Общая характеристика элементов IV группы, главной подгруппы периодической системы Д. И

Металлические свойства усиливаются, неметаллические - уменьшаются. На внешнем слое - 4 электрона.

Химические свойства (на основе углерода)

Взаимодействуют с металлами:

4Al + 3C = Al 4 C 3 (реакция идсет при высокой температуре)

Взаимодействуют с неметаллами:

2Н 2 + C = CН 4

Взаимодействуют с водой:

C + H 2 O = CO + H 2

2Fe 2 O 3 + 3C = 3CO 2 + 4Fe

Взаимодействуют с кислотами:

3C + 4HNO 3 = 3CO 2 + 4NO + 2H 2 O

Углерод. Характеристика углерода, исходя из его положения в периодической системе, аллотропия углерода, адсорбция, распространение в природе, получение, свойства. Важнейшие соединения углерода

Углерод (химический символ — C, лат. Carboneum) — химический элемент четырнадцатой группы (по устаревшей классификации — главной подгруппы четвёртой группы), 2-го периода периодической системы химических элементов. порядковый номер 6, атомная масса — 12,0107.

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Природный углерод состоит из двух стабильных изотопов — 12С (98,93 %) и 13С (1,07 %) и одного радиоактивного изотопа 14С (β-излучатель, Т½ = 5730 лет), сосредоточенного в атмосфере и верхней части земной коры.

Основные и хорошо изученные аллотропные модификации углерода — алмаз и графит. При нормальных условиях термодинамически устойчив только графит, а алмаз и другие формы метастабильны. Жидкий углерод существует только при определенном внешнем давлении.

При давлении свыше 60 ГПа предполагают образование весьма плотной модификации С III (плотность на 15-20 % выше плотности алмаза), имеющей металлическую проводимость.

Кристаллическая модификация углерода гексагональной сингонии с цепочечным строением молекул называется карбин. Известно несколько форм карбина, отличающихся числом атомов в элементарной ячейке.

Карбин представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9-2 г/см³), обладает полупроводниковыми свойствами. Получен в искусственных условиях из длинных цепочек атомов углерода, уложенных параллельно друг другу.

Карбин — линейный полимер углерода. В молекуле карбина атомы углерода соединены в цепочки поочередно либо тройными и одинарными связями (полиеновое строение), либо постоянно двойными связями (поликумуленовое строение). Карбин обладает полупроводниковыми свойствами, причём под воздействием света его проводимость сильно увеличивается. На этом свойстве основано первое практическое применение — в фотоэлементах.


При реакции углерода с серой получается сероуглерод CS2, известны также CS и C3S2.

С большинством металлов углерод образует карбиды, например:

Важна в промышленности реакция углерода с водяным паром:

При нагревании углерод восстанавливает оксиды металлов до металлов. Данное свойство широко используется в металлургической промышленности.

Графит используется в карандашной промышленности, но в смеси с глиной, для уменьшения его мягкости. Алмаз, благодаря исключительной твердости, незаменимый абразивный материал. В фармакологии и медицине широко используются различные соединения углерода — производные угольной кислоты и карбоновых кислот, различные гетероциклы,полимеры и другие соединения. Углерод играет огромную роль в жизни человека. Его применения столь же разнообразны, как сам этот многоликий элемент. В частности углерод является неотъемлемой составляющей стали (до 2,14 % масс.) и чугуна (более 2,14 % масс.)

Углерод входит в состав атмосферных аэрозолей, в результате чего может изменяться региональный климат, уменьшаться количество солнечных дней. Углерод поступает в окружающую среду в виде сажи в составе выхлопных газов автотранспорта, при сжигании угля на ТЭС, при открытых разработках угля, подземной его газификации, получении угольных концентратов и др. Концентрация углерода над источниками горения 100-400 мкг/м³, крупными городами 2,4-15,9 мкг/м³, сельскими районами 0,5-0,8 мкг/м³. С газоаэрозольными выбросами АЭС в атмосферу поступает (6-15) · 109 Бк/сут 14СО2.

Высокое содержание углерода в атмосферных аэрозолях ведет к повышению заболеваемости населения, особенно верхних дыхательных путей и легких. Профессиональные заболевания — в основном антракоз и пылевой бронхит. В воздухе рабочей зоны ПДК, мг/м³: алмаз 8,0, антрацит и кокс 6,0, каменный уголь 10,0, технический углерод и углеродная пыль 4,0; в атмосферном воздухе максимальная разовая 0,15, среднесуточная 0,05 мг/м³.

Важнейшие соединения. Оксид углерода (II) (угарный газ) CO. В обычных условиях - бесцветный без запаха и вкуса очень ядовитый газ. Ядовитость объясняется тем, что она легко соединяется с гемоглобином крови.

Оксид углерода (IV) CO2. При обычных условиях - бесцветный газ со слегка кисловатым запахом и вкусом, в полтора раза тяжелее воздуха, не горит и не поддерживает горения.
Угольная кислота H2CO3. Слабая кислота. Молекулы угольной кислоты существуют только в растворе.

Фосген COCl2. Бесцветный газ с характерным запахом, tкип = 8оС, tпл = -118оС. Очень ядовит. Мало растворим в воде. Реакционноспособен. Используется в органических синтезах.

    Группа периодической системы химических элементов последовательность атомов по возрастанию заряда ядра, обладающих однотипным электронным строением. Номер группы определяется количеством электронов на внешней оболочке атома (валентных электронов) … Википедия

    К четвёртому периоду периодической системы относятся элементы четвёртой строки (или четвёртого периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических)… … Википедия

    К первому периоду периодической системы относятся элементы первой строки (или первого периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов в… … Википедия

    Ко второму периоду периодической системы относятся элементы второй строки (или второго периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов в … Википедия

    К пятому периоду периодической системы относятся элементы пятой строки (или пятого периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов в… … Википедия

    К третьему периоду периодической системы относятся элементы третьей строки (или третьего периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов … Википедия

    К седьмому периоду периодической системы относятся элементы седьмой строки (или седьмого периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов … Википедия

    К шестому периоду периодической системы относятся элементы шестой строки (или шестого периода) периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся (периодических) трендов в… … Википедия

    Короткая форма таблицы Менделеева основана на параллелизме степеней окисления элементов главных и побочных подгрупп: например, максимальная степень окисления ванадия равна +5, как у фосфора и мышьяка, максимальная степень окисления хрома равна +6 … Википедия

    Сюда перенаправляется запрос «Группировка». На эту тему нужна отдельная статья … Википедия

Общая характеристика элементов IV группы, главной подгруппы периодической системы Д. И. Менделеева

К элементам главной подгруппы IV группы относятся углерод, кремний, германий, олово, свинœец. Металлические свойства усиливаются, неметаллические - уменьшаются. На внешнем слое – 4 электрона.

Химические свойства (на базе углерода)

· Взаимодействуют с металлами

4Al+3C = Al 4 C 3 (реакция идет при высокой температуре)

· Взаимодействуют с неметаллами

2Н 2 +C = CН 4

· Взаимодействуют с кислородом

· Взаимодействуют с водой

C+H 2 O = CO+H 2

· Взаимодействуют с оксидами

2Fe 2 O 3 +3C = 3CO 2 +4Fe

· Взаимодействуют с кислотами

3C+4HNO 3 = 3CO 2 +4NO+2H 2 O

Углерод. Характеристика углерода, исходя из его положения в периодической системе, аллотропия углерода, адсорбция, распространение в природе, получение, свойства. Важнейшие соединœения углерода

Углеро́д (химический символ - C, лат. Carboneum) - химический элемент четырнадцатой группы (по устаревшей классификации - главной подгруппы четвёртой группы), 2-го периода периодической системы химических элементов. порядковый номер 6, атомная масса - 12,0107. Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа.

Природный углерод состоит из двух стабильных изотопов - 12С (98,93 %) и 13С (1,07 %) и одного радиоактивного изотопа 14С (β-излучатель, Т½= 5730 лет), сосредоточенного в атмосфере и верхней части земной коры.

Основные и хорошо изученные аллотропные модификации углерода - алмаз и графит. При нормальных условиях термодинамически устойчив только графит, а алмаз и другие формы метастабильны. Жидкий углерод существует только при определœенном внешнем давлении.

При давлении свыше 60 ГПа предполагают образование весьма плотной модификации С III (плотность на 15-20 % выше плотности алмаза), имеющей металлическую проводимость.

Кристаллическая модификация углерода гексагональной сингонии с цепочечным строением молекул принято называть карбин. Известно несколько форм карбина, отличающихся числом атомов в элементарной ячейке.

Карбин представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9-2 г/см³), обладает полупроводниковыми свойствами. Получен в искусственных условиях из длинных цепочек атомов углерода, уложенных параллельно друг другу.

Карбин - линœейный полимер углерода. В молекуле карбина атомы углерода соединœены в цепочки поочередно либо тройными и одинарными связями (полиеновое строение), либо постоянно двойными связями (поликумуленовое строение). Карбин обладает полупроводниковыми свойствами, причём под воздействием света его проводимость сильно увеличивается. На этом свойстве основано первое практическое применение - в фотоэлементах.

Графен (англ. graphene) - двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, соединœенных посредством sp² связей в гексагональную двумерную кристаллическую решётку.

При обычных температурах углерод химически инœертен, при достаточно высоких температурах соединяется со многими элементами, проявляет сильные восстановительные свойства. Химическая активность разных форм углерода убывает в ряду: аморфный углерод, графит, алмаз, на воздухе они воспламеняются при температурах соответственно выше 300-500 °C, 600-700 °C и 850-1000 °C.

Продуктами горения углерода являются CO и CO2 (монооксид углерода и диоксид углерода соответственно). Известен также неустойчивый недооксид углерода С3О2(температура плавления −111 °C, температура кипения 7 °C) и некоторые другие оксиды (к примеру C12O9, C5O2, C12O12). Графит и аморфный углерод начинают реагировать с водородом при температуре 1200 °C, с фтором при 900 °C.

Углекислый газ реагирует с водой, образуя слабую угольную кислоту - H2CO3, которая образует соли - карбонаты. На Земле наиболее широко распространены карбонаты кальция (минœеральные формы - мел, мрамор, кальцит, известняк и др.) и магния (минœеральная форма доломит).

Графит с галогенами, щелочными металлами и др.
Размещено на реф.рф
веществами образует соединœения включения. При пропускании электрического разряда между угольными электродами в атмосфере азота образуется циан. При высоких температурах взаимодействием углерода со смесью Н2 и N2 получают синильную кислоту:

При реакции углерода с серой получается сероуглерод CS2, известны также CS и C3S2. С большинством металлов углерод образует карбиды, к примеру:

Важна в промышленности реакция углерода с водяным паром:

При нагревании углерод восстанавливает оксиды металлов до металлов. Данное свойство широко используется в металлургической промышленности.

Графит используется в карандашной промышленности, но в смеси с глиной, для уменьшения его мягкости. Алмаз, благодаря исключительной твердости, незаменимый абразивный материал. В фармакологии и медицинœе широко используются различные соединœения углерода - производные угольной кислоты и карбоновых кислот, различные гетероциклы,полимеры и другие соединœения. Углерод играет огромную роль в жизни человека. Его применения столь же разнообразны, как сам данный многоликий элемент. В частности углерод является неотъемлемой составляющей стали (до 2,14 % масс.) и чугуна (более 2,14 % масс.)

Углерод входит в состав атмосферных аэрозолей, благодаря чему может изменяться региональный климат, уменьшаться количество солнечных дней. Углерод поступает в окружающую среду в виде сажи в составе выхлопных газов автотранспорта͵ при сжигании угля на ТЭС, при открытых выработках угля, подземной его газификации, получении угольных концентратов и др.
Размещено на реф.рф
Концентрация углерода над источниками горения 100-400 мкг/м³, крупными городами 2,4-15,9 мкг/м³, сельскими районами 0,5 - 0,8 мкг/м³. С газоаэрозольными выбросами АЭС в атмосферу поступает (6-15)·109 Бк/сут 14СО2.

Высокое содержание углерода в атмосферных аэрозолях ведет к повышению заболеваемости населœения, особенно верхних дыхательных путей и легких. Профессиональные заболевания - в основном антракоз и пылевой бронхит. В воздухе рабочей зоны ПДК, мг/м³: алмаз 8,0, антрацит и кокс 6,0, каменный уголь 10,0, технический углерод и углеродная пыль 4,0; в атмосферном воздухе максимальная разовая 0,15, среднесуточная 0,05 мг/м³.

Важнейшие соединœения. Оксид углерода (II) (угарный газ) CO. В обычных условиях - бесцветный без запаха и вкуса очень ядовитый газ. Ядовитость объясняется тем, что она легко соединяется с гемоглобином крови Оксид углерода (IV) CO2. При обычных условиях - бесцветный газ со слегка кисловатым запахом и вкусом, в полтора раза тяжелœее воздуха, не горит и не поддерживает горения. Угольная кислота H2CO3. Слабая кислота. Молекулы угольной кислоты существуют только в растворе. Фосген COCl2. Бесцветный газ с характерным запахом, tкип=8оС, tпл=-118оС. Очень ядовит. Мало растворим в воде. Реакционноспособен. Используется в органических синтезах.

Общая характеристика элементов IV группы, главной подгруппы периодической системы Д. И. Менделеева - понятие и виды. Классификация и особенности категории "Общая характеристика элементов IV группы, главной подгруппы периодической системы Д. И. Менделеева" 2017, 2018.

  • - Французская готическая скульптура. XIII-XIV вв.

    Начала французской готической скульптуры были заложены в Сен-Дени. Три портала западного фасада знаменитой церкви заполняли скульптурные изображения, в которых впервые проявилось стремление к строго продуманной иконографической программе, возникло желание... .


  • - ТЕМА ЛЕКЦИИ: ГРАДОСТРОИТЕЛЬСТВО ИТАЛИИ, ФРАНЦИИ, ГЕРМАНИИ, АНГЛИИ В X – XIV ВВ.

    Новые города в период раннего средневековья практически не строились. Постоянные войны вызывали необходимость сооружать укрепленные поселения, особенно в пограничных районах. Центром раннесредневековой материальной и духовной культуры были монастыри. Они строились... .


  • - Одежда в готический период XII-XIV

    ОБЪЕМНО-ПЛАНИРОВОЧНЫЕ РЕШЕНИЯ Общее решение зданий и комплексов В состав высшего учебного заведения в соответствии с ихархитектурно-планировочной структурой входят следующие подразделения: общеинститутские и факультетские кафедры с кабинетами и лабораториями; ...

  • Периодическая система химических элементов - это классификация химических элементов, созданная Д. И. Менделеевым на основе открытого им в 1869 г. периодического закона.

    Д. И. Менделеев

    Согласно современной формулировке этого закона, в непрерывном ряду элементов, расположенных в порядке возрастания величины положительного заряда ядер их атомов, периодически повторяются элементы со сходными свойствами.

    Периодическая система химических элементов, представленная в виде таблицы, состоит из периодов, рядов и групп.

    В начале каждого периода (за исключением первого) находится элементе ярко выраженными металлическими свойствами (щелочной металл).


    Условные обозначения к цветной таблице: 1 - химический знак элемента; 2 - название; 3 - атомная масса (атомный вес); 4 - порядковый номер; 5 - распределение электронов по слоям.

    По мере возрастания порядкового номера элемента, равного величине положительного заряда ядра его атома, постепенно ослабевают металлические и нарастают неметаллические свойства. Предпоследним элементом в каждом периоде является элемент с ярко выраженными неметаллическими свойствами (), а последним - инертный газ. В I периоде находятся 2 элемента, во II и III - по 8 элементов, в IV и V - по 18, в VI - 32 и в VII (не завершенном периоде) - 17 элементов.

    Первые три периода называют малыми периодами, каждый из них состоит из одного горизонтального ряда; остальные - большими периодами, каждый из которых (исключая VII период) состоит из двух горизонтальных рядов - четного (верхнего) и нечетного (нижнего). В четных рядах больших периодов находятся только металлы. Свойства элементов в этих рядах с возрастанием порядкового номера изменяются слабо. Свойства элементов в нечетных рядах больших периодов меняются. В VI периоде за лантаном следуют 14 элементов, весьма сходных по химическим свойствам. Эти элементы, называемые лантаноидами, приведены отдельно под основной таблицей. Аналогично представлены в таблице и актиноиды - элементы, следующие за актинием.


    В таблице имеется девять вертикальных групп. Номер группы, за редким исключением, равен высшей положительной валентности элементов данной группы. Каждая группа, исключая нулевую и восьмую, подразделяется на подгруппы. - главную (расположена правее) и побочную. В главных подгруппах с увеличением порядкового номера усиливаются металлические и ослабевают неметаллические свойства элементов.

    Таким образом, химические и ряд физических свойств элементов определяются местом, которое занимает данный элемент в периодической системе.

    Биогенные элементы, т. е. элементы, входящие в состав организмов и выполняющие в нем определенную биологическую роль, занимают верхнюю часть таблицы Менделеева. В голубой цвет окрашены клетки, занимаемые элементами, составляющими основную массу (более 99%) живого вещества, в розовый цвет - клетки, занимаемые микроэлементами (см.).

    Периодическая система химических элементов является крупнейшим достижением современного естествознания и ярким выражением наиболее общих диалектических законов природы.

    См. также , Атомный вес.

    Периодическая система химических элементов - естественная классификация химических элементов, созданная Д. И. Менделеевым на основе открытого им в 1869 г. периодического закона.

    В первоначальной формулировке периодический закон Д. И. Менделеева утверждал: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины атомных весов элементов. В дальнейшем с развитием учения о строении атома было показано, что более точной характеристикой каждого элемента является не атомный вес (см.), а величина положительного заряда ядра атома элемента, равная порядковому (атомному) номеру этого элемента в периодической системе Д. И. Менделеева. Число положительных зарядов ядра атома равно числу электронов, окружающих ядро атома, поскольку атомы в целом электронейтральны. В свете этих данных периодический закон формулируется так: свойства химических элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины положительного заряда ядер их атомов. Это значит, что в непрерывном ряду элементов, расположенных в порядке возрастания положительных зарядов ядер их атомов, будут периодически повторяться элементы со сходными свойствами.

    Табличная форма периодической системы химических элементов представлена в ее современном виде. Она состоит из периодов, рядов и групп. Период представляет последовательный горизонтальный ряд элементов, расположенных в порядке возрастания положительного заряда ядер их атомов.

    В начале каждого периода (за исключением первого) находится элемент с ярко выраженными металлическими свойствами (щелочной металл). Затем по мере увеличения порядкового номера постепенно ослабевают металлические и нарастают неметаллические свойства элементов. Предпоследним элементом в каждом периоде является элемент с ярко выраженными неметаллическими свойствами (галоген), а последним - инертный газ. I период состоит из двух элементов, роль щелочного металла и галогена здесь одновременно выполняет водород. II и III периоды включают по 8 элементов, названных Менделеевым типическими. IV и V периоды насчитывают по 18 элементов, VI-32. VII период еще не завершен и пополняется искусственно создаваемыми элементами; в настоящее время в этом периоде насчитывается 17 элементов. I, II и III периоды называют малыми, каждый из них состоит из одного горизонтального ряда, IV-VII- большими: они (за исключением VII) включают два горизонтальных ряда - четный (верхний) и нечетный (нижний). В четных рядах больших периодов находятся только металлы, и изменение свойств элементов в ряду слева направо выражено слабо.

    В нечетных рядах больших периодов свойства элементов в ряду изменяются так же, как свойства типических элементов. В четном ряду VI периода после лантана следует 14 элементов [называемых лантанидами (см.), лантаноидами, редкоземельными элементами], сходных по химическим свойствам с лантаном и между собой. Перечень их приводится отдельно под таблицей.

    Отдельно выписаны и приведены под таблицей элементы, следующие за актинием- актиниды (актиноиды).

    В периодической системе химических элементов по вертикалям расположено девять групп. Номер группы равен высшей положительной валентности (см.) элементов этой группы. Исключение составляют фтор (бывает только отрицательно одновалентным) и бром (не бывает семивалентным); кроме того, медь, серебро, золото могут проявлять валентность больше +1 (Cu-1 и 2, Ag и Au-1 и 3), а из элементов VIII группы валентностью +8 обладают только осмий и рутений. Каждая группа, за исключением восьмой и нулевой, делится на две подгруппы: главную (расположена правее) и побочную. В главные подгруппы входят типические элементы и элементы больших периодов, в побочные - только элементы больших периодов и притом металлы.

    По химическим свойствам элементы каждой подгруппы данной группы значительно отличаются друг от друга и только высшая положительная валентность одинакова для всех элементов данной группы. В главных подгруппах сверху вниз усиливаются металлические свойства элементов и ослабевают неметаллические (так, франций является элементом с наиболее ярко выраженными металлическими свойствами, а фтор - неметаллическими). Таким образом, место элемента в периодической системе Менделеева (порядковый номер) определяет его свойства, которые представляют собой среднее из свойств соседних элементов по вертикали и горизонтали.

    Некоторые группы элементов носят особые названия. Так, элементы главных подгрупп I группы называют щелочными металлами, II группы - щелочноземельными металлами, VII группы - галогенами, элементы, расположенные за ураном,- трансурановыми. Элементы, которые входят в состав организмов, принимают участие в процессах обмена веществ и обладают явно выраженной биологической ролью, называют биогенными элементами. Все они занимают верхнюю часть таблицы Д. И. Менделеева. Это в первую очередь О, С, Н, N, Са, Р, К, S, Na, Cl, Mg и Fe, составляющие основную массу живого вещества (более 99%). Места, занимаемые этими элементами в периодической системе, окрашены в светло-голубой цвет. Биогенные элементы, которых в организме очень мало (от 10 -3 до 10 -14 %), называют микроэлементами (см.). В клетках периодической системы, окрашенных в желтый цвет, помещены микроэлементы, жизненно важное значение которых для человека доказано.

    Согласно теории строения атомов (см. Атом) химические свойства элементов зависят в основном от числа электронов на внешней электронной оболочке. Периодическое изменение свойств элементов с увеличением положительного заряда атомных ядер объясняется периодическим повторением строения наружной электронной оболочки (энергетического уровня) атомов.

    В малых периодах с увеличением положительного заряда ядра возрастает число электронов на внешней оболочке от 1 до 2 в I периоде и от 1 до 8 во II и III периодах. Отсюда изменение свойств элементов в периоде от щелочного металла до инертного газа. Внешняя электронная оболочка, содержащая 8 электронов, является завершенной и энергетически устойчивой (элементы нулевой группы химически инертны).

    В больших периодах в четных рядах с ростом положительного заряда ядер число электронов на внешней оболочке остается постоянным (1 или 2) и идет заполнение электронами второй снаружи оболочки. Отсюда медленное изменение свойств элементов в четных рядах. В нечетных рядах больших периодов с увеличением заряда ядер идет заполнение электронами внешней оболочки (от 1 до 8) и свойства элементов изменяются так, как и у типических элементов.

    Число электронных оболочек в атоме равно номеру периода. Атомы элементов главных подгрупп имеют на внешних оболочках число электронов, равное номеру группы. Атомы элементов побочных подгрупп содержат на внешних оболочках один или два электрона. Этим объясняется различие в свойствах элементов главной и побочной подгрупп. Номер группы указывает возможное число электронов, которые могут участвовать в образовании химических (валентных) связей (см. Молекула), поэтому такие электроны называют валентными. У элементов побочных подгрупп валентными являются не только электроны внешних оболочек, но и предпоследних. Число и строение электронных оболочек указано в прилагаемой периодической системе химических элементов.

    Периодический закон Д. И. Менделеева и основанная на нем система имеют исключительно большое значение в науке и практике. Периодический закон и система явились основой для открытия новых химических элементов, точного определения их атомных весов, развития учения о строении атомов, установления геохимических законов распределения элементов в земной коре и развития современных представлений о живом веществе, состав которого и связанные с ним закономерности находятся в соответствии с периодической системой. Биологическая активность элементов и их содержание в организме также во многом определяются местом, которое они занимают в периодической системе Менделеева. Так, с увеличением порядкового номера в ряде групп возрастает токсичность элементов и уменьшается их содержание в организме. Периодический закон является ярким выражением наиболее общих диалектических законов развития природы.

    На рис. 15.4 показано расположение в периодической таблице пяти элементов IV группы. Подобно элементам III группы, они принадлежат, к числу p-элементов. Атомы всех элементов IV группы имеют однотипную электронную конфигурацию внешней оболочки: . В табл. 15.4 указаны конкретная электронная конфигурация атомов и некоторые свойства элементов IV группы. Эти и другие физические и химические свойства элементов IV группы связаны с их строением, а именно: углерод (в форме алмаза), кремний и германий имеют каркасную кристаллическую алмазоподобную структуру (см. разд. 3.2); олово и свинец имеют металлическую структуру (гранецентрированную кубическую, см. также разд. 3.2).

    Рис. 15.4. Положение элементов IV группы в периодической системе.

    При перемещении вниз по группе происходит возрастание атомного радиуса элементов и ослабление связи между атомами. Из-за последовательно усиливающейся делокализации электронов внешних атомных оболочек в этом же направлении пррисходит и возрастание электропроводности элементов IV группы. Их свойства

    Таблица 15.4. Электронные конфигурации и физические свойства элементов IV группы

    постепенно изменяются от неметаллических к металлическим: углерод - неметаллический элемент и в форме алмаза является изолятором (диэлектриком); кремний и германий - полупроводники; олово и свинец - металлы и хорошие проводники.

    Из-за возрастания размера атомов при переходе от элементов верхней части группы к элементам ее нижней части происходит последовательное ослабление связи между атомами и, соответственно этому, уменьшение температуры плавления и температуры кипения, а также твердости элементов.

    Аллотропия

    Кремний, германий и свинец существуют каждый лишь в одной структурной форме. Однако углерод и олово существуют в нескольких структурных формах. Различные структурные формы одного элемента называются аллотропами (см. разд. 3.2).

    Углерод имеет два аллотропа: алмаз и графит. Их структура описана в разд. 3.2. Аллотропия углерода - пример монотропии, для которой характерны следующие особенности: 1) аллотропы могут существовать в определенном интервале температур и давлений (например, как алмаз, так и графит существуют при комнатной температуре и атмосферном давлении); 2) не существует температуры перехода, при которой один аллотроп превращается в другой; 3) один аллотроп более устойчив, чем другой. Например, графит обладает большей устойчивостью, чем алмаз. Менее устойчивые формы называются метастабилъными. Следовательно, алмаз представляет собой метастабильный аллотроп (или монотроп) углерода.

    Углерод может еще существовать в других формах, к которым относятся древесный уголь, кокс и газовая сажа. Все они являются неочищенными формами углерода. Иногда их называют аморфными формами, а раньше считали, что они представляют собой третью аллотропную форму углерода. Термин аморфный означает бесформенный. В настоящее время установлено, что «аморфный» углерод-это не что иное, как микрокристаллический графит.

    Олово существует в трех аллотропных формах. Они называются: серое олово (а-олово), белое олово (Р-олово) и ромбическое олово (у-олово). Аллотропия такого типа, как у олова, называется энантиотропией. Она характеризуется следующими особенностями: 1) превращение одного аллотропа в другой происходит при определенной температуре, называемой температурой перехода; например

    Структура влмаза Металлическая (полупроводник) структура 2) каждый аллотроп устойчив только в определенном интервале температур.

    Реакционная способность элементов IV группы

    Реакционная способность элементов IV группы в целом возрастает при перемещении к нижней части группы, от углерода к свинцу. В электрохимическом ряду напряжений только олово и свинец расположены выше водорода (см. разд. 10.3). Свинец очень медленно реагирует с разбавленными кислотами, высвобождая водород. Реакция между оловом и разбавленными кислотами протекает с умеренной скоростью.

    Углерод окисляется орячими концентрированными кислотами, например концентрированной азотной кислотой и концентрированной серной кислотой.

    Loading...Loading...