Регулятор напряжения для паяльника на симисторе. В помощь домашнему мастеру: схема регулятора температуры для паяльника

Автор данной статьи, Л. ЕЛИЗАРОВ, из г. Макеевка Донецкой обл., предлагает доступное для повторения радиолюбителями устройство для поддержания оптимальной температуры жала паяльника путём измерения сопротивления его нагревателя во время периодических кратковременных отключений его от сети.

На страницах радиотехнических журналов неоднократно публиковались различные устройства управления температурой жала паяльника, использующие нагреватель паяльника в качестве датчика температуры и поддерживающие её на заданном уровне. При ближайшем рассмотрении оказывается, что все эти регуляторы являются всего лишь стабилизаторами тепловой мощности нагревателя. Они, конечно, дают определённый эффект: меньше выгорает жало и паяльник не так сильно перегревается, пока лежит на подставке. Но это ещё далеко до управления именно температурой жала.


Рассмотрим кратко динамику тепловых процессов в паяльнике. На рис. 1 представлены графики изменения температуры нагревателя и жала паяльника с момента выключения нагревателя

На графиках видно, что в первые доли секунды разность температур настолько велика и непостоянна, что температуру нагревателя в этот момент никак нельзя использовать для точного определения температуры жала, а именно так работают все ранее опубликованные регуляторы, в которых нагреватель используют в качестве датчика температуры. Из рис. 1 видно, что кривые зависимости температуры жала и нагревателя от времени его выключения только через две и тем более три-четыре секунды достаточно сближаются для того, чтобы с достаточной точностью интерпретировать температуру нагревателя как температуру жала. Кроме того, разность температур становится не только малой, но и практически постоянной. По мнению автора, именно регулятор, измеряющий температуру нагревателя через определённое время после его отключения, способен более точно управлять температурой жала.

Интересно сравнить достоинства такого регулятора с паяльной станцией, использующей датчик температуры, встроенный в жало паяльника. В паяльной станции изменение температуры жала паяльника сразу вызывает реакцию устройства управления, причём повышение температуры нагревателя пропорционально изменению температуры жала. Волна изменения температуры доходит до жала паяльника через 5...7 с. При изменении температуры жала обычного паяльника волна изменения температуры идёт от жала к нагревателю (при близких теплодинамических параметрах - 5...7 с). Его узел управления сработает через 1.. .7 с (это зависит от установленного температурного порога включения) и поднимет температуру нагревателя. Обратная волна изменения температуры достигнет жала паяльника через те же 5...7 с. Отсюда следует, что время реакции обычного паяльника, использующего нагреватель в качестве датчика температуры, в 2...3 раза больше, чем у паяльника паяльной станции с датчиком температуры, встроенным в жало.

Очевидно, что у паяльной станции перед паяльником, использующим нагреватель в качестве датчика температуры, есть два основных преимущества. Первое (малозначительное) - цифровой индикатор температуры. Второе - датчик температуры, встроенный в жало. Цифровой индикатор сначала просто интересен, а потом регулирование идёт всё равно по принципу "чуть больше, чуть меньше".

У паяльника, использующего нагреватель в качестве датчика температуры, перед паяльной станцией преимущества следующие:
- блок управления не загромождает пространство на столе, так как он может быть встроен в небольшой по размерам корпус в виде сетевого адаптера;
- меньшая стоимость;
- блок управления можно использовать практически с любым бытовым паяльником;
- простота повторения, посильная и начинающему радиолюбителю.

Рассмотрим конструктивные особенности паяльников разных конструкций и мощности. В таблицепредставлены значения сопротивлений нагревателей различных паяльников, где Pw - мощность паяльника, Вт; Rx - сопротивление нагревателя холодного паяльника, Ом; Rr - сопротивление горячего после прогрева в течение трёх минут, Ом.

P W ,Вт R X ,Ом R Г, Ом R Г -R X ,Ом
18 860 1800 940
25 700 1700 1000
30 1667 1767 100
40 1730 1770 40
80 547 565 18
100 604 624 20

По разности этих температур видно, что ТКС нагревателей могут отличаться в 50 раз. Паяльники с большим ТКС имеют керамические нагреватели, хотя бывают и исключения. Паяльники с малым ТКС - устаревшей конструкции с нагревателями из нихрома. Необходимо отдельно заметить, что в некоторых паяльниках может быть встроен диод - датчик температуры, и один паяльник мне попался совсем интересный: в одной полярности включения ТКС у него был положительный, а в другой - отрицательный. В этой связи сопротивление паяльника надо сначала измерить в холодном и горячем состояниях с тем, чтобы подключить его к регулятору в правильной полярности.

Схема стабилизатора температуры паяльника

Схема регулятора представлена на рис. 2 . Длительность включённого состояния нагревателя фиксирована и составляет 4...6 с. Длительность выключенного состояния зависит от температуры нагревателя, конструктивных особенностей паяльника и регулируется в интервале 0...30 с. Может возникнуть предположение, что температура жала паяльника постоянно "качается" вверх и вниз. Измерения показали, что изменение температуры жала под воздействием управляющих импульсов не превышает одного градуса, и объясняется это значительной тепловой инерционностью конструкции паяльника.

Рассмотрим работу регулятора. По известной схеме на выпрямительном мосте VD6, гасящих конденсаторах С4, С5, стабилитронах VD2, VD3 и сглаживающем конденсаторе С2 собран источник питания узла управления. Сам узел собран на двух ОУ, включённых компараторами. На неинвертирующий вход (вывод 3) ОУ DA1.2 подано образцовое напряжение с резистивного делителя R1R2. На его инвертирующий вход (вывод 2) подано напряжение с делителя, верхнее плечо которого состоит из рези-стивной цепи R3-R5, а нижнее - нагревателя, подключённого к входу ОУ через диод VD5. В момент включения питания сопротивление нагревателя понижено и напряжение на инвертирующем входе ОУ DA1.2 меньше напряжения на неинвертирующем. На выходе (вывод 1) DA1.2 будет максимальное положительное напряжение. Выход DA1.2 нагружен последовательной цепью, состоящей из ограничительного резистора R8, светодиода HL1 и встроенного в оптрон U1 излучающего диода. Све-тодиодНЫ сигнализирует о включении нагревателя, а излучающий диод оптрона открывает встроенный фотосимистор. Выпрямленное мостом VD7 напряжение сети 220 В поступает на нагреватель. Диод VD5 будет закрыт этим напряжением. Высокий уровень напряжения с выхода DA1.2 через конденсатор СЗ воздействует на инвертирующий вход (вывод 6) ОУ DA1.1. На его выходе (вывод 7) возникает низкий уровень напряжения, которое через диод VD1 и резистор R6 уменьшит напряжение на инвертирующем входе ОУ DA1.2 ниже образцового. Это обеспечит поддержание высокого уровня напряжения на выходе этого ОУ Такое состояние остаётся стабильным в течение времени, которое задано дифференцирующей цепью C3R7. По мере зарядки конденсатора СЗ напряжение на резисторе R7 цепи падает, и когда оно станет ниже образцового, на выходе ОУ DA1.1 низкий уровень сигнала сменится высоким. Высокий уровень сигнала закроет диод VD1, и напряжение на инвертирующем входе DA1.2 станет выше образцового, что приведёт к смене на выходе ОУ DA1.2 высокого уровня сигнала низким и отключению светодиода HL1 и оптрона U1. Закрывшийся фотосимистор отключит мост VD7 и нагреватель паяльника от сети, а открытый диод VD5 подключит его к инвертирующему входу ОУ DA1.2. Погасший светодиод HL1 сигнализирует об отключении нагревателя. На выходе DA1.2 низкий уровень напряжения будет держаться до тех пор, пока в результате остывания нагревателя паяльника его сопротивление не понизится до точки переключения DA1.2, заданной, как уже сказано выше, образцовым напряжением с делителя R1R2. Конденсатор СЗ к тому времени успеет разрядиться через диод VD4. Далее, после переключения DA1.2, вновь включится оптрон U1 и весь процесс повторится. Время остывания нагревателя паяльника будет тем больше, чем выше температура всего паяльника и меньше расход тепла на процесс паяния. Конденсатор С1 уменьшает наводки и высокочастотные помехи из сети.

Печатная плата размерами 42x37 мм изготовлена из односторонне фольгированного стеклотекстолита. Её чертёж и расположение элементов приведены на рис. 3 .
Чертеж платы в формате lay- во вложении

Светодиод HL1, диоды VD1, VD4 - любые маломощные. Диод VD5 - любого типа на напряжение не менее 400 В. Стабилитроны КС456А1 заменимы на КС456А или один стабилитрон на 12 В с максимально допустимым током более 100 мА. Оксидный конденсатор СЗ надо обязательно проверить на утечку. При проверке конденсатора омметром его сопротивление должно быть больше 2 МОм. Конденсаторы С4, С5 - импортные плёночные на переменное напряжение 250 В или отечественные К73-17 на напряжение 400 В. Микросхема LM358P заменима на LM393R В этом случае правый по схеме вывод резистора R8 необходимо подключить к плюсовой линии питания узла управления, а анод светодиода HL1 - непосредственно к выходу DA1.2 (выводу 1). При этом диод VD1 можно не ставить. Сопротивление резистора R6 должно выбираться исходя из имеющегося нагревателя. Оно должно быть меньше сопротивления нагревателя в холодном состоянии примерно на 10 %. Сопротивление подстроечного резистора R5 выбирают так, чтобы интервал регулировки температуры не превышал 100 °С. Для этого вычисляют разность сопротивлений холодного и хорошо прогретого паяльника и умножают её на 3,5. Полученное значение и будет сопротивлением резистора R5 в омах. Тип резистора - любой многооборотный.

Собранный блок необходимо наладить. Цепь из резисторов R3-R5 временно заменяют двумя последовательно включёнными переменными или подстроенными сопротивлением 2,2 кОм и 200...300 Ом. Далее блок с подключённым паяльником включают в сеть. Добившись движками временных резисторов нужной температуры жала, устройство отключают от сети. Резисторы отпаивают и измеряют общее сопротивление введённых частей. Из полученного значения вычитают половину вычисленного ранее сопротивления R5. Это и будет суммарное сопротивление постоянных резисторов R3, R4, которые выбирают из имеющихся в распоряжении по наиболее близкому к суммарному значению. В разрыв этой резистивной цепи можно поставить выключатель. При его выключении паяльник перейдёт на непрерывный нагрев. Для тех, кому нужен паяльник на несколько режимов пайки, предлагаю поставить переключатель и несколько резистивных цепей на разные режимы. Например, для мягкого припоя и для нормального припоя. При разрыве цепи - форсированный режим. Мощность применяемого паяльника ограничена предельным током выпрямительного моста КЦ407А (0,5 А) и оптрона МОС3063 (1 А). Поэтому для паяльников мощностью более 100 Вт необходимо установить более мощный выпрямительный мост, а опт-рон заменить оптоэлектронным реле нужной мощности.

Сравнение работы разных паяльников совместно с описанным устройством показало, что наиболее пригодны паяльники с керамическим нагревателем с большим ТКС. Внешний вид одного из вариантов собранного блока со снятой крышкой приведён на рис. 4.

Работа многих связана с применением паяльника. Для кого-то это просто хобби. Паяльники бывают разные. Могут быть простые, но надежные, могут представлять собой современные паяльные станции, в том числе инфракрасные. Для получения качественной пайки требуется иметь паяльник нужной мощности и нагревать его до определенной температуры.

Рисунок 1. Схема регулятора температуры, собранная на тиристоре КУ 101Б.

Для помощи в этом деле предназначены различные регуляторы температуры для паяльника. Они продаются в магазинах, но умелые руки могут самостоятельно собрать подобное устройство с учетом своих требований.

Достоинства регуляторов температуры

Большинство из домашних мастеров с юных лет пользуется паяльником мощностью в 40 Вт. Раньше трудно было что-то купить с другими параметрами. Паяльник сам по себе удобный, с его помощью можно паять многие предметы. Но пользоваться им при монтаже радиоэлектронных схем неудобно. Тут и пригодится помощь регулятора температуры для паяльника:

Рисунок 2. Схема простейшего регулятора температуры.

  • жало паяльника прогревается до оптимальной температуры;
  • продлевается срок службы жала;
  • радиодетали никогда не перегреются;
  • не произойдет отслоения токоведущих элементов на печатной плате;
  • при вынужденном перерыве в работе паяльник не нужно выключать из сети.

Не в меру нагретый паяльник не держит на жале припой, с перегретого паяльника он капает, делая место пайки очень непрочным. Жало покрывается слоем окалины, которую счищают только шкуркой и напильниками. В результате появляются кратеры, которые тоже нужно удалять, сокращая длину жала. Если использовать регулятор температуры, такого не произойдет, жало всегда будет готово к работе. При перерыве в работе достаточно уменьшить его нагрев, не выключая из сети. После перерыва горячий инструмент быстро наберет нужную температуру.

Вернуться к оглавлению

Простые схемы регулятора температуры

В качестве регулятора можно использовать ЛАТР (лабораторный трансформатор), регулятор освещенности для настольной лампы, блок питания КЭФ-8, современную паяльную станцию.

Рисунок 3. Схема выключателя для регулятора.

Современные паяльные станции способны регулировать температуру жала паяльника в разных режимах — в ручном, в полностью автоматическом. Но для домашнего мастера стоимость их довольно значительна. Из практики видно, что автоматическая регулировка практически не нужна, так как напряжение в сети обычно стабильное, температура в помещении, где ведется пайка, тоже не меняется. Поэтому для сборки может использоваться простая схема регулятора температуры, собранная на тиристоре КУ 101Б (рис.1). Этот регулятор с успехом используется для работы с паяльниками и лампами мощностью до 60 Вт.

Этот регулятор очень прост, но позволяет менять напряжение в пределах 150-210 В. Продолжительность нахождения тиристора в открытом состоянии зависит от положения переменного резистора R3. Этим резистором и осуществляется регулировка напряжения на выходе прибора. Пределы регулировки устанавливаются резисторами R1 и R4. С помощью подбора R1 устанавливается минимальное напряжение, R4 — максимальное. Диод Д226Б можно заменить на любой с обратным напряжением более 300 В. Тиристор подойдет КУ101Г, КУ101Е. Для паяльника мощностью свыше 30 Вт диод нужно брать Д245А, тиристор КУ201Д-КУ201Л. Плата после сборки может выглядеть примерно так, как показано на рис. 2.

Для индикации работы прибора можно регулятор оснастить светодиодом, который будет светиться при наличии напряжения на его входе. Не будет лишним и отдельный выключатель (рис. 3).

Рисунок 4. Схема регулятора температуры с симистором.

Следующая схема регулятора зарекомендовала себя с хорошей стороны (рис. 4). Изделие получается очень надежным и простым. Деталей требуется минимум. Главная из них — симистор КУ208Г. Из светодиодов достаточно оставить HL1, который будет сигнализировать о наличии напряжения на входе и о работе регулятора. Корпусом для собранной схемы может быть подходящих размеров коробочка. Можно для этой цели использовать корпус электрической розетки или выключателя с установленным проводом питания и вилкой. Ось переменного резистора нужно вывести наружу и надеть на нее пластмассовую ручку. Рядом можно нанести деления. Такой простейший прибор способен регулировать нагрев паяльника в пределах примерно 50-100%. При этом мощность нагрузки рекомендуется в пределах 50 Вт. На практике схема работала с нагрузкой 100 Вт без последствий в течение часа.

Для пайки радиосхем и других деталей нужны разные инструменты. Главный из них — паяльник. Для более красивой и качественной пайки его рекомендуется оснастить регулятором температуры. Вместо него можно использовать разные приборы, которые продаются в магазинах.

Можно своими руками без проблем собрать приспособление из нескольких деталей.

Это обойдется очень дешево, да интерес представляет больший.


Чтобы пайка была красивой и качественной, необходимо правильно выбрать мощность паяльника, обеспечить температуру жала. Все это зависит от марки припоя. На ваш выбор предоставляю несколько схем тиристорных регуляторов регулирования температуры паяльника, которые можно изготовить в домашних условиях. Они просты легко заменят промышленные аналоги, к тому же цена и сложность будет отличаться.

Осторожно! Прикосновение к элементам тиристорной схемы может привести к получению травмы опасной для жизни!

Чтоб регулировать температуру жала паяльника используются паяльные станции, которые в автоматическом и ручном режимах поддерживает заданную температуру. Доступность паяльной станции ограничивается размером кошелька. Я решил эту проблему, изготовив ручной регулятор температура, имеющий плавную регулировку. Схема легко дорабатывается до автоматического поддержания заданного режима температуры. Но я сделал вывод, что ручной регулировки достаточно, так как температура помещения и ток сети стабильны.

Классическая тиристорная схема регулятора

Классическая схема регулятора была плоха тем, что имела излучающие помехи, издаваемые в эфир и сеть. Радиолюбителям эти помехи мешают при работе. Если доработать схему, включив в нее фильтр, размеры конструкции значительно увеличатся. Но это схема может использоваться и в других случаях, например, если необходимо отрегулировать яркость ламп накаливания или нагревательных приборов, мощность которых 20-60 Вт. Поэтому я представляю эту схему.

Чтобы понять, как это работает, рассмотрим принцип работы тиристора. Тиристор представляет собой полупроводниковый прибор закрытого или открытого типа. Чтоб открыть его, на управляющий электрод подается напряжение равное 2-5 В. Оно зависит от выбранного тиристора, относительно катода (буква k на схеме). Тиристор открылся, между катодом и анодом образовалось напряжение равное нулю. Через электрод его невозможно закрыть. Он будет открыт до того времени, пока значение напряжения катода (k) и анода (a) не будет близко к нулю. Вот такой принцип. Схема работает следующим образом: через нагрузку (обмотка паяльника или лампа накаливания) подается напряжение на диодный мост выпрямителя, выполненный диодами VD1-VD4. Он служит для преобразования переменного тока в постоянный, который меняется по синусоидальному закону (1 диаграмма). В крайнем левом положении сопротивление среднего вывода резистора равно 0. При увеличении напряжения происходит зарядка конденсатора С1. Когда напряжение С1 будет равно 2-5 В, на VS1 пойдет ток через R2. При этом произойдет открытие тиристора, закорачивание диодного моста, максимальный ток пройдет через нагрузку (диаграмма сверху). Если повернуть ручку резистора R1, произойдет увеличение сопротивления, конденсатор С1 будет заряжаться дольше. Следовательно, открытие резистора произойдет не сразу. Чем мощнее R1, тем больше времени уйдет на заряд С1. Вращая ручку вправо или влево, можно регулировать температуру нагрева жала паяльника.

На фото выше предоставлена схема регулятора, собранная на тиристоре КУ202Н. Чтоб управлять этим тиристором (в паспорте указан ток 100мА, реально – 20 мА), необходимо уменьшить номиналы резисторов R1, R2, R3 исключаем, емкость конденсатора увеличиваем. Емкость С1 необходимо повысить до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще один вариант схемы, только упрощенный, деталей минимум. 4 диода заменены одним VD1. Отличие данной схемы заключается в том, что регулировка происходит при положительном периоде сети. Отрицательный период, проходя через диод VD1, остается без изменений, мощность можно регулировать от 50% до 100%. Если исключить VD1 из схемы, мощность можно будет регулировать в диапазоне от 0% до 50%.

Если применить динистор КН102А в разрыв от R1 и R2, придется заменить С1 на конденсатор емкостью 0,1 мкФ. Для этой схемы подойдут такие номиналы тиристоров: КУ201Л (К), КУ202К (Н,М,Л), КУ103В, напряжением для них более 300 В. Диоды любые, обратное напряжение которых не меньше, чем 300 В.

Выше упомянутые схемы успешно подойдут для регулировки ламп накаливания в светильниках. Регулировать светодиодные и энергосберегающие лампы не удастся, так как они имеют электронные схемы управления. Это приведет к миганию или работе лампы на полную мощность, что в конечном итоге выведет ее из строя.

Если вы хотите применить регуляторы для работы в сети 24,36 В, придется уменьшить номиналы резисторов и заменить тиристор на соответствующий. Если мощность паяльника 40 Вт, напряжение сети 36 В, он будет потреблять 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Эта схема отличается от предыдущей полным отсутствием изучаемых радиопомех, так как процессы протекают в тот момент, когда напряжение сети равно 0. Приступая к созданию регулятора, я исходил из следующих соображений: комплектующие должны иметь низкую цену, высокую надежность, малые габариты, сама схема должна быть проста, легко повторяемая, КПД должен быть близким к 100%, помехи должны отсутствовать. Схема должна иметь возможность модернизации.

Принцип работы схемы следующий. VD1-VD4 выпрямляют напряжение сети. Получающееся постоянное напряжение изменяется по амплитуде равной половине синусоиды частотой 100 Гц (1 диаграмма). Ток, проходя через R1 на VD6 — стабилитрон, 9В (2 диаграмма), имеет другую форму. Через VD5 импульсы заряжают С1, создавая 9 В напряжения для микросхем DD1, DD2. Для защиты применяется R2. Он служит для ограничения напряжения, поступаемого на VD5, VD6 до 22 В и формирует тактовый импульс для работы схемы. R1 передает сигнал на 5, 6 вывод элемента 2 либо не логическую цифровую микросхему DD1.1, которая в свою очередь инвертирует сигнал и преобразует его в короткий прямоугольный импульс (3 диаграмма). Импульс исходит с 4-го вывода DD1 и приходит на вывод D №8 триггера DD2.1, который работает в RS режиме. Принцип работы DD2.1 такой же и, как и DD1.1 (4 диаграмма). Рассмотрев диаграммы №2 и 4, можно сделать выводы, что отличия практически нет. Получается, что с R1 можно подать сигнал на вывод №5 DD2.1. Но это не так, R1 имеет множество помех. Придется устанавливать фильтр, что не целесообразно. Без двойного формирования схемы стабильной работы не будет.

Схема управления регулятора собрана на базе триггера DD2.2, работает она по следующему принципу. C вывода №13 триггера DD2.1 поступают импульсы на 3 вывод DD2.2, перезапись уровня которых происходит на выводе №1 DD2.2, которые на данном этапе находятся на D входе микросхемы (5 вывод). Противоположный уровень сигнала находится на 2 выводе. Предлагаю рассмотреть принцип работы DD2.2. Предположим, что на 2 выводе, логическая единица. С2 заряжается до необходимого напряжения через R4, R5. Когда появится первый импульс с положительным перепадом на 2 выводе образуется 0, через VD7 произойдет разрядка С2. Последующий перепад на 3 выводе установит на 2 выводе логическую единицу, С2 начнет накапливать емкость через R4, R5. Время зарядки зависит от R5. Чем оно больше, тем дольше будет происходить зарядка С2. Пока конденсатор С2 не накопит 1\2 емкости, на 5 выводе будет 0. Перепад импульсов на 3 входе не будет влиять на изменение логического уровня на 2 выводе. При достижении полного заряда конденсатора, произойдет повторение процесса. Количество импульсов, заданных резистором R5, будет поступать на DD2.2. Перепад импульсов будет происходить только в те моменты, когда напряжение сети будет переходить через 0. Вот почему отсутствуют помехи на данном регуляторе. С 1 вывода DD2.2 на DD1.2 подаются импульсы. DD1.2 исключает влияние VS1 (тиристор) на DD2.2. R6 установлен для ограничения тока управления VS1. На паяльник подается напряжение за счет открытия тиристора. Это происходит из-за того, что на тиристор поступает положительный потенциал с управляющего электрода VS1. Этот регулятор позволяет производить регулировку мощности в диапазоне 50-99%. Хоть резистор R5 – переменный, за счет включенного DD2.2 регулировка паяльника осуществляется ступенчатым образом. Когда R5 = 0, происходит подача 50% мощности (5 диаграмма), если повернуть на определенный угол, будет 66% (6 диаграмма), затем 75% (7 диаграмма). Чем ближе к рассчитанной мощности паяльника, тем плавне работа регулятора. Допустим, имеется паяльник на 40 Вт, его мощность можно регулировать в районе 20-40 Вт.

Конструкция и детали регулятора температуры

Детали регулятора располагаются на стеклотекстолитовой печатной плате. Плата помещена в пластиковый корпус от бывшего адаптера, имеющего электрическую вилку. Ручка из пластика надета на ось резистора R5. На корпусе регулятора имеются отметки с цифрами, позволяющие понимать, какой температурный режим выбран.

Шнур паяльника припаян к плате. Подключение паяльника к регулятору можно сделать разъемным, чтобы иметь возможность подключить другие объекты. Схема потребляет ток не превышающий 2мА. Это даже меньше, чем потребление светодиода в подсветке выключателя. Специальные меры по обеспечению режим работы устройства не требуются.

При напряжении 300 В и токе 0,5 А применяются микросхемы DD1, DD2 и серии 176 либо 561; диоды любые VD1-VD4. VD5, VD7 — импульсные, любые; VD6 — маломощный стабилитрон с напряжением 9 В. Конденсаторы любые, резисторе тоже. Мощность R1 должна быть 0,5 Вт. Дополнительной настройки регулятора не потребуется. Если детали исправны и при подключении не возникало ошибок, он заработает сразу.

Схема была разработана давно, когда лазерных принтеров и компьютеров не было. По этой причине печатная плата изготавливалась по дедовскому методу, использовалась диаграммная бумага, шаг сетки которой 2,5 мм. Далее чертеж приклеивался «Моментом» на бумагу по плотнее, а сама бумага на фольгированный стеклотекстолит. Зачем сверлились отверстия, дорожки проводников и контактных площадок вычерчивались вручную.

У меня сохранился чертеж регулятора. На фото показан. Изначально применялся диодный мост номиналом КЦ407 (VD1-VD4). Их разрывало пару раз, пришлось заменить 4 диодами типа КД209.

Как снизить уровень помех от тиристорных регуляторов мощности

Чтоб уменьшить помехи, излучаемые тиристорным регулятором, применяют ферритовые фильтры. Они представляют собой ферритовое кольцо, имеющее обмотку. Эти фильтры встречаются в импульсных блоках питания телевизоров, компьютеров и других изделий. Любой тиристорный регулятор можно оснастить фильтром, который будет эффективно подавлять помехи. Для этого необходимо пропустить через ферритовое кольцо сетевой провод.

Ферритовый фильтр следует устанавливать вблизи источников, издающих помехи, непосредственно в месте установки тиристора. Фильтр может быть расположен как снаружи корпуса, так и внутри. Чем больше количество витков, тем качественней фильтр будет подавлять помехи, но и достаточно продеть провод, идущий к розетке, через кольцо.

Кольцо можно изъять из интерфейсных проводов компьютерной периферии, принтеров, мониторов, сканеров. Если посмотреть на провод, который соединяет монитор или принтер с системным блоком, можно заметить цилиндрическое утолщение на нем. Именно в этом месте расположен ферритовый фильтр, служащий для защиты от высокочастотных помех.

Берем нож, разрезаем изоляцию и извлекаем ферритовое кольцо. Наверняка у ваших друзей или у вас завалялся старый интерфейсный кабель од кинескопного монитора или струйного принтера.

Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя . Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Внимание, ниже приведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы опасно для жизни!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление межу анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение межу его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.


Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.


Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания . Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.


Работает схема регулятора температуры следующим образом. Напряжение переменного тока от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4).

Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться.

Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служить для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.

Конструкция и детали регулятора температуры

Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами.


Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется.


Микросхемы DD1 и DD2 любые 176 или 561 серии. Советский тиристор КУ103В можно заменить, например, современным тиристором MCR100-6 или MCR100-8, рассчитанные на ток коммутации до 0,8 А. В таком случае можно будет управлять нагревом паяльника мощностью до 150 Вт. Диоды VD1-VD4 любые, рассчитанные на обратное напряжение не менее 300 В и ток не менее 0,5 А. Отлично подойдет IN4007 (Uоб=1000 В, I=1 А). Диоды VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9 В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт.

Регулятор мощности настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу.

Схема разработана много лет назад, когда компьютеров и тем более лазерных принтеров не было в природе и поэтому чертеж печатной платы я делал по дедовской технологии на диаграммной бумаге с шагом сетки 2,5 мм. Затем чертеж приклеивал клеем «Момент» на плотную бумагу, а саму бумагу к фольгированному стеклотекстолиту. Далее сверлились отверстия на самодельном сверлильном станке и руками вычерчивались дорожки будущих проводников и контактные площадки для пайки деталей.


Чертеж тиристорного регулятора температуры сохранился. Вот его фотография. Изначально выпрямительный диодный мост VD1-VD4 был выполнен на микросборке КЦ407, но после того, как два раза микросборку разорвало, заменил ее четырьмя диодами КД209.

Как снизить уровень помех от тиристорных регуляторов

Для уменьшения помех излучаемых тиристорным регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров. Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех.

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.

Многие паяльники продаются без регулятора мощности. При включении в сеть температура повышается до максимальной и остаётся в таком состоянии. Для её регулировки нужно отключать прибор от источника питания. У таких паяльников флюс моментально испаряется, образуются окислы и жало находится в постоянно загрязнённом состоянии. Его приходится часто чистить. Для припаивания больших компонентов нужна высокая температура, а маленькие детали можно сжечь. Во избежание таких проблем делают регуляторы мощности.

Как сделать надёжный регулятор мощности для паяльника своими руками

Регуляторы мощности помогают управлять степенью нагрева паяльника.

Подключение готового регулятора мощности нагрева

Если у вас нет возможности или желания возиться с изготовлением платы и электронными компонентами, то можете купить готовый регулятор мощности в магазине радиотоваров или заказать в интернете. Регулятор ещё называют диммером. В зависимости от мощности, устройство стоит 100–200 рублей. Возможно, после покупки вам придётся немного доработать его. Диммеры до 1000 Вт обычно продаются без радиатора охлаждения.

Регулятор мощности без радиатора

А устройства от 1000 до 2000 Вт с маленьким радиатором.

Регулятор мощности с маленьким радиатором

И только более мощные продаются с большими радиаторами. Но на самом деле, диммер от 500 Вт должен иметь небольшой радиатор охлаждения, а от 1500 Вт уже устанавливают крупные алюминиевые пластины.

Китайский регулятор мощности с большим радиатором

Учтите это при подключении прибора. Если необходимо, установите мощный радиатор охлаждения.

Доработанный регулятор мощности

Для правильного подключения устройства к цепи посмотрите на обратную сторону печатной платы. Там указаны клеммы входа IN и выхода OUT. Вход подключается к сетевой розетке, а выход к паяльнику.

Обозначение клемм входа и выхода на плате

Монтаж регулятора производится разными способами. Для их осуществления не нужны специальные знания, а из инструментов вам понадобятся только нож, дрель и отвёртка. Например, можно включить диммер в шнур питания паяльника. Это самый лёгкий вариант.

  1. Разрежьте кабель паяльника на две части.
  2. Подключите оба провода к клеммам платы. Отрезок с вилкой прикрутите ко входу.
  3. Подберите подходящий по размеру пластиковый корпус, проделайте в нём два отверстия и установите туда регулятор.

Ещё один простой способ: можно установить регулятор и розетку на деревянную подставку.

К такому регулятору можно подключать не только паяльник. Теперь рассмотрим более сложный, но компактный вариант.

  1. Возьмите большую вилку от ненужного блока питания.
  2. Извлеките из неё имеющуюся плату с электронными компонентами.
  3. Просверлите отверстия для ручки диммера и двух клемм под входную вилку. Клеммы продаются в радиомагазине.
  4. Если ваш регулятор со световыми индикаторами, то для них тоже сделайте отверстия.
  5. Установите в корпус вилки диммер и клеммы.
  6. Возьмите переносную розетку и включите в сеть. В неё вставьте вилку с регулятором.

Это устройство, как и предыдущее, позволяет подключать разные приборы.

Самодельный двухступенчатый регулятор температуры

Самый простой регулятор мощности - двухступенчатый. Он позволяет переключаться между двумя значениями: максимальным и половиной от максимального.

Двухступенчатый регулятор мощности

Когда цепь в разомкнутом состоянии, ток протекает через диод VD1. Выходное напряжение 110 В. При замыкании цепи выключателем S1 ток обходит диод, так как он подключён параллельно и на выходе получается напряжение 220 В. Диод подбирайте в соответствии с мощностью вашего паяльника. Выходная мощность регулятора рассчитывается по формуле: P = I * 220, где I - ток диода. Например, для диода с током 0,3 А мощность считается так: 0,3 * 220 = 66 Вт.

Так как наш блок состоит всего из двух элементов, то его можно разместить в корпусе паяльника с помощью навесного монтажа.

  1. Припаяйте параллельно детали микросхемы друг к другу непосредственно с использованием лапок самих элементов и проводов.
  2. Соедините с цепью.
  3. Залейте всё эпоксидной смолой, которая служит изолятором и защитой от смещений.
  4. В рукояти сделайте отверстие под кнопку.

Если корпус очень мал, то воспользуйтесь переключателем для светильника. Вмонтируйте его в шнур паяльника и вставьте параллельно выключателю диод.

Переключатель для светильника

На симисторе (с индикатором)

Рассмотрим простую схему регулятора на симисторе и изготовим печатную плату для него.

Регулятор мощности на симисторе

Изготовление печатной платы

Так как схема очень простая, нет смысла из-за неё одной устанавливать компьютерную программу для обработки электросхем. Тем более что для печати нужна специальная бумага. И не у всех есть лазерный принтер. Поэтому пойдём самым простым путём изготовления печатной платы.

  1. Возьмите кусок текстолита. Отрежьте необходимый для микросхемы размер. Поверхность зашкурьте и обезжирьте.
  2. Возьмите маркер для лазерных дисков и нарисуйте схему на текстолите. Чтобы не ошибиться, сначала рисуйте карандашом.
  3. Далее, приступаем к травлению. Можно купить хлорное железо, но после него плохо отмывается раковина. Если случайно капните на одежду, останутся пятна, которые невозможно до конца вывести. Поэтому будем использовать безопасный и дешёвый метод. Подготовьте пластиковую ёмкость для раствора. Влейте перекись водорода 100 мл. Добавьте пол столовой ложки соли и пакетик лимонной кислоты до 50 г. Раствор делается без воды. С пропорциями можно экспериментировать. И всегда делайте свежий раствор. Медь должна вся стравиться. На это уходит около часа.
  4. Промойте плату под струёй колодной воды. Высушите. Просверлите отверстия.
  5. Протрите плату спирто - канифольным флюсом или обычным раствором канифоли в изопропиловом спирте. Возьмите немного припоя и залудите дорожки.

Для нанесения схемы на текстолит можно сделать ещё проще. Нарисовать схему на бумаге. Приклеить её скотчем к вырезанному текстолиту и просверлить отверстия. И только после этого рисовать схему маркером на плате и травить её.

Монтаж

Подготовьте все необходимые компоненты для монтажа:

  • катушка с припоем;
  • штырьки в плату;
  • симистор bta16;
  • конденсатор на 100 нФ;
  • постоянный резистор на 2 кОм;
  • динистор db3;
  • переменный резистор с линейной зависимостью на 500 кОм.

Приступайте к монтажу платы.

  1. Откусите четыре штырька и впаяйте их в плату.
  2. Установите динистор и все остальные детали, кроме переменного резистора. Симистор припаивайте последним.
  3. Возьмите иглу и щёточку. Почистьте промежутки между дорожками, чтобы убрать возможное замыкание.
  4. Возьмите алюминиевый радиатор для охлаждения симистора. Просверлите в нём отверстие. Симистор свободным концом с отверстием будет закреплён на алюминиевый радиатор для охлаждения.
  5. Мелкой наждачной бумагой зачистьте область крепления элемента. Возьмите теплопроводящую пасту марки КПТ-8 и нанесите небольшое количество пасты на радиатор.
  6. Закрепите симистор винтом и гайкой.
  7. Аккуратно отогните плату так, чтобы симистор принял вертикальное положение по отношению к ней. Для того чтобы конструкция стала компактной.
  8. Так как все детали нашего устройства находятся под напряжением сети, для регулировки будем применять ручку из изолирующего материала. Это очень важно. Металлические держатели здесь применять опасно для жизни. Оденьте пластмассовую ручку на переменный резистор.
  9. Кусочком провода соедините крайний и средний выводы резистора.
  10. Теперь к крайним выводам припаяйте два провода. Противоположные концы проводов соедините с соответствующими выводами на плате.
  11. Возьмите розетку. Снимите верхнюю крышку. Подсоедините два провода.
  12. Припаяйте к плате один провод от розетки.
  13. А второй подключите к проводу двухжильного сетевого кабеля с вилкой. У сетевого шнура осталась одна свободная жила. Её припаяйте к соответствующему контакту на печатной плате.

Фактически получается, что регулятор включён последовательно в цепь питания нагрузки.

Схема подключения регулятора к цепи

Если захотите установить светодиодный индикатор в регулятор мощности, то используйте другую схему.

Схема регулятора мощности со светодиодным индикатором

Здесь добавлены диоды:

  • VD 1 - диод 1N4148;
  • VD 2 - светодиод (индикация работы).

Схема с симистором слишком громоздкая для включения в рукоять паяльника, как в случае с двухступенчатым регулятором, поэтому её надо подключить снаружи.

Установка конструкции в отдельный корпус

Все элементы этого устройства находятся под напряжением сети, поэтому нельзя использовать металлический корпус.

  1. Возьмите пластиковую коробочку. Наметьте, как в ней будет размещаться плата с радиатором и с какой стороны подключать сетевой шнур. Просверлите три отверстия. Два крайних нужны для крепления розетки, а среднее для радиатора. Головка винта, к которому будет крепиться радиатор, должна быть спрятана под розеткой по причине электробезопасности. Радиатор имеет контакт со схемой, а она имеет непосредственный контакт с сетью.
  2. Сделайте ещё одно отверстие сбоку корпуса для сетевого кабеля.
  3. Установите винт крепления радиатора. С обратной стороны наденьте шайбу. Прикрутите радиатор.
  4. Просверлите отверстие соответствующего размера под потенциометр, то есть под ручку переменного резистора. Вставьте деталь в корпус и закрепите штатной гайкой.
  5. Наложите розетку на корпус и просверлите два отверстия под провода.
  6. Закрепите розетку двумя гайками на М3. Вставьте провода в отверстия и закрутите крышку винтом.
  7. Проложите провода внутри корпуса. Один из них припаяйте к плате.
  8. Другой к жиле сетевого кабеля, который предварительно вставьте в пластиковый корпус регулятора.
  9. Заизолируйте место соединения изолентой.
  10. Свободный провод шнура соедините с платой.
  11. Закройте корпус крышечкой и закрутите винтами.

Регулятор мощности включается в сеть, а паяльник - в розетку регулятора.

Видео: монтаж схемы регулятора на симисторе и сборка в корпусе

На тиристоре

Регулятор мощности можно сделать на тиристоре bt169d.

Регулятор мощности на тиристоре

Компоненты схемы:

  • VS1 - тиристор BT169D;
  • VD1 - диод 1N4007;
  • R1 - резистор 220k;
  • R3 - резистор 1k;
  • R4 - резистор 30k;
  • R5 - резистор 470E;
  • C1 - конденсатор 0,1mkF.

Резисторы R4 и R5 являются делителями напряжения. Они снижают сигнал, так как тиристор bt169d маломощный и очень чувствителен. Схема собирается аналогично регулятору на симисторе. Так как тиристор слабый, он не будет перегреваться. Поэтому радиатор охлаждения не нужен. Такую схему можно вмонтировать в небольшой коробок без розетки и соединить последовательно с проводом паяльника.

Регулятор мощности в маленьком корпусе

Схема на мощном тиристоре

Если в предыдущей схеме заменить тиристор bt169d на более мощный ку202н и убрать резистор R5, то выходная мощность регулятора повысится. Такой регулятор собирается с радиатором на тиристоре.

Схема на мощном тиристоре

На микроконтроллере с индикацией

Простой регулятор мощности со световой индикацией можно сделать на микроконтроллере.

Схема регулятора на микроконтроллере ATmega851

Подготовьте следующие компоненты для его сборки:


С помощью кнопок S3 и S4 будет меняться мощность и яркость светодиода. Схема собирается аналогично предыдущим.

Если вы хотите, чтобы прибор показывал процент выдаваемой мощности вместо простого светодиода, то используйте другую схему и соответствующие компоненты, включая числовой индикатор.

Схема регулятора на микроконтроллере PIC16F1823

Схему можно вмонтировать в розетку.

Регулятор на микроконтроллере в розетке

Проверка и регулировка схемы блока терморегулятора

Перед подключением блока к инструменту испытайте его.

  1. Возьмите собранную схему.
  2. Соедините её с сетевым проводом.
  3. Подключите лампу на 220 к плате и симистору или тиристору. В зависимости от вашей схемы.
  4. Сетевой провод воткните в розетку.
  5. Вращайте ручку переменного резистора. Лампа должна менять степень накаливания.

Схема с микроконтроллером проверяется аналогично. Только на цифровом индикаторе ещё будет отображаться процент выходной мощности.

Для регулировки схемы меняйте резисторы. Чем больше сопротивление, тем меньше мощность.

Нередко приходится ремонтировать или дорабатывать разные приборы, используя паяльник. От качества пайки зависит работа этих устройств. Если вы приобрели паяльник без регулятора мощности, то обязательно установите его. При постоянном перегреве пострадают не только электронные компоненты, но и ваш паяльник.

Loading...Loading...