7 4 = 9 4 . Выполняются оба условия, а это значит, что x 1 и x 2 являются корнями заданного квадратного уравнения.

Ответ: x 1 = 2 + 7 2 , x 2 = 2 - 7 2

Мы также можем использовать теорему, обратную теореме Виета, для подбора корней квадратного уравнения. Наиболее простой способ – это подбор целых корней приведенных квадратных уравнений с целыми коэффициентами. Можно рассматривать и другие варианты. Но это может существенно затруднить проведение вычислений.

Для подбора корней мы используем тот факт, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения.

Пример 2

В качестве примера используем квадратное уравнение x 2 − 5 · x + 6 = 0 . Числа x 1 и x 2 могут быть корнями этого уравнения в том случае, если выполняются два равенства x 1 + x 2 = 5 и x 1 · x 2 = 6 . Подберем такие числа. Это числа 2 и 3 , так как 2 + 3 = 5 и 2 · 3 = 6 . Получается, что 2 и 3 – корни данного квадратного уравнения.

Теорему, обратную теореме Виета, можно использовать для нахождения второго корня, когда первый известен или очевиден. Для этого мы можем использовать соотношения x 1 + x 2 = - b a , x 1 · x 2 = c a .

Пример 3

Рассмотрим квадратное уравнение 512 · x 2 − 509 · x − 3 = 0 . Необходимо найти корни данного уравнения.

Решение

Первым корнем уравнения является 1 , так как сумма коэффициентов этого квадратного уравнения равна нулю. Получается, что x 1 = 1 .

Теперь найдем второй корень. Для этого можно использовать соотношение x 1 · x 2 = c a . Получается, что 1 · x 2 = − 3 512 , откуда x 2 = - 3 512 .

Ответ: корни заданного в условии задачи квадратного уравнения 1 и - 3 512 .

Подбирать корни, используя теорему, обратную теореме Виета, можно лишь в простых случаях. В остальных случаях лучше проводить поиск с использованием формулы корней квадратного уравнения через дискриминант.

Благодаря теореме, обратной теореме Виета, мы также можем составлять квадратные уравнения по имеющимся корням x 1 и x 2 . Для этого нам необходимо вычислить сумму корней, которая дает коэффициент при x с противоположным знаком приведенного квадратного уравнения, и произведение корней, которое дает свободный член.

Пример 4

Напишите квадратное уравнение, корнями которого являются числа − 11 и 23 .

Решение

Примем, что x 1 = − 11 и x 2 = 23 . Сумма и произведение данных чисел будут равны: x 1 + x 2 = 12 и x 1 · x 2 = − 253 . Это значит, что второй коэффициент - 12 , свободный член − 253.

Составляем уравнение: x 2 − 12 · x − 253 = 0 .

Ответ : x 2 − 12 · x − 253 = 0 .

Мы можем использовать теорему Виета для решения заданий, которые связаны со знаками корней квадратных уравнений. Связь между теоремой Виета связана со знаками корней приведенного квадратного уравнения x 2 + p · x + q = 0 следующим образом:

  • если квадратное уравнение имеет действительные корни и если свободный член q является положительным числом, то эти корни будут иметь одинаковый знак « + » или « - » ;
  • если квадратное уравнение имеет корни и если свободный член q является отрицательным числом, то один корень будет « + » , а второй « - » .

Оба этих утверждения являются следствием формулы x 1 · x 2 = q и правила умножения положительных и отрицательных чисел, а также чисел с разными знаками.

Пример 5

Являются ли корни квадратного уравнения x 2 − 64 · x − 21 = 0 положительными?

Решение

По теореме Виета корни данного уравнения не могут быть оба положительными, так как для них должно выполняться равенство x 1 · x 2 = − 21 . Это невозможно при положительных x 1 и x 2 .

Ответ: Нет

Пример 6

При каких значениях параметра r квадратное уравнение x 2 + (r + 2) · x + r − 1 = 0 будет иметь два действительных корня с разными знаками.

Решение

Начнем с того, что найдем значения каких r , при которых в уравнении будет два корня. Найдем дискриминант и посмотрим, при каких r он будет принимать положительные значения. D = (r + 2) 2 − 4 · 1 · (r − 1) = r 2 + 4 · r + 4 − 4 · r + 4 = r 2 + 8 . Значение выражения r 2 + 8 положительно при любых действительных r , следовательно, дискриминант будет больше нуля при любых действительных r . Это значит, что исходное квадратное уравнение будет иметь два корня при любых действительных значениях параметра r .

Теперь посмотрим, когда корни будут иметь разные знаки. Это возможно в том случае, если их произведение будет отрицательным. Согласно теореме Виета произведение корней приведенного квадратного уравнения равно свободному члену. Значит, правильным решением будут те значения r , при которых свободный член r − 1 отрицателен. Решим линейное неравенство r − 1 < 0 , получаем r < 1 .

Ответ: при r < 1 .

Формулы Виета

Существует ряд формул, которые применимы для осуществления действий с корнями и коэффициентами не только квадратных, но также кубических и других видов уравнений. Их называют формулами Виета.

Для алгебраического уравнения степени n вида a 0 · x n + a 1 · x n - 1 + . . . + a n - 1 · x + a n = 0 считается, что уравнение имеет n действительных корней x 1 , x 2 , … , x n , среди которых могут быть совпадающие:
x 1 + x 2 + x 3 + . . . + x n = - a 1 a 0 , x 1 · x 2 + x 1 · x 3 + . . . + x n - 1 · x n = a 2 a 0 , x 1 · x 2 · x 3 + x 1 · x 2 · x 4 + . . . + x n - 2 · x n - 1 · x n = - a 3 a 0 , . . . x 1 · x 2 · x 3 · . . . · x n = (- 1) n · a n a 0

Определение 1

Получить формулы Виета нам помогают:

  • теорема о разложении многочлена на линейные множители;
  • определение равных многочленов через равенство всех их соответствующих коэффициентов.

Так, многочлен a 0 · x n + a 1 · x n - 1 + . . . + a n - 1 · x + a n и его разложение на линейные множители вида a 0 · (x - x 1) · (x - x 2) · . . . · (x - x n) равны.

Если мы раскрываем скобки в последнем произведении и приравниваем соответствующие коэффициенты, то получаем формулы Виета. Приняв n = 2 , мы можем получить формулу Виета для квадратного уравнения: x 1 + x 2 = - a 1 a 0 , x 1 · x 2 = a 2 a 0 .

Определение 2

Формула Виета для кубического уравнения:
x 1 + x 2 + x 3 = - a 1 a 0 , x 1 · x 2 + x 1 · x 3 + x 2 · x 3 = a 2 a 0 , x 1 · x 2 · x 3 = - a 3 a 0

Левая часть записи формул Виета содержит так называемые элементарные симметрические многочлены.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Сегодня достойна в стихах быть воспета
О свойствах корней теорема Виета.
Что лучше, скажи, постоянства такого:
Умножил ты корни – и дробь уж готова
В числителе с , в знаменателе а.
И сумма корней тоже дроби равна
Хоть с минусом дробь эта
Что за беда
В числители в , в знаменателе а .
(Из школьного фольклора)

В эпиграфе замечательная теорема Франсуа Виета приведена не совсем точно. В самом деле, мы можем записать квадратное уравнение, которое не имеет корней и записать их сумму и произведение. Например, уравнение х 2 + 2х + 12 = 0 не имеет действительных корней. Но, подойдя формально, мы можем записать их произведение (х 1 · х 2 = 12) и сумму (х 1 + х 2 = -2). Наши стихи будут соответствовать теореме с оговоркой: «если уравнение имеет корни», т.е. D ≥ 0.

Первое практическое применение этой теоремы – составление квадратного уравнения, имеющего заданные корни. Второе: она позволяет устно решать многие квадратные уравнения. На отработку этих навыков, прежде всего и обращается внимание в школьных учебниках.

Мы же здесь будем рассматривать более сложные задачи, решаемые с помощью теоремы Виета.

Пример 1.

Один из корней уравнения 5х 2 – 12х + с = 0 в три раза больше за второй. Найдите с.

Решение.

Пусть второй корень равен х 2 .

Тогда первый корень х1 = 3х 2 .

Согласно теореме Виета сумма корней равна 12/5 = 2,4.

Составим уравнение 3х 2 + х 2 = 2,4.

Отсюда х 2 = 0,6. Следовательно х 1 = 1,8.

Ответ: с = (х 1 · х 2) · а = 0,6 · 1,8 · 5 = 5,4.

Пример 2.

Известно, что х 1 и х 2 – корни уравнения х 2 – 8х + p = 0, причём 3х 1 + 4х 2 = 29. Найдите p.

Решение.

Согласно теореме Виета х 1 + х 2 = 8, а по условию 3х 1 + 4х 2 = 29.

Решив систему из этих двух уравнений найдём значение х 1 = 3, х 2 = 5.

А следовательно p = 15.

Ответ: p = 15.

Пример 3.

Не вычисляя корней уравнения 3х 2 + 8 х – 1 = 0, найдите х 1 4 + х 2 4

Решение.

Заметим, что по теореме Виета х 1 + х 2 = -8/3 и х 1 · х 2 = -1/3 и преобразуем выражение

а) х 1 4 + х 2 4 = (х 1 2 + х 2 2) 2 – 2х 1 2 х 2 2 = ((х 1 + х 2) 2 – 2х 1 х 2) 2 – 2(х 1 х 2) 2 = ((-8/3) 2 – 2 · (-1/3)) 2 – 2 · (-1/3) 2 = 4898/9

Ответ: 4898/9.

Пример 4.

При каких значениях параметра а разность наибольшего и наименьшего корней уравнения
2х 2 – (а + 1)х + (а – 1) = 0 равна их произведению.

Решение.

Это квадратное уравнение. Оно будет иметь 2 разных корня, если D > 0. Иными словами (а + 1) 2 – 8(а – 1) > 0 или (а – 3) 2 > 0. Следовательно, мы имеем 2 корня при всех а, за исключением а = 3.

Для определенности будем считать, что х 1 >х 2 и получим х 1 + х 2 = (а + 1)/2 и х 1 · х 2 = (а – 1)/2. Исходя из условия задачи х 1 – х 2 = (а – 1)/2. Все три условия должны выполняться одновременно. Рассмотрим первое и последнее уравнения как систему. Она легко решается методом алгебраического сложения.

Получаем х 1 = а/2, х 2 = 1/2. Проверим при каких а выполнится второе равенство: х 1 · х 2 = (а – 1)/2. Подставим полученные значения и будем иметь: а/4 = (а – 1)/2. Тогда, а = 2. Очевидно, что если а = 2, то все условия выполнены.

Ответ: при а = 2.

Пример 5.

Чему равно наименьшее значение а, при котором сумма корней уравнения
х 2 – 2а(х – 1) – 1 = 0 равна сумме квадратов его корней.

Решение.

Прежде всего, приведем уравнение к каноническому виду: х 2 – 2ах + 2а – 1 = 0. Оно будет иметь корни, если D/4 ≥ 0. Следовательно: а 2 – (2а – 1) ≥ 0. Или (а – 1) 2 ≥ 0. А это условие справедливо при любом а.

Применим теорему Виета: х 1 + х 2 = 2а, х 1 · х 2 = 2а – 1. Посчитаем

х 1 2 + х 2 2 = (х 1 + х 2) 2 – 2х 1 · х 2 . Или после подстановки х 1 2 + х 2 2 = (2а) 2 – 2 · (2а – 1) = 4а 2 – 4а + 2. Осталось составить равенство которое соответствует условию задачи: х 1 + х 2 = х 1 2 + х 2 2 . Получим: 2а = 4а 2 – 4а + 2. Это квадратное уравнение имеет 2 корня: а 1 = 1 и а 2 = 1/2. Наименьший из них –1/2.

Ответ: 1/2.

Пример 6.

Найти зависимость между коэффициентами уравнения ах 2 + вх + с = 0 если сумма кубов его корней равна произведению квадратов этих корней.

Решение.

Будем исходить из того, что данное уравнение имеет корни и, поэтому, к нему можно применить теорему Виета.

Тогда условие задачи запишется так: х 1 3 + х 2 3 = х 1 2 · х 2 2 . Или: (х 1 + х 2)(х 1 2 – х 1 · х 2 + х 2 2) = (х 1 х 2) 2 .

Необходимо преобразовать второй множитель. х 1 2 – х 1 · х 2 + х 2 2 = ((х 1 + х 2) 2 – 2х 1 х 2) – х 1 х 2 .

Получим (х 1 + х 2)((х 1 + х 2) 2 – 3х 1 х 2) = (х 1 х 2) 2 . Осталось заменить суммы и произведения корней через коэффициенты.

(-b/a)((b/a) 2 – 3 · c/a) = (c/a) 2 . Это выражение легко преобразуется к виду b(3ac – b 2)/a = c 2 . Соотношение найдено.

Замечание. Следует учесть, что полученное соотношение имеет смысл рассматривать лишь после того, как выполнится другое: D ≥ 0.

Пример 7.

Найдите значение переменной а, для которого сумма квадратов корней уравнения х 2 + 2ах + 3а 2 – 6а – 2 = 0 есть величина наибольшая.

Решение.

Если у этого уравнения есть корни х 1 и х 2 , то их сумма х 1 + х 2 = -2а, а произведение х 1 · х 2 = 3а 2 – 6а – 2.

Вычисляем х 1 2 + х 2 2 = (х 1 + х 2) 2 – 2х 1 · х 2 = (-2а) 2 – 2(3а 2 – 6а – 2) = -2а 2 + 12а + 4 = -2(а – 3) 2 + 22.

Теперь очевидно, что это выражение принимает наибольшее значение при а = 3.

Остается проверить, в самом ли деле у исходного квадратного уравнения существуют корни при а = 3. Проверяем подстановкой и получаем: х 2 + 6х + 7 = 0 и для него D = 36 – 28 > 0.

Следовательно, ответ: при а = 3.

Пример 8.

Уравнение 2х 2 – 7х – 3 = 0 имеет корни х 1 и х 2 . Найти утроенную сумму коэффициентов приведенного квадратного уравнения, корнями которого являются числа Х 1 = 1/х 1 и Х 2 = 1/х 2 . (*)

Решение.

Очевидно, что х 1 + х 2 = 7/2 и х 1 · х 2 = -3/2. Составим второе уравнение по его корням в виде х 2 + рх + q = 0. Для этого используем утверждение, обратное теореме Виета. Получим: р = -(Х 1 + Х 2) и q = Х 1 · Х 2 .

Выполнив подстановку в эти формулы, исходя из (*), тогда: р = -(х 1 + х 2)/(х 1 · х 2) = 7/3 и q = 1/(х 1 · х 2) = -2/3.

Искомое уравнение примет вид: х 2 + 7/3 · х – 2/3 = 0. Теперь легко посчитаем утроенную сумму его коэффициентов:

3(1 + 7/3 – 2/3) = 8. Ответ получен.

Остались вопросы? Не знаете, как использовать теорему Виета?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.


Между корнями и коэффициентами квадратного уравнения , помимо формул корней, существуют другие полезные соотношения, которые задаются теоремой Виета . В этой статье мы дадим формулировку и доказательство теоремы Виета для квадратного уравнения. Дальше рассмотрим теорему, обратную теореме Виета. После этого разберем решения наиболее характерных примеров. Наконец, запишем формулы Виета, задающие связь между действительными корнями алгебраического уравнения степени n и его коэффициентами.

Навигация по странице.

Теорема Виета, формулировка, доказательство

Из формул корней квадратного уравнения a·x 2 +b·x+c=0 вида , где D=b 2 −4·a·c , вытекают соотношения x 1 +x 2 =−b/a , x 1 ·x 2 =c/a . Эти результаты утверждаются теоремой Виета :

Теорема.

Если x 1 и x 2 – корни квадратного уравнения a·x 2 +b·x+c=0 , то сумма корней равна отношению коэффициентов b и a , взятому с противоположным знаком, а произведение корней равно отношению коэффициентов c и a , то есть, .

Доказательство.

Доказательство теоремы Виета проведем по следующей схеме: составим сумму и произведение корней квадратного уравнения, используя известные формулы корней, после этого преобразуем полученные выражения, и убедимся, что они равны −b/a и c/a соответственно.

Начнем с суммы корней, составляем ее . Теперь приводим дроби к общему знаменателю, имеем . В числителе полученной дроби , после чего : . Наконец, после на 2 , получаем . Этим доказано первое соотношение теоремы Виета для суммы корней квадратного уравнения. Переходим ко второму.

Составляем произведение корней квадратного уравнения: . Согласно правилу умножения дробей, последнее произведение можно записать как . Теперь выполняем умножение скобки на скобку в числителе, но быстрее свернуть это произведение по формуле разности квадратов , так . Дальше, вспомнив , выполняем следующий переход . А так как дискриминанту квадратного уравнения отвечает формула D=b 2 −4·a·c , то в последнюю дробь вместо D можно подставить b 2 −4·a·c , получаем . После раскрытия скобок и приведения подобных слагаемых приходим к дроби , а ее сокращение на 4·a дает . Этим доказано второе соотношение теоремы Виета для произведения корней.

Если опустить пояснения, то доказательство теоремы Виета примет лаконичный вид:
,
.

Остается лишь заметить, что при равном нулю дискриминанте квадратное уравнение имеет один корень. Однако, если считать, что уравнение в этом случае имеет два одинаковых корня, то равенства из теоремы Виета также имеют место. Действительно, при D=0 корень квадратного уравнения равен , тогда и , а так как D=0 , то есть, b 2 −4·a·c=0 , откуда b 2 =4·a·c , то .

На практике наиболее часто теорема Виета используется применительно к приведенному квадратному уравнению (со старшим коэффициентом a , равным 1 ) вида x 2 +p·x+q=0 . Иногда ее и формулируют для квадратных уравнений именно такого вида, что не ограничивает общности, так как любое квадратное уравнение можно заменить равносильным уравнением , выполнив деление его обеих частей на отличное от нуля число a . Приведем соответствующую формулировку теоремы Виета:

Теорема.

Сумма корней приведенного квадратного уравнения x 2 +p·x+q=0 равна коэффициенту при x , взятому с противоположным знаком, а произведение корней – свободному члену, то есть, x 1 +x 2 =−p , x 1 ·x 2 =q .

Теорема, обратная теореме Виета

Вторая формулировка теоремы Виета, приведенная в предыдущем пункте, указывает, что если x 1 и x 2 корни приведенного квадратного уравнения x 2 +p·x+q=0 , то справедливы соотношения x 1 +x 2 =−p , x 1 ·x 2 =q . С другой стороны, из записанных соотношений x 1 +x 2 =−p , x 1 ·x 2 =q следует, что x 1 и x 2 являются корнями квадратного уравнения x 2 +p·x+q=0 . Иными словами, справедливо утверждение, обратное теореме Виета. Сформулируем его в виде теоремы, и докажем ее.

Теорема.

Если числа x 1 и x 2 таковы, что x 1 +x 2 =−p и x 1 ·x 2 =q , то x 1 и x 2 являются корнями приведенного квадратного уравнения x 2 +p·x+q=0 .

Доказательство.

После замены в уравнении x 2 +p·x+q=0 коэффициентов p и q их выражения через x 1 и x 2 , оно преобразуется в равносильное уравнение .

Подставим в полученное уравнение вместо x число x 1 , имеем равенство x 1 2 −(x 1 +x 2)·x 1 +x 1 ·x 2 =0 , которое при любых x 1 и x 2 представляет собой верное числовое равенство 0=0 , так как x 1 2 −(x 1 +x 2)·x 1 +x 1 ·x 2 = x 1 2 −x 1 2 −x 2 ·x 1 +x 1 ·x 2 =0 . Следовательно, x 1 – корень уравнения x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0 , а значит, x 1 – корень и равносильного ему уравнения x 2 +p·x+q=0 .

Если же в уравнение x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0 подставить вместо x число x 2 , то получим равенство x 2 2 −(x 1 +x 2)·x 2 +x 1 ·x 2 =0 . Это верное равенство, так как x 2 2 −(x 1 +x 2)·x 2 +x 1 ·x 2 = x 2 2 −x 1 ·x 2 −x 2 2 +x 1 ·x 2 =0 . Следовательно, x 2 тоже является корнем уравнения x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0 , а значит, и уравнения x 2 +p·x+q=0 .

На этом завершено доказательство теоремы, обратной теореме Виета.

Примеры использования теоремы Виета

Пришло время поговорить о практическом применении теоремы Виета и обратной ей теоремы. В этом пункте мы разберем решения нескольких наиболее характерных примеров.

Начнем с применения теоремы, обратной теореме Виета. Ее удобно применять для проверки, являются ли данные два числа корнями заданного квадратного уравнения. При этом вычисляется их сумма и разность, после чего проверяется справедливость соотношений . Если выполняются оба этих соотношения, то в силу теоремы, обратной теореме Виета, делается вывод, что данные числа являются корнями уравнения. Если же хотя бы одно из соотношений не выполняется, то данные числа не являются корнями квадратного уравнения. Такой подход можно использовать при решении квадратных уравнений для проверки найденных корней.

Пример.

Какая из пар чисел 1) x 1 =−5 , x 2 =3 , или 2) , или 3) является парой корней квадратного уравнения 4·x 2 −16·x+9=0 ?

Решение.

Коэффициентами заданного квадратного уравнения 4·x 2 −16·x+9=0 являются a=4 , b=−16 , c=9 . Согласно теореме Виета сумма корней квадратного уравнения должна быть равна −b/a , то есть, 16/4=4 , а произведение корней должно быть равно c/a , то есть, 9/4 .

Теперь вычислим сумму и произведение чисел в каждой из трех заданных пар, и сравним их с только что полученными значениями.

В первом случае имеем x 1 +x 2 =−5+3=−2 . Полученное значение отлично от 4 , поэтому дальнейшую проверку можно не осуществлять, а по теореме, обратной теореме Виета, сразу сделать вывод, что первая пара чисел не является парой корней заданного квадратного уравнения.

Переходим ко второму случаю. Здесь , то есть, первое условие выполнено. Проверяем второе условие: , полученное значение отлично от 9/4 . Следовательно, и вторая пара чисел не является парой корней квадратного уравнения.

Остался последний случай. Здесь и . Оба условия выполнены, поэтому эти числа x 1 и x 2 являются корнями заданного квадратного уравнения.

Ответ:

Теорему, обратную теореме Виета, на практике можно использовать для подбора корней квадратного уравнения. Обычно подбирают целые корни приведенных квадратных уравнений с целыми коэффициентами, так как в других случаях это сделать достаточно сложно. При этом пользуются тем фактом, что если сумма двух чисел равна второму коэффициенту квадратного уравнения, взятому со знаком минус, а произведение этих чисел равно свободному члену, то эти числа являются корнями данного квадратного уравнения. Разберемся с этим на примере.

Возьмем квадратное уравнение x 2 −5·x+6=0 . Чтобы числа x 1 и x 2 были корнями этого уравнения, должны выполняться два равенства x 1 +x 2 =5 и x 1 ·x 2 =6 . Остается подобрать такие числа. В данном случае это сделать достаточно просто: такими числами являются 2 и 3 , так как 2+3=5 и 2·3=6 . Таким образом, 2 и 3 – корни данного квадратного уравнения.

Теорему, обратную теореме Виета, особенно удобно применять для нахождения второго корня приведенного квадратного уравнения, когда уже известен или очевиден один из корней. В этом случае второй корень находится из любого из соотношений .

Для примера возьмем квадратное уравнение 512·x 2 −509·x−3=0 . Здесь легко заметить, что единица является корнем уравнения, так как сумма коэффициентов этого квадратного уравнения равна нулю. Итак, x 1 =1 . Второй корень x 2 можно найти, например, из соотношения x 1 ·x 2 =c/a . Имеем 1·x 2 =−3/512 , откуда x 2 =−3/512 . Так мы определили оба корня квадратного уравнения: 1 и −3/512 .

Понятно, что подбор корней целесообразен лишь в самых простых случаях. В остальных случаях для поиска корней можно применить формулы корней квадратного уравнения через дискриминант.

Еще одно практическое применение теоремы, обратной теореме Виета, состоит в составлении квадратных уравнений по заданным корням x 1 и x 2 . Для этого достаточно вычислить сумму корней, которая дает коэффициент при x с противоположным знаком приведенного квадратного уравнения, и произведение корней, которое дает свободный член.

Пример.

Напишите квадратное уравнение, корнями которого являются числа −11 и 23 .

Решение.

Обозначим x 1 =−11 и x 2 =23 . Вычисляем сумму и произведение данных чисел: x 1 +x 2 =12 и x 1 ·x 2 =−253 . Следовательно, указанные числа являются корнями приведенного квадратного уравнения со вторым коэффициентом −12 и свободным членом −253 . То есть, x 2 −12·x−253=0 – искомое уравнение.

Ответ:

x 2 −12·x−253=0 .

Теорема Виета очень часто используется при решении заданий, связанных со знаками корней квадратных уравнений. Как же связана теорема Виета со знаками корней приведенного квадратного уравнения x 2 +p·x+q=0 ? Приведем два соответствующих утверждения:

  • Если свободный член q – положительное число и если квадратное уравнение имеет действительные корни, то либо они оба положительные, либо оба отрицательные.
  • Если же свободный член q – отрицательное число и если квадратное уравнение имеет действительные корни, то их знаки различны, другими словами, один корень положительный, а другой - отрицательный.

Эти утверждения вытекают из формулы x 1 ·x 2 =q , а также правил умножения положительных, отрицательных чисел и чисел с разными знаками. Рассмотрим примеры их применения.

Пример.

R он положителен. По формуле дискриминанта находим D=(r+2) 2 −4·1·(r−1)= r 2 +4·r+4−4·r+4=r 2 +8 , значение выражения r 2 +8 положительно при любых действительных r , таким образом, D>0 при любых действительных r . Следовательно, исходное квадратное уравнение имеет два корня при любых действительных значениях параметра r .

Теперь выясним, когда корни имеют разные знаки. Если знаки корней различны, то их произведение отрицательно, а по теореме Виета произведение корней приведенного квадратного уравнения равно свободному члену. Следовательно, нас интересуют те значения r , при которых свободный член r−1 отрицателен. Таким образом, чтобы найти интересующие нас значения r , надо решить линейное неравенство r−1<0 , откуда находим r<1 .

Ответ:

при r<1 .

Формулы Виета

Выше мы говорили о теореме Виета для квадратного уравнения и разбирали утверждаемые ей соотношения. Но существуют формулы, связывающие действительные корни и коэффициенты не только квадратных уравнений, но и кубических уравнений, уравнений четверной степени, и вообще, алгебраических уравнений степени n . Их называют формулами Виета .

Запишем формулы Виета для алгебраического уравнения степени n вида , при этом будем считать, что оно имеет n действительных корней x 1 , x 2 , …, x n (среди них могут быть совпадающие):

Получить формулы Виета позволяет теорема о разложении многочлена на линейные множители , а также определение равных многочленов через равенство всех их соответствующих коэффициентов. Так многочлен и его разложение на линейные множители вида равны. Раскрыв скобки в последнем произведении и приравняв соответствующие коэффициенты, получим формулы Виета.

В частности при n=2 имеем уже знакомые нам формулы Виета для квадратного уравнения .

Для кубического уравнения формулы Виета имеют вид

Остается лишь заметить, что в левой части формул Виета находятся так называемые элементарные симметрические многочлены .

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.

Теорема Виета - это понятие знакомо со школьных времен практически каждому. Но «знакомо» ли оно на самом деле? Мало кто сталкивается с ним в повседневной жизни. Но и не все те, кто имеет дело с математикой, порой полностью понимают глубокий смысл и огромное значение этой теоремы.

Теорема Виета во многом облегчает процесс решения огромного количества математических задач, которые в итоге сводятся к решению :

Поняв значимость такого простого и действенного математического инструмента, невольно задумываешься о человеке, впервые его открывшем.

Знаменитый французский ученый, который начинал свою трудовую деятельность как адвокат. Но, очевидно, математика была его призванием. Находясь на королевской службе в качестве советника, он прославился тем, что сумел прочесть перехваченное зашифрованное послание короля Испании в Нидерланды. Это давало французскому королю Генриху III возможность знать обо всех намерениях его противников.

Постепенно приобщаясь к математическим знаниям, Франсуа Виет пришел к выводу, что должна существовать тесная связь между новейшими в то время изысканиями «алгебраистов» и глубоким геометрическим наследием древних. В ходе научных изысканий им была разработана и сформулирована практически вся элементарная алгебра. Он впервые ввел использование буквенных величин в математический аппарат, четко разграничив понятия: число, величина и их отношения. Виет доказал, что, выполняя операции в символьном виде, можно решить задачу для общего случая, практически для любых значений заданных величин.

Его изыскания для решения уравнений больших степеней, чем вторая, вылились в теорему, которая сейчас известна, как обобщенная теорема Виета. Она имеет большой прикладное значение, и ее применение дает возможность быстрого решения уравнений более высоко порядка.

Одно из свойств этой теоремы заключается в следующем: произведение всех n-й степени равно его свободному члену. Это свойство часто употребляется при решении уравнений третьей или четвертой степени с целью понижения порядка многочлена. Если у многочлена n-й степени есть целые корни, то их можно легко определить методом простого подбора. И далее выполнив деление многочлена на выражение (х-х1), получим многочлен (n-1)-й степени.

В конце хочется отметить, что теорема Виета является одной из самых знаменитых теорем школьного курса алгебры. А его имя занимает достойное место среди имен великих математиков.

В этой лекции мы познакомимся с любопытными соотношениями между корнями квадратного уравнения и его коэффициентами. Эти соотношения впервые обнаружил французский математик Франсуа Виет (1540—1603).

Например, для уравнения Зx 2 - 8x - 6 = 0, не находя его корней, можно, воспользовавшись теоремой Виета, сразу сказать, что сумма корней равна , а произведение корней равно
т. е. - 2. А для уравнения х 2 - 6х + 8 = 0 заключаем: сумма корней равна 6, произведение корней равно 8; между прочим, здесь нетрудно догадаться, чему равны корни: 4 и 2.
Доказательство теоремы Виета. Корни х 1 и х 2 квадратного уравнения ах 2 + bх + с = 0 находятся по формулам

Где D = b 2 — 4ас — дискриминант уравнения. Сложив эти корни,
получим


Теперь вычислим произведение корней х 1 и х 2 Имеем

Второе соотношение доказано:
Замечание. Теорема Виета справедлива и в том случае, когда квадратное уравнение имеет один корень (т. е. когда D = 0), просто в этом случае считают, что уравнение имеет два одинаковых корня, к которым и применяют указанные выше соотношения.
Особенно простой вид принимают доказанные соотношения для приведенного квадратного уравнения х 2 + рх + q = 0. В этом случае получаем:

x 1 = x 2 = -p, x 1 x 2 =q
т.е. сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
С помощью теоремы Виета можно получить и другие соотношения между корнями и коэффициентами квадратного уравнения. Пусть, например, х 1 и х 2 — корни приведенного квадратного уравнения х 2 + рх + q = 0. Тогда

Однако основное назначение теоремы Виета не в том, что она выражает некоторые соотношения между корнями и коэффициентами квадратного уравнения. Гораздо важнее то, что с помощью теоремы Виета выводится формула разложения квадратного трехчлена на множители, без которой мы в дальнейшем не обойдемся.


Доказательство. Имеем


Пример 1 . Разложить на множители квадратный трехчлен Зх 2 - 10x + 3.
Решение. Решив уравнение Зх 2 - 10x + 3 = 0, найдем корни квадратного трехчлена Зх 2 - 10x + 3: х 1 = 3, х2 = .
Воспользовавшись теоремой 2, получим

Есть смысл вместо написать Зx - 1. Тогда окончательно получим Зх 2 - 10x + 3 = (х - 3)(3х - 1).
Заметим, что заданный квадратный трехчлен можно разложить на множители и без применения теоремы 2, использовав способ группировки:

Зх 2 - 10x + 3 = Зх 2 - 9х - х + 3 =
= Зх (х - 3) - (х - 3) = (х - 3) (Зx - 1).

Но, как видите, при этом способе успех зависит от того, сумеем ли мы найти удачную группировку или нет, тогда как при первом способе успех гарантирован.
Пример 1 . Сократить дробь

Решение. Из уравнения 2х 2 + 5х + 2 = 0 находим х 1 = - 2,


Из уравнения х2 - 4х - 12 = 0 находим х 1 = 6, х 2 = -2. Поэтому
х 2 - 4х - 12 = (х- 6) (х - (- 2)) = (х - 6) (х + 2).
А теперь сократим заданную дробь:

Пример 3 . Разложить на множители выражения:
а)x4 + 5x 2 +6; б)2x+-3
Р е ш е н и е. а) Введем новую переменную у = х 2 . Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде у 2 + bу + 6.
Решив уравнение у 2 + bу + 6 = 0, найдем корни квадратного трехчлена у 2 + 5у + 6: у 1 = - 2, у 2 = -3. Теперь воспользуемся теоремой 2; получим

у 2 + 5у + 6 = (у + 2) (у + 3).
Осталось вспомнить, что у = x 2 , т. е. вернуться к заданному выражению. Итак,
x 4 + 5х 2 + 6 = (х 2 + 2)(х 2 + 3).
б) Введем новую переменную у = . Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде 2у 2 + у - 3. Решив уравнение
2у 2 + у - 3 = 0, найдем корни квадратного трехчлена 2у 2 + у - 3:
y 1 = 1, y 2 = . Далее, используя теорему 2, получим:

Осталось вспомнить, что у = , т. е. вернуться к заданному выражению. Итак,

В заключение параграфа — некоторые рассуждения, опятьтаки связанные с теоремой Виета, а точнее, с обратным утверждением:
если числа х 1 , х 2 таковы, что х 1 + х 2 = - р, x 1 x 2 = q, то эти числа — корни уравнения
С помощью этого утверждения можно решать многие квадратные уравнения устно, не пользуясь громоздкими формулами корней, а также составлять квадратные уравнения с заданными корнями. Приведем примеры.

1) х 2 - 11х + 24 = 0. Здесь x 1 + х 2 = 11, х 1 х 2 = 24. Нетрудно догадаться, что х 1 = 8, х 2 = 3.

2) х 2 + 11х + 30 = 0. Здесь x 1 + х 2 = -11, х 1 х 2 = 30. Нетрудно догадаться, что х 1 = -5, х 2 = -6.
Обратите внимание: если свободный член уравнения — положительное число, то оба корня либо положительны, либо отрицательны; это важно учитывать при подборе корней.

3) х 2 + х - 12 = 0. Здесь x 1 + х 2 = -1, х 1 х 2 = -12. Легко догадаться, что х 1 = 3, х2 = -4.
Обратите внимание: если свободный член уравнения — отрицательное число, то корни различны по знаку; это важно учитывать при подборе корней.

4) 5х 2 + 17x - 22 = 0. Нетрудно заметить, что х = 1 удовлетворяет уравнению, т.е. х 1 = 1 — корень уравнения. Так как х 1 х 2 = -, а х 1 = 1, то получаем, что х 2 = - .

5) х 2 - 293x + 2830 = 0. Здесь х 1 + х 2 = 293, х 1 х 2 = 2830. Если обратить внимание на то, что 2830 = 283 . 10, а 293 = 283 + 10, то становится ясно, что х 1 = 283, х 2 = 10 (а теперь представьте, какие вычисления пришлось бы выполнить для решения этого квадратного уравнения с помощью стандартных формул).

6) Составим квадратное уравнение так, чтобы его корнями служили числа х 1 = 8, х 2 = - 4. Обычно в таких случаях составляют приведенное квадратное уравнение х 2 + рх + q = 0.
Имеем х 1 + х 2 = -р, поэтому 8 - 4 = -р, т. е. р = -4. Далее, х 1 х 2 = q, т.е. 8«(-4) = q, откуда получаем q = -32. Итак, р = -4, q = -32, значит, искомое квадратное уравнение имеет вид х 2 -4х-32 = 0.

Loading...Loading...