Простейшие одноклеточные. Одноклеточные организмы Особенности одноклеточных эукариот

Простейшие животные одноклеточные организмы, признаки, питание нахождение в воде и в организме человека

Общая характеристика

Или одноклеточные, организмы, как видно из их названия, состоят из одной клетки. Тип Protozoa включает более 28 000 видов. Строение простейших можно сравнить со строением клеток многоклеточных организмов. Как у тех, так и у других основу составляют ядро и цитоплазма с различными органеллами (органоидами) и включениями. Однако нельзя забывать, что любая клетка многоклеточного организма входит в состав какой-либо ткани или органа, где выполняет свои специфические функции. Все клетки многоклеточного организма специализированы и не способны к самостоятельному существованию. В противоположность им простейшие животные сочетают в себе функции клетки и самостоятельного организма. (Физиологически клетка Protozoa аналогична не отдельным клеткам многоклеточных животных, а целому многоклеточному организму.

Простейшим свойственны все функции, присущие любым живым организмам: питание, обмен веществ, выделение, восприятие внешних разд-ражений и реакция на них, движение, рост, размножение и смерть.

Простейшие Строение клетки

Ядро и цитоплазма, как указывалось,- основные структурные и функциональные компоненты любой клетки, в том числе и одноклеточных животных. Тело последних содержит органеллы, скелетные и сократительные элементы и разнообразные включения. Оно всегда покрыто клеточной мембраной, более или менее тонкой, но отчетливо видимой в электронном микроскопе. Цитоплазма простейших жидкая, но вязкость ее различна у разных видов и изменяется в зависимости от состояния животного и от окружающей среды (ее температуры и химического состава). У большинства видов цитоплазма прозрачная или молочно-белая, но у некоторых окрашена в голубой или зеленоватый цвет (Stentor, Fabrea sali- па). Химический состав ядра и цитоплазмы простейших изучен далеко не полно, главным образом из-за малых размеров этих животных. Известно, что основу цитоплазмы и ядра, как у всех животных, составляют белки. Нуклеиновые кислоты тесно связаны с белками, они образуют нуклео- протеиды, роль которых в жизни всех организмов чрезвычайно велика. ДНК (дезоксирибонуклеиновая кислота) входит в состав хромосом ядра простейших и обеспечивает передачу наследственной информации от поколения к поколению. РНК (рибонуклеиновая кислота) обнаружена у простейших как в ядре, так и в цитоплазме. Она осуществляет реализацию наследственных свойств одноклеточных организмов, закодированных в ДНК, так как играет ведущую роль в синтезе белков.

Весьма важные химические компоненты цитоплазмы - жироподобные вещества липиды - принимают участие в обмене веществ. Часть из них содержит фосфор (фосфатиды), многие связаны с белками и образуют липопротеиновые комплексы. В цитоплазме присутствуют также запасные питательные вещества в виде включений - капелек или гранул. Это углеводы (гликоген, парамил), жиры и липиды. Они служат энергетическим резервом организма простейших.

Кроме органических веществ, в состав цитоплазмы входит большое количество воды, присутствуют минеральные соли (катионы: К+, Са2+, Mg2+, Na+, Fe3+ и анионы: Cl~, Р043“, N03“). В цитоплазме простейших обнаружены многие ферменты, участвующие в обмене веществ: протеазы, обеспечивающие расщепление белков; карбогидразы, расщепляющие полисахариды; липазы, содействующие перевариванию жиров; большое число энзимов, регулирующих газообмен, а именно щелочная и кислая фосфатазы, оксидазы, пероксидазы и цитохромоксидазы.

Прежние представления о фибриллярной, гранулярной или пенисто-ячеистой структуре цитоплазмы простейших были основаны на исследованиях фиксированных и окрашенных препаратов. Новые методы исследования простейших (в темном поле, в поляризованном свете, с применением прижизненного окрашивания и электронного микроскопирования) позволили установить, что цитоплазма простейших является сложной динамической системой гидрофильных коллоидов (преимущественно белковых комплексов), которая имеет жидкую или полужидкую консистенцию. При ультрамикроскопическом исследовании в темном поле цитоплазма простейших кажется оптически пустой, видны лишь органоиды клетки и ее включения.

Коллоидное состояние белков цитоплазмы обеспечивает изменчивость ее структуры. В цитоплазме постоянно происходят изменения агрегатного состояния белков: они переходят из жидкого состояния (золя) в более твердое, желатинообразное (геля). С этими процессами связано выделение более плотного слоя эктоплазмы, образование оболочки - пелликулы и амебоидное движение многих простейших.

Ядра простейших, как и ядра клеток многоклеточных, состоят из хроматинового материала, ядерного сока, содержат ядрышки и ядерную оболочку. Большинство простейших содержит лишь по одному ядру, но имеются и многоядерные формьк. При этом ядра могут быть одинаковыми (многоядерные амебы из рода Pelomyxa, многоядерные жгутиковые Polymastigida, Opalinida) или различаться по форме и функции. В последнем случае говорят о ядерной дифференцировке, или я дерном дуализме. Так, всему классу инфузорий и некоторым фораминиферам свойствен ядерный дуалйзм^т. е. неодинаковые по форме и функции ядра.

Бее виды простейших, как и другие организмы, подчиняются закону постоянства числа хромосом. Число их может быть одинарным, или гаплоидным (большинство жгутиковых и споровики), либо двойным, или диплоидным (инфузории, опалины и, по-видимому, саркодовые). Число хромосом у разных видов простейших варьирует в больших пределах: от 2-4 до 100-125 (в гаплоидном наборе). Кроме того, наблюдаются ядра с кратным увеличением числа наборов хромосом. Их называют полиплоидными. Выяснено, что большие ядра, или макронуклеусы, инфузорий и ядра некоторых радиолярий полиплоидны. Весьма вероятно, что ядро Amoeba proteus тоже полиплоидно, число хромосом у этого вида доходит до 500.

Размножение Деление ядра

Основным типом деления ядер как простейших, так и многоклеточных организмов является митоз, или кариокинез. При митозе происходит правильное равномерное распределение хромосомного материала между ядрами делящихся клеток. Это обеспечивается продольным расщеплением каждой хромосомы на две дочерние в метафазе митоза, причем обе дочерние хромосомы отходят к разным полюсам делящейся клетки.

Митотическое деление ядра грегарины Monocystis magna:
1, 2 - профаза; 3 - переход к метафазе; 4, 5 - метафаза; 6 - ранняя анафаза; 7, 8 - поздняя
анафаза; 9, 10 - телофаза.

При делении ядра грегарины Monocystis magna можно наблюдать все фигуры митоза, свойственные многоклеточным. В профазе в ядре видны нитевидные хромосомы, некоторые из них связаны с ядрышком (рис. 1, 1, 2). В цитоплазме можно различить две центросомы, в центре которых расположены центриоли с расходящимися радиально лучами звезды. Центросомы сближаются с ядром, примыкают к его оболочке и перемещаются к противоположным полюсам ядра. Ядерная оболочка растворяется, и формируется ахроматиновое веретено (рис. 1, 2-4). Происходит спира- лизация хромосом, вследствие чего они сильно укорачиваются и собираются в центре ядра, ядрышко растворяется. В метафазе хромосомы перемещаются в экваториальную плоскость. При этом каждая хромосома состоит из двух хроматид, лежащих параллельно друг другу и скрепленных одним центромером. Фигура звезды вокруг каждой центросомы исчезает, а центриоли делятся пополам (рис. 1, 4, 5). В анафазе центромеры каждой хромосомы делятся пополам и их хроматиды начинают расходиться к полюсам веретена. Характерно для простейших, что тянущие нити веретена, прикрепленные к центромерам, различимы лишь у некоторых видов. Все веретено вытягивается, а его нити, идущие непрерывно от полюса к полюсу, удлиняются. Расхождение хроматид, превратившихся в хромосомы, обеспечивают два механизма: растаскивание их под действием сокращения тянущих нитей веретена и вытягивание непрерывных нитей веретена. По-следнее приводит к удалению полюсов клетки друг от друга (рис. 1, 6", 7). В телофазе процесс идет в обратном порядке: на каждом полюсе группа хромосом одевается ядерной оболочкой. Хромосомы деспирализу- ются и утончаются, вновь формируются ядрышки. Веретено исчезает, а вокруг разделившихся центриолей образуются две самостоятельные центросомы с лучами звезды. Каждая дочерняя клетка имеет две центросомы - будущие центры следующего митотического деления (рис. 1, 9,10). Вслед за делением ядра обычно делится и цитоплазма. Однако у некоторых простейших, в том числе и у Monocystis, происходит ряд последовательных делений ядер, в результате которых в жизненном цикле возникают временно многоядерные стадии. Позднее вокруг каждого ядра обособляется участок цитоплазмы и формируется одновременно много мелких клеток.

От описанного выше процесса митоза бывают различные отклонения: ядерная оболочка может сохраняться в течение всего митотического деления, ахроматиновое веретено может формироваться под оболочкой ядра, у некоторых форм не образуются центриоли. Наиболее значительны отклонения у некоторых эвгленовых (Euglenida): у них отсутствует типичная метафаза, а веретено деления проходит вне ядра. В метафазе хромосомы, состоящие из двух хроматид, располагаются вдоль оси ядра, экваториальная пластинка не формируется, сохраняются ядерная оболочка и ядрышко, последнее делится пополам и переходит в дочерние ядра. Никаких принципиальных различий между поведением хромосом в митозе у простейших и многоклеточных нет.

До применения новых методов исследования деление ядер многих простейших описывалось как амитоз, или прямое деление. Под истинным амитозом сейчас понимают деление ядер без правильного рас-хождения хроматид (хромосом) в дочерние ядра. В результате происходит образование ядер с неполными наборами хромосом. Они не способны в дальнейшем к нормальным митотическим делениям. У простейших таких делений ядер в норме ожидать трудно. Амитоз наблюдается факультативно как более или менее патологический процесс.

Тело простейших устроено довольно сложно. В пределах одной клетки происходит дифференциация ее отдельных частей, которые выполняют различные функции. Так, по аналогии с органами многоклеточных животных эти части простейших были названы органоидами или о р г а н е л л а м и. Различают органеллы движения, питания, восприятия световых и иных раздражений, выделительные органеллы и т. п.

Движение

Органеллами движения у Protozoa служат псевдоподии, или ложноножки, жгутики и реснички. Псевдоподии образуются большей частью в момент движения и могут исчезать, как только простейшее прекращает движение. Псевдоподии - это временные плазматические выросты тела простейших, не имеющих постоянной формы. Их оболочка представлена очень тонкой (70-100 А) и эластичной клеточной мембраной. Псевдоподии характерны для саркодовых, некоторых жгутиковых и споровиков.

Жгутики и реснички представляют собой постоянные выросты наружного слоя цитоплазмы, способные к ритмическим движениям. Ультратонкое строение этих органелл изучалось с помощью электронного микроскопа. Было выяснено, что они устроены в значительной степени одинаково. Свободная часть жгутика или реснички отходит от поверхности клетки.

Внутренняя часть погружена в эктоплазму и называется базальным тельцем или бле- фаропластом. На ультратонких срезах жгутика или реснички можно различить 11 продольных фибрилл, 2 из которых расположены в центре, а 9 - по периферии (рис. 2). Центральные фибриллы у некоторых видов имеют спиральную исчерченность. Каждая периферическая фибрилла состоит из двух соединенных трубочек, или субфпбрилл. Периферические фибриллы переходят в базальное тельце, а центральные до него не доходят. Мембрана жгутика переходит в мембрану тела простейшего.

Несмотря на близость строения ресничек и жгутиков, характер их движения различен. Если жгутики совершают сложные винтовые движения, то работу ресничек проще всего сравнить с движением весел.

Кроме базального тельца, в цитоплазме некоторых простейших имеется парабазальное тельце. Базальное тельце является основой всего опорно-двигательного аппарата; кроме того, оно регулирует процесс митотического деления простейшего. Парабазальное тельце играет роль в обмене веществ простейшего, временами оно исчезает, а затем может появляться вновь.

Органы чувств

Простейшие обладают способностью определять интенсивность света (освещенность) с помощью светочувствительной органеллы - глазка. Изучение ультратонкого строения глазка морского жгутиконосца Chromulina psammobia показало, что в его состав входит видоизмененный жгутик, погруженный в цитоплазму.

В связи с различными типами питания, которые позднее будут разобраны подробно, у простейших весьма велико разнообразие пищеварительных органелл: от простых пищеварительных вакуолей или пузырьков до таких специализированных образований, как клеточный рот, ротовая воронка, глотка, порошица.

Выделительная система

Большинству простейших свойственна способность к перенесению неблагоприятных условий среды (пересыхание временных водоемов, жара, холод и т. п.) в форме цист. Готовясь к инцистированию, простейшее выделяет значительное количество воды, что ведет к повышению плотности цитоплазмы. Выбрасываются остатки пищевых частиц, исчеэают ресиички и жгутики, втягиваются псевдоподии. Понижается общий обмен веществ, формируется защитная оболочка, часто состоящая из двух слоев. Образованию цист у многих форм предшествует накопление в цитоплазме запасных питательных веществ.

Простейшие не теряют жизнеспособности в цистах очень долго. В опытах эти сроки превышали у рода Oicomonas (Protomonadida) 5 лет, у Нае- matococcus pluvialis - 8 лет, а для Peridinium cinctum максимальный срок выживания цист превысил 16 лет.

В форме цист простейшие переносятся ветром на значительные рас-стояния, что объясняет однородность фауны простейших на всем земном шаре. Таким образом, цисты не только несут защитную функцию, но и служат основным средством расселения простейших.

К одноклеточным относятся организмы, тело которых состоит всего из одной клетки, имеющей ядро. Они сочетают в себе свойства клетки и самостоятельного организма.

Одноклеточные растения наиболее часто встречаются среди водорослей. Одноклеточные водоросли обитают в пресных водоемах, в морях, почве.

Широко распространена в природе шаровидная одноклеточная хлорелла. Она защищена плотной оболочкой, под которой находится мембрана. В цитоплазме располагаются ядро и один хлоропласт, который у водорослей называется хроматофором. В нем содержится хлорофилл. В хроматофоре под действием солнечной энергии образуются органические вещества, как и в хлоропластах наземных растений.

Похожа на хлореллу шаровидная водоросль хлорококк («зеленый шарик»). Некоторые виды хлорококка обитают и на суше. Именно они придают стволам старых деревьев, произрастающих во влажных условиях, зеленоватый цвет.

Есть среди одноклеточных водорослей и подвижные формы, например . Органом ее движения служат жгутики- тонкие выросты цитоплазмы.

Одноклеточные грибы

Продающиеся и магазинах пачки дрожжей - это спрессованные одноклеточные дрожжи. Дрожжевая клетка имеет типичное строение грибной клетки.

Одноклеточный гриб фитофтора поражает живые листья и клубни картофеля, листья и плоды томатов.

Одноклеточные животные

Подобно одноклеточным растениям и грибам, существуют животные, у которых функции целого организма выполняет одна клетка. Ученые объединили всех в большую группу - простейшие.

Несмотря на разнообразие организмов этой группы, в основе их строения лежит одна животная клетка. Поскольку она не содержит хлоропластов, простейшие не способны производить органические вещества, а потребляют их в готовом виде. Они питаются бактериями. одноклеточными , кусочками разлагающихся организмов. Среди них много возбудителей тяжелых заболеваний человека и животных (дизентерийная , лямблии, малярийный плазмодий).

К простейшим, широко распространенным в пресных водоемах, относятся относятся амеба и инфузория-туфелька. Их тело состоит из цитоплазмы и одного (амеба) или двух (инфузория-туфелька) ядер. В цитоплазме образуются пищеварительные вакуоли, в них происходит переваривание пищи. Через сократительные вакуоли удаляются избыток воды и продукты обмена. Снаружи тело покрыто проницаемой оболочкой. Через нее поступают кислород и вода, а выделяются различные вещества. Большинство простейших имеют специальные органы движения - жгутики или реснички. У инфузории-туфельки ресничками покрыто все тело, их насчитывается 10-15 тысяч.

Движение амебы происходит при помощи ложноножек - выпячиваний тела. Наличие специальных органоидов (органов движения, сократительных и пищеварительных вакуолей) позволяет клеткам простейших выполнять функции живого организма.

Загадочная группа микроскопических одноклеточных организмов, рассматриваемая как подцарство царства Животные, а иногда выделяемая в отдельное царство.

Простейшие одноклеточные

Впервые люди узнали о существовании простейших в VII веке из открытия голландского натуралиста , именно он первым удостоился наблюдать их в капле воды, в изобретенный им же микроскоп.

За многие годы развития биологии, с появлением электронной микроскопии и генетики эта группа организмов все больше изучалась и систематика ее претерпевала значительные изменения.

Сегодня их все чаще определяют в отдельное царство, так как среди простейших одноклеточных есть организмы, обладающие признаками, отличными от признаков животных. Например, способностью к фотосинтезу, характерной для растений, обладает Эвглена зеленая. Или, к примеру, тип Лабиринтулы — раньше относили к грибам.

Клетка простейшего одноклеточного организма имеет организацию, общую для клеток эукариот. Но так же у большинства простейших имеются специфические органоиды:

  • сократительные вакуоли, служащие для удаления излишка жидкости и поддержания нужного осмотического давления;
  • разнообразные органоиды движения: жгутики, реснички и псевдоподии (ложноножки). Ложноножки, как видно из названия, настоящими органеллами не являются, они представляют всего лишь выпячивания клетки.

Подцарство (или царство) Простейшие одноклеточные представлено 7 основными типами:


Рассмотрим типы более подробно

Тип Саркомастигофоры

Подразделяется на три подтипа: Жгутиковые, Опалины, Саркодовые.

Жгутиковые - группа организмов, как видно из названия для них характерны общие органоиды движения - жгутики.

Места обитания: пресные воды, моря, почвы. Встречаются жгутиковые, обитающие в многоклеточных организмах. Для жгутиковых характерно сохранение постоянной форме тела, благодаря пелликуле, или панцирю.

Размножаются в основном бесполым путем: продольным делением надвое.

Типы питания гетеротрофный, автотрофный, миксотрофный.

Строение рассмотрим на примере Эвглены зеленой .


  • Для нее характерен миксотрофный (смешанный) тип питания.
  • Имеются специальные органоиды - хлорофиллсодержищие хроматофоры, в которых происходит процесс фотосинтеза, аналогичный фотосинтезу растений.
  • В связи со способностью к фотосинтезу у Эвглены зеленой имеется светочувствительный органоид - стигма, его еще иногда называют светочувствительным глазком.
  • Удаление излишков жидкости происходит благодаря работе сократительной вакуоли.



Некоторые виды трипаносом вызывают сонную болезнь . Переносчиком Африканского трипаносомоза (так по-научному называется эта болезнь) является муха цеце. Это кровососущее насекомое.

Трипаносомы. Плавают и вызывают опасную болезнь.




Лямблия . Похожа на грушу. Мнемоническое правило: лямблия в форме груши, по этому чтобы ей не заразиться, надо мыть грушу.

Саркодовые - простейшие, не имеющие постоянной формы тела.

Органоиды движения - псевдоподии (ложноножки). Раньше саркодовых и жгутиковых относили к двум разным типам, противопоставляя их органоиды движения: псевдоподии и жгутики. Но оказалось, что на некоторых этапах развития у саркодовых имеются жгутики, а некоторые организмы обладают признаками как жгутиковых, так и саркодовых.

Подтип саркодовые включает классы: Корненожки, Радиолярии (Лучевики), Солнечники.

Корненожки . Этот класс включает отряды: Амебы, раковинные амебы, фораминиферы.



  • Амебы питаются фагоцитозом. Вокруг захваченного кусочка пищи образуется пищеварительная вакуоль.
  • Размножаются делением надвое.
  • Если Эвглена зеленая двигается в сторону света (так как он ей нужен для фотосинтеза), то Амеба обыкновенная — наоборот — движется от света. Так же амеба избегает других раздражителей.

Обычно рассматривают такой опыт: в каплю воды с амебой с одной стороны кладут кристаллик соли, и можно наблюдать движение амебы в обратную сторону.

Раковинные амебы . Они имеют схожее строение с амебами, только имеют раковину, с отверстием (устье) из которого «выглядывают» псевдоподии. Все раковинные амебы свободноживущие, обитают в пресных водах. Так как раковина не может разделиться надвое, деление происходит по-особому: образуется дочерняя особь, но она не сразу отделяется от материнской. Вокруг дочерней образуется новая раковина. Потом амебы разъединяются.


Фораминиферы - один из самых многочисленных отрядов простейших одноклеточных — корненожек. Входят в состав морского планктона. У фораминифер, как и у раковинных амеб, есть раковина.


Радиолярии очень интересные микроорганизмы, входят в состав морского планктона. Для них характерно наличие внутреннего скелета. У радиолярий наибольшее количество хромосом из всех живых существ.


Радиолярии, Фораминиферы и раковинные амебы, умирая, оставляют после себя раковины и внутренние скелеты. Скопление всего этого добра образует залежи известняка, мела, кварца и прочего.

Солнечники - немногочисленная группа простейших. Свое название получили из-за схожести внешнего вида псевдоподий с лучами солнца. Такие псевдоподии называются аксоподиями.

Тип Инфузории

Характерные особенности:

  • постоянная форма тела, благодаря наличию пелликулы;
  • для некоторых инфузорий характерны специфические защитные органеллы;
  • ядерный дуализм, т. е. наличие двух ядер: полиплоидного макронуклеуса (вегетативного ядра) и диплоидного микронуклеуса (генеративного ядра). Такая ситауция с ядрами необходима для осуществления полового процесса: . А непосредственно размножение только бесполое: продольным делением надвое.
  • Органеллы передвижения - реснички. Строение ресничек такое же, как у жгутиков.

Строение рассмотрим на примере Инфузории-туфельки. Это - классика, это знать надо.

Инфузория-туфелька - хищник. Питается бактериями. Жертва захватывается специализированными ресничками и направляется в клеточный рот, затем следует клеточная глотка, затем пищеварительная вакуоль. Не переваренные остатки выбрасываются через порошицу во внешнюю среду.

В пищеварительной системе жвачных животных обитают симбиотические инфузории, помогающие переваривать клетчатку:

Инфузория-трубач

Сувойки - инфузории ведущие прикрепленный образ жизни.

Тип Апикомплексы

Например, простейшие рода Плазмодии вызывают опасное заболевание - малярию.


Тип Лабиринтулы

Простейшие одноклеточные свободноживущие колониальные простейшие, обитающие на морских водорослях. Ранее относили к грибам. Название такое получили потому, что колония действительно напоминает лабиринт.

Тип Асцетоспоридии

Тип Миксоспоридии

Тип Микроспоридии

Итак, мы рассмотрели типы царства (подцарства) Простейших одноклеточных организмов. Чтобы все знания закрепились, давайте посмотрим на систематику:

Не смотря на свои небольшие размеры, простейшие одноклеточные имеют огромное значение:

  • простейшие входят в пищевые цепи;
  • образуют планктон;
  • выполняют роль сапрофитов, поглощая разлагающиеся останки;
  • простейшие очищают водоемы не только от гниющих остатков, но и от бактерий;
  • участвуют в образовании почв и залежей мела и известняка.
  • являются хорошими индикаторами чистоты воды.
  • автотрофные и миксотрофные простейшие, вместе с растениями выполняют очень важную миссию - пополнение атмосферы кислородом.

К одноклеточным, или простейшим, относятся животные, тело которых морфологически соответствует одной клетке, будучи вместе с тем самостоятельным целостным организмом со всеми присущимиему функциями. Общее число видов простейших превышает 30 тыс.

Возникновение одноклеточных животных сопровождалось ароморфозами: 1. Появились диплоидность (двойной набор хромосом) в ограниченное оболочкой ядро как структура, отделяющая генетический аппарат клетки от цитоплазмы и создающая специфическую среду для взаимодействия генов в диплоидном наборе хромосом. 2. Возникли органоиды, способные к самовоспроизведению. 3. Образовались внутренние мембраны. 4. Появился высокоспециализированный и динамичный внутренний скелет - цитоскелет. б. Возник половой процесс как форма обмена генетической информацией между двумя особями.

Строение. План строения простейших соответствует общим чертам организации эукариотической клетки.

Генетический алпарат одноклеточных представлен одним или несколькими ядрами. Если есть два ядра, то, как правило, одно из них, диплоидное, - генеративное, а другое, полиплоидное, - вегетативное. Генеративное ядро выполняет функции, связанные с размножением. Вегетативное ядро обеспечивает все процессы жизнедеятельности организма.

Цитоплазма состоитиз светлой наружной части, лишенной органоидов, - эктоплазмы и более темной внутренней части, содержащей основные органоиды, - эндоплазмы. В эндоплазме имеются органоиды общего назначения.

В отличие от клеток Многоклеточного Организма у одноклеточных есть органоиды специального назначения. Это органоиды движения- ложноножки - псевдоподии; жгутики, реснички. Имеются и органоиды осморегуляции - сократительные вакуоли. Есть специализированные органоиды, обеспечивающие раздражимость.

Одноклеточные с постоянной формой тела обладают постоянными пищеварительными органоидами: клеточной воронкой, клеточным ртом, глоткой, а также органоидом выделения непереваренных остатков - порошицей.

В неблагоприятных условиях существования ядро с небольшим объемом цитоплазмы, содержащим необходимые органоиды, окружается толстой многослойной капсулой - цистой и переходит от активного состояния к покою. При попадании в благоприятные условия цисты "раскрываются", и из них выходят простейшие в виде активных и подвижных особей.

Размножение. Основная форма размножения" простейших - бесполое размножение путем митотического деления клетки. Однако часто встречается половой процесс.

Класс Саркодовые. или Корненожки.

Амеба

В состав класса входит отряд амебы. Характерный признак - способность образовывать цитоплазматические выросты - псевдоподии (ложноножки), благодаря которым они передвигаются.

Амеба: 1 - ядро, 2 - цитоплазма, 3 - псевдоподии, 4 - сократительная вакуоль, 5 - образовавшаяся пищеварительная вакуоль

Строение. Форма тела непостоянна. Наследственный аппарат представлен одним, как правило, полиплоидным ядром. Цитоплазма имеет отчетливое подразделение на экто- и эндоплазму, в которой расположены органоиды общего назначения. У свободноживущих пресноводных форм имеется просто устроенная сократительная вакуоль.

Способ питания. Все корненожки питаются путем фагоцитоза, захватывая пищу ложноножками.

Размножение. Для наиболее примитивных представителей отрядов амеб и раковинных амеб характерно лишь бесполое размножение путем митотического деления клеток.

Класс Жгутиковые

Строение. У жгутиковых имеются жгутики, служащие органоидами движения и способствующие захвату пищи. Их может быть один, два или множество. Движением жгутика в окружающей воде вызывается водоворот, благодаря которому мелкие взвешенные в воде частички увлекаются к основанию жгутика, где имеется небольшое отверстие - клеточный рот, ведущий в глубокий канал-глотку.

Эвглена зеленая: 1 - жгутик, 2 - сократительная вакуоль, 3 - хлоропласты, 4 - ядро, 5 - сократительная вакуоль

Почти все жгутиковые покрыты плотной эластичной оболочкой, которая наряду с развитыми элементами цитоскелета определяет постоянную форму тела.

Генетический аппарат у большинства жгутиковых представлен одним ядром, но существуют также двуядерные (например, лямблии) и многоядерные (например, опалина) виды.

Цитоплазма четко делится на тонкий наружный слой - прозрачную эктоплазму и глубже лежащую эндоплазму.

Способ питания. По способу питания жгутиковые делятся на три группы. Автотрофные организмы как исключение в царстве животных синтезируют органические вещества (углеводы) из углекислого газа и воды при помощи хлорофилла и энергии солнечного излучения. Хлорофилл находится в хроматофорах, сходных по организации с пластидами растений. У многих жгутиконосцев с растительным типом питания имеются особые аппараты, воспринимающие световые раздражения - стигмы.

Гетеротрофные организмы (трипаносома - возбудитель сонной болезни) не имеют хлорофилла и поэтому не могут синтезировать углеводы из неорганических веществ. Миксотрофные организмы способны к фотосинтезу, но питаются также минеральными и органическими веществами, созданными другими организмами (эвглена зеленая).

Осморегуляторная и отчасти выделительная функции выполняются у жгутиковых,как у саркодовых, сократительными вакуолями, которые имеются у свободноживущих пресноводных форм.

Размножение. У жгутиковых отмечается половое и бесполое размножение. Обычная форма бесполого размножения - продольное деление.

Тип Инфузории, или Ресничные

Общая характеристика. К типу инфузорий относится более 7 тыс. видов. Органоидами движения служат реснички. Имеется два ядра: крупное полиплоидное - вегетативное ядро (макронуклеус) и мелкое диплоидное - генеративное ядро (микронуклеус).

Строение. Инфузории могут быть разнообразной формы, во чаще всего овальной, как инфузория туфелька.Размеры их достигают в длину 1мм. Снаружи тело покрыто пелликулой. Цитоплазма всегда четко разделена на экто- и энтодерму. В эктоплазме находятся базальные тельца ресничек. С базальными тельцами ресничек тесно связаны элементы цитоскелета.

Способ питания инфузории. В передней половине тела находится продольная выемка - околоротовая впадина. В глубине ее расположено овальное отверстие - клеточный рот, ведущий в изогнутую глотку, которую поддерживает система скелетных глоточных нитей. Глотка открывается непосредственно в эндоплазму.

Осморегуляция. У свободноживущих инфузорийимеютсясократительные вакуоли.

Инфузория туфелька: 1 - реснички, 2 - пищеварительные вакуоли, 3 - малое ядро, 4 - большое ядро, 5 - клеточныйрот, в - клеточная глотка, 7 - порошица, 8 - сократительная вакуоль<

Размножение. Для инфузорий характерно чередование полового и бесполого размножения. При бесполом размножении происходит поперечное деление инфузорий.

Среда обитания. Свободноживущие инфузории встречаются и в пресных водах, и в морях.Образ жизни их разнообразен.

Необычайное разнообразие живых существ на планете вынуждает находить различные критерии для их классификации. Так, их относят к клеточным и неклеточным формам жизни, поскольку клетки являются единицей строения почти всех известных организмов — растений, животных, грибов и бактерий, тогда как вирусы являются неклеточными формами.

Одноклеточные организмы

В зависимости от количества клеток, входящих в состав организма, и степени их взаимодействия выделяют одноклеточные, колониальные и многоклеточные организмы. Несмотря на то, что все клетки сходны морфологически и способны осуществлять обычные функции клетки (обмен веществ, поддержание гомеостаза, развитие и др.), клетки одноклеточных организмов выполняют функции целостного организма. Деление клетки у одноклеточных влечет за собой увеличение количества особей, а в их жизненном цикле отсутствуют многоклеточные стадии. В целом у одноклеточных организмов совпадают клеточный и организменный уровни организации. Одноклеточными является подавляющее большинство бактерий, часть животных (простейшие), растений (некоторые водоросли) и грибов. Некоторые систематики даже предлагают выделить одноклеточные организмы в особое царство - протистов.

Колониальные организмы

Колониальными называют организмы, у которых в процессе бесполого размножения дочерние особи остаются соединенными с материнским организмом, образуя более или менее сложное объединение - колонию. Кроме колоний многоклеточных организмов, таких как коралловые полипы, имеются и колонии одноклеточных, в частности водоросли пандорина и эвдорина. Колониальные организмы, по-видимому, были промежуточным звеном в процессе возникновения многоклеточных.

Многоклеточные организмы

Многоклеточные организмы, вне всякого сомнения, обладают более высоким уровнем организации, чем одноклеточные, поскольку их тело образовано множеством клеток. В отличие от колониальных, которые также могут иметь более одной клетки, у многоклеточных организмов клетки специализируются на выполнении различных функций, что отражается и в их строении. Платой за эту специализацию является утрата их клетками способности к самостоятельному существованию, а зачастую и к воспроизведению себе подобных. Деление отдельной клетки приводит к росту многоклеточного организма, но не к его размножению. Онтогенез многоклеточных характеризуется процессом дробления оплодотворенной яйцеклетки на множество клеток-бластомеров, из которых в дальнейшем формируется организм с дифференцированными тканями и органами. Многоклеточные организмы, как правило, крупнее одноклеточных. Увеличение размеров тела по отношению к их поверхности способствовало усложнению и совершенствованию процессов обмена, формированию внутренней среды и, в конечном итоге, обеспечило им большую устойчивость к воздействиям окружающей среды (гомеостаз). Таким образом, многоклеточные обладают рядом преимуществ в организации по сравнению с одноклеточными и представляют собой качественный скачок в процессе эволюции. Многоклеточными являются немногие бактерии, большинство растений, животных и грибов.

Дифференцировка клеток у многоклеточных организмов приводит к формированию у растений и животных (кроме губок и кишечнополостных) тканей и органов.

Ткани и органы

Ткань — это система межклеточного вещества и клеток, сходных по строению, происхождению и выполняющих одинаковые функции.

Различают простые ткани, состоящие из клеток одного типа, и сложные, состоящие из нескольких типов клеток. Например, эпидермис у растений состоит из собственно покровных клеток, а также замыкающих и побочных клеток, образующих устьичные аппараты.

Из тканей формируются органы. В состав органа входит несколько типов тканей, связанных структурно и функционально, но обычно один из них преобладает. Например, сердце образовано в основном мышечной, а головной мозг - нервной тканью. В состав листовой пластинки растения входят покровная ткань (эпидермис), основная ткань (хлорофиллоносная паренхима), проводящие ткани (ксилема и флоэма) и др. Однако преобладает в листе основная ткань.

Органы, выполняющие общие функции, образуют системы органов. У растений выделяют образовательные, покровные, механические, проводящие и основные ткани.

Ткани растений

Образовательные ткани

Клетки образовательных тканей (меристем) в течение длительного времени сохраняют способность к делению. Благодаря этому они принимают участие в образовании всех остальных типов тканей и обеспечивают рост растения. Верхушечные меристемы находятся на кончиках побегов и корней, а боковые (например, камбий и перицикл) — внутри этих органов.

Покровные ткани

Покровные ткани расположены на границе с внешней средой, т. е. на поверхности корней, стеблей, листьев и других органов. Они защищают внутренние структуры растения от повреждений, действия низких и высоких температур, излишнего испарения и иссушения, проникновения болезнетворных организмов и т. п. Кроме того, покровные ткани регулируют газообмен и испарение воды. К покровным тканям относятся эпидермис, перидерма и корка.

Механические ткани

Механические ткани (колленхима и склеренхима) выполняют опорную и защитную функции, придавая прочность органам и образуя «внутренний скелет» растения.

Проводящие ткани

Проводящие ткани обеспечивают в организме растения передвижение воды и растворенных в ней веществ. Ксилема доставляет воду с растворенными минеральными веществами от корней ко всем органам растения. Флоэма осуществляет транспорт растворов органических веществ. Ксилема и флоэма обычно расположены рядом, образуя слои или проводящие пучки. В листьях их можно легко заметить в виде жилок.

Основные ткани

Основные ткани, или паренхима, составляют основную часть тела растения. В зависимости от расположения в организме растения и особенностей среды его обитания основные ткани способны выполнять различные функции - осуществлять фотосинтез, запасать питательные вещества, воду или воздух. В связи с этим различают хлорофилл о но сную, запасающую, водоносную и воздухоносную паренхиму.

Как вы помните из курса биологии 6-го класса, у растений выделяют вегетативные и генеративные органы. Вегетативными органами являются корень и побег (стебель с листьями и почками). Генеративные органы подразделяются на органы бесполого и полового размножения.

Органы бесполого размножения растений называются спорангиями. Они располагаются поодиночке или объединяются в сложные структуры (например, сорусы у папоротников, спороносные колоски у хвощей и плаунов).

Органы полового размножения обеспечивают образование гамет. Мужские (антеридии) и женские (архегонии) органы полового размножения развиваются у мхов, хвощей, плаунов и папоротников. Для голосеменных растений характерны только архегонии, развивающиеся внутри семязачатка. Антеридии у них не формируются, и мужские половые клетки - спермин - образуются из генеративной клетки пыльцевого зерна. У цветковых растений отсутствуют как антеридии, так и архегонии. Генеративным органом у них является цветок, в котором происходит образование спор и гамет, оплодотворение, формирование плодов и семян.

Ткани животных

Эпителиальные ткани

Эпителиальные ткани покрывают организм снаружи, выстилают полости тела и стенки полых органов, входят в состав большинства желез. Эпителиальная ткань состоит из клеток, плотно прилегающих друг к другу, межклеточное вещество не развито. Главные функции эпителиальных тканей — защитная и секреторная.

Соединительные ткани

Соединительные ткани характеризуются хорошо развитым межклеточным веществом, в котором поодиночке или группами располагаются клетки. Межклеточное вещество, как правило, содержит большое количество волокон. Ткани внутренней среды - самая разнообразная по строению и функциям группа тканей животных. Сюда относятся костная, хрящевая и жировая ткани, собственно соединительные ткани (плотная и рыхлая волокнистые), а также кровь, лимфа и др. Основные функции тканей внутренней среды — опорная, защитная, трофическая.

Мышечные ткани

Мышечные ткани характеризуются наличием сократительных элементов — миофибрилл, расположенных в цитоплазме клеток и обеспечивающих сократимость. Мышечные ткани выполняют двигательную функцию.

Нервная ткань

Нервная ткань состоит из нервных клеток (нейронов) и клеток глии. Нейроны способны возбуждаться в ответ на действие различных факторов, генерировать и проводить нервные импульсы. Глиальные клетки обеспечивают питание и защиту нейронов, формирование их оболочек.

Ткани животных участвуют в формировании органов, которые, в свою очередь, объединяются в системы органов. В организме позвоночных животных и человека различают следующие системы органов: костную, мышечную, пищеварительную, дыхательную, мочевыделительную, половую, кровеносную, лимфатическую, иммунную, эндокринную и нервную. Кроме того, у животных имеются различные сенсорные системы (зрительная, слуховая, обонятельная, вкусовая, вестибулярная и др.), с помощью которых организм воспринимает и анализирует разнообразные раздражители внешней и внутренней среды.

Любому живому организму свойственно получение из окружающей среды строительного и энергетического материала, обмен веществ и превращение энергии, рост, развитие, способность к размножению и т. п. У многоклеточных организмов разнообразные процессы жизнедеятельности (питание, дыхание, выделение и др.) реализуются благодаря взаимодействию определенных тканей и органов. При этом все процессы жизнедеятельности проходят под контролем регуляторных систем. Благодаря этому сложный многоклеточный организм функционирует как единое целое.

У животных к регуляторным системам относятся нервная и эндокринная. Они обеспечивают согласованную работу клеток, тканей, органов и их систем, обусловливают целостные реакции организма на изменения условий внешней и внутренней среды, направленные на поддержание гомеостаза. У растений жизненные функции регулируются с помощью различных биологически активных веществ (например, фитогормонов).

Таким образом, в многоклеточном организме все клетки, ткани, органы и системы органов взаимодействуют друг с другом, слаженно функционируют, благодаря чему организм представляет собой целостную биологическую систему.

Loading...Loading...