Халькогены. Презентация на тему "Сера, селен, теллур." Селен, теллур, полоний и их соединения

Селен мало распространен в природе. В земной коре содержание селена составляет . Его соединения встречаются в виде примесей к природным соединениям серы с металлами и . Поэтому селен получают из отходов, образующихся при производстве серной кислоты, при электролитическом рафинировании меди и при некоторых других процессах.

Теллур принадлежит к числу редких элементов: содержание его в земной коре составляет всего .

В свободном состоянии селен, подобно сере, образует несколько аллотропических видоизменений, из которых наиболее известны аморфный селен, представляющий собой красно-бурый порошок, и серый селен, образующий хрупкие кристаллы с металлическим блеском.

Теллур тоже известен в виде аморфной модификации и в виде кристаллов светло-серого цвета, обладающих металлическим блеском.

Селен - типичный полупроводник (см. § 190). Важным свойством его как полупроводника является резкое увеличение электрической проводимости при освещении. На границе селена с металлическим проводником образуется запорный слой - участок цепи, способный пропускать электрический ток только в одном направлении. В связи с этими свойствами селен применяется в полупроводниковой технике для изготовления выпрямителей и фотоэлементов с запорным слоем. Теллур - тоже полупроводник, но его применение более ограничено. Селениды и теллуриды некоторых металлов также обладают полупроводниковыми свойствами и применяются в электронике. В небольших количествах теллур служит легирующей добавкой к свинцу, улучшая его механические свойства.

Селеноводород и теллуроводород представляют собой бесцветные газы с отвратительным запахом. Водные растворы их являются кислотами, константы диссоциации которых несколько больше, чем константа диссоциации сероводорода.

В химическом отношении селеноводород и теллуроводород чрезвычайно похожи на сероводород. Как и сероводород, они в сильной степени обладают восстановительными свойствами. При нагревании оба они разлагаются. При этом менее стоек, чем : подобно тому, как это происходит в ряду галогеноводородов, прочность молекул уменьшается при переходе . Соли селеноводорода и теллуроводорода - селениды и теллуриды - сходны с сульфидами в отношении растворимости в воде и кислотах. Действуя на селениды и теллуриды сильными кислотами, можно получить селеноводород и теллуроводород.

При сжигании селена и теллура на воздухе или в кислороде получаются диоксиды и , находящиеся при обычных условиях в твердом состоянии и являющиеся ангидридами селенистой и теллуристой кислот.

В отличие от диоксида серы, и проявляют преимущественно окислительные свойства, легко восстанавливаясь до свободных селена и теллура, например:

Действием сильных окислителей диоксиды селена и теллура могут быть переведены соответственно в селеновую и теллуровую кислоты.

ЭЛЕМЕНТЫ VI А подгруппы

(О, S, Sе, Tе, Ро)

Общая характеристика

Кислород

Сера

Селен и теллур

Общая характеристика элементов

В VI А подгруппу ПС входят элементы: кислород, сера, селен, теллур и полоний. Для серы, селены, теллура и полония используется общее название – халькогены . Кислород, сера, селен и теллур – неметаллы, а полоний – металл. Полоний – радиоактивный элемент, в природе в незначительных количествах образуется при радиоактивном распаде радия, поэтому его химические свойства изучены слабо.

Таблица 1

Основные характеристики халькогенов

Характеристики О S Те
Атомный радиус, нм 0,066 0,104 0,117 0,136
Ионный радиус Э 2- , нм 0,140 0,184 0,198 0,221
Потенциал ионизации, эВ 13,62 10,36 9,75 9,01
Сродство к электрону, эВ 1,47 2,08 2,02 1,96
Электроотрицательность (по Полингу) 3,44 2,58 2,55 2,10
Энтальпия связи, кДж/моль Э –Э Э = Э - 146 - 494 - 265 - 421 - 192 - 272 - 218 - 126
Температура плавления, °С
Температура кипения, °С - 183
Плотность, г/см 3 1,43 (жид.) 2,07 4,80 6,33
Содержание в земной коре, % (мас.) 49,13 0,003 1,4 · 10 -5 1 · 10 -7
Массовые числа природных изотопов 16, 17, 18 32, 33, 34, 35 74, 76, 77, 78, 80, 82 120, 122, 123, 124, 125, 126 128, 130
Агрегатное состояние при ст. условиях наиболее устойчивой аллотропной формы. цвет Бесцветный газ Кристалл. вещество желтого цвета Кристалл. вещество серого цвета Кристалл. вещество серебристо-белого цвета
Кристаллическая решетка Молекулярная в тв. виде молекулярная молекулярная молекулярная
Состав молекул О 2 S 8 Sе ∞ Те ∞

По строению внешнего электронного слоя рассматриваемые элементы относятся к р – элементам. Из шести электронов внешнего слоя два электрона неспаренные, что определяет их валентность, равную двум. У атомов серы, селена, теллура и полония в возбужденном состоянии число неспаренных электронов может составлять 4 и 6. Тоесть эти элементы могут быть чётырех – и шестивалентными. Все элементы имеют высокие значения электроотрицательности, а эо кислорода уступает лишь фтору. Поэтому в соединениях они проявляют ст. окисления -2, -1, 0. Потенциалы ионизации у атомов серы, селена и теллура невелики, и эти элементы в соединениях с галогенами имеют степени окисления +4 и +6. У кислорода положительная степень окисления бывает в соединениях фтора и в озоне.



Атомы могут образовывать молекулы с двойной связью О 2 , … и соединяться в цепочки Э – Э - … - Э - , которые могут существовать как в простых, так и в сложных веществах. По химичексой активности и окислительной способности халькогены уступают галогенам. На это указывает тот факт, что в природе кислород и сера существуют не только в связанном, но и в свободном состоянии. Меньшая активность халькогенов во многом объясняется более прочной связью в молекулах. В целом же халькогены относятся к числу весьма реакционноспособных веществ, активность которых резко возрастает при повышении температуры. Для всех веществ этой подгруппы известны аллотропные модификации. Сера и кислород электрический ток практически не проводят (диэлектрики), селен и теллур – полупроводники.

При переходе от кислорода к теллуру уменьшается склонность элементов к образованию двойных связей с атомами небольших размеров (С, N, О). Неспособность больших по размеру атомов образовывать π – связи с кислородом особенно проявляется в случае теллура. Так, у теллура не существуют молекулы кислот Н 2 ТеО 3 и Н 2 ТеО 4 (мета-формы), а также молекулы ТеО 2 . Диоксид теллура существует только в виде полимера, где все атомы кислорода являются мостиковыми: Те – О – Те. Теллуровая кислота, в отличие от серной и селеновой, бывает только в орто-форме – Н 6 ТеО 6 , где, как и в ТеО 2 атомы Те связаны с атомами О только σ-связями.

Химические свойства кислорода, отличаются от свойств серы, селена и теллура. Напротив, в свойствах серы, селена и теллура прослеживается много общего. При движении по группе сверху вниз следует отметить увеличение кислотных и восстановительных свойств в ряду соединений с водородом Н 2 Э; увеличение окислительных свойств в ряду однотипных соединений (Н 2 ЭО 4 , ЭО 2); уменьшение термической устойчивости халькогенводородов и солей кислородных кислот.

Химия Элементов Неметаллы VIА-подгруппы

Элементы VIА-подгруппы являются неметаллами, кроме Po.

Кислород сильно отличается от других элементов подгруппы и играет особую роль в химии. Поэтому химия кислорода выделена в отдельную лекцию.

Среди остальных элементов наибольшее значение имеет сера. Химия серы очень обширна, так как сера образует огромное количество разнообразных соединений. Ее соединения широко используются в химической практике и в различных отраслях промышленности. При обсуждении неметаллов VIА–подгруппы наибольшее внимание будет уделено химии серы.

Основные вопросы, рассматриваемые в лекции

Общая характеристика неметаллов VIА-подгруппы. Природные соединения Сера

Простое вещество Соединения серы

Сероводород, сульфиды, полисульфиды

Диоксид серы. Сульфиты

Триоксид серы

Серная кислота. Окислительные свойства. Сульфаты

Другие соединения серы

Селен, теллур

Простые вещества Соединения селена и теллура

Селениды и теллуриды

Соединения Se и Te в степени окисления (+4)

Селеновая и теллуровая кислоты. Окислительные свойства.

Элементы VIA-подгруппы

Общая характеристика

К VIA-подгруппе принадлежат р-элементы : кисло-

род O , сера S , селен Se , теллур Te , полоний Po .

Общая формула валентных элек-

тронов – ns 2 np 4 .

кислород

Кислород, сера, селен и теллур – неметаллы.

Их часто объединяют общим названием «халькогены» ,

что означает «образующие руды». Действительно многие

металлы находятся в природе в виде оксидов и сульфидов;

в сульфидных рудах

в незначительных количествах при-

сутствуют селениды и теллуриды.

Полоний – очень редкий радиоактивный элемент, ко-

торый является металлом.

молибден

Для создания устойчивой восьмиэлектронной обо-

лочки атомам халькогенов не хватает всего двух электро-

нов. Минимальная степень окисления (–2) является ус-

вольфрам

тойчивой у всех элементов . Именно эту степень окисле-

ния элементы проявляют в природных соединениях – ок-

сидах, сульфидах, селенидах и теллуридах.

Все элементы VIA-подгруппе, кроме О, проявляют

сиборгий

положительные степени окисления +6 и +4. Наиболь-

шая степень окисления кислорода равна +2, проявляет-

ся только в соединениях с F.

Наиболее характерными степенями окисления для S, Se, Te являют-

ся: (–2), 0, +4, +6, для кислорода: (–2), (–1), 0.

При переходе от S к Te устойчивость высшей степени окисления +6

понижается, а устойчивость степени окисления +4 усиливается.

У Se, Te, Po, – наиболее устойчивой является степень окисления +4.

Некоторые характеристики атомов элементов ViБ – подгруппы

Относительная

Первая энергия

электроотри-

ионизации,

цательность

кДж./моль

(по Поллингу)

увеличение числа элек-

тронных слоев;

увеличение размера атома;

уменьшение энергии ио-

уменьшение электроотри-

цательности

Как видно из приведенных выше данных, кислород сильно отличается от других элементов подгруппы высоким значением энергии ионизации, ма-

лым орбитальным радиусом атома и высокой электроотрицательностью, более высокую электроотрицательность имеет только F.

Кислород, играющий в химии совершенно особую роль, рассмотрен от-

дельно. Среди остальных элементов VIА-группы наиболее важным является сера.

Сера образует очень большое количество разнооб-

разных соединений. Известны ее соединения почти со все-

ми элементами, кроме Au, Pt, I и благородных газов. Кро-

ме широко распространенных соединений S в степенях

3s2 3p4

окисления (–2), +4, +6, известны, как правило, малоус-

тойчивые соединения в степенях окисления: +1 (S2 O), +2

(SF2 , SCl2 ), +3 (S2 O3 , H2 S2 O4 ). Многообразие соединений серы подтверждает и тот факт, что только кислородсодержащих кислот S известно около 20.

Прочность связи между атомами S оказывается соизмеримой с проч-

ностью связей S с другими неметаллами: O, H, Cl, поэтому для S характер-

том числе очень распространенный минерал пирит FeS2 , и политионовые кислоты (например, H2 S4 O6 ).Таким образом химия серы является весьма обширной.

Важнейшие соединения серы, используемые в промышленности

Самым широко используемым соединением серы в промышленности и лаборатории является серная кислота . Мировой объем производства сер-

ной кислоты составляет 136 млн.т. (ни одна другая кислота не производится в таких больших количествах). К распространенным соединениям относятся со-

ли серной кислоты – сульфаты , а также соли сернистой кислоты – сульфиты.

Природные сульфиды используются для получения важнейших цветных ме-

таллов: Cu, Zn, Pb, Ni, Co и др. Среди других распространенных соединений серы следует назвать: сероводородную кислоту H2 S, ди- и триоксиды серы: SO2

и SO3, тиосульфат Na2 S2 O3 ; кислоты: дисерную (пиросерную) H2 S2 O7 , перок-

содисерную H2 S2 O8 и пероксодисульфаты (персульфаты): Na2 S2 O8 и

(NH4 )2 S2 O8 .

Сера в природе

чается в виде простого вещества , образующего большие подземные залежи,

и в виде сульфидных и сульфатных минералов, а также в виде соединений,

являющихся примесями в угле и нефти. Уголь и нефть получаются в результа-

те разложения органических веществ, а сера входит в состав животных и расти-

тельных белков. Поэтому при сжигании угля и нефти образуются оксиды серы,

загрязняющие окружающую среду.

Природные соединения серы

Рис. Пирит FeS2 – основной минерал, который используется для получения серной кислоты

самородная сера;

сульфидные минералы:

FeS2 – пирит или железный колчедан

FeCuS2 – халькопирит (медный колче-

FeAsS – арсенопирит

PbS – галенит или свинцовый блеск

ZnS – сфалерит или цинковая обманка

HgS – киноварь

Cu2 S- халькозин или медный блеск

Ag2 S– аргентит или серебряный блеск

MoS2 – молибденит

Sb2 S3 – стибнит или сурьмяный блеск

As4 S4 –реальгар;

сульфаты:

Na2 SO4 . 10 H2 O – мирабилит

CaSO4 . 2H2 O – гипс

CaSO4 - ангидрит

BaSOбарит или тяжелый шпат

SrSO4 – целестин.

Рис. Гипс CaSO4 . 2H2 O

Простое вещество

В простом веществе атомы серы связаны -связью с двумя соседними.

Наиболее устойчивой является структура, состоящая из восьми атомов серы,

объединенных в гофрированное кольцо, напоминающее корону. Существует несколько модификаций серы: ромбическая сера, моноклинная и пластическая сера. При обычной температуре сера находится в виде желтых хрупких кри-

сталлов ромбической формы (-S), образован-

ных молекулами S8 . Другая модификация – моноклинная сера (-S) также состоит из восьмичленных колец, но отличается распо-

ложением молекул S8 в кристалле. При рас-

плавлении серы кольца рвутся. При этом мо-

гут образоваться перепутанные нити, которые

Рис. Сера

делают расплав вязким, при дальнейшем по-

вышении температуры полимерные цепи могут разрушаться, и вязкость будет ослабевать. Пластическая сера образуется при резком охлаждении расплавлен-

ной серы и состоит из перепутанных цепей. Со временем (в течение нескольких дней) она преобразуется в ромбическую серу.

Сера кипит при 445о С. В парах серы имеют место равновесия:

450 о С

650 о С

900 о С

1500 о С

S 8  S 6

 S 4

 S 2

 S

Молекулы S2 имеют строение аналогичное О2 .

Сера может быть окислена (обычно до SO2 ), и может быть восста-

новлена до S(-2). При обычной температуре реакции с участием твердой серы почти все заторможены, протекают лишь реакции с фтором, хлором, ртутью.

Эту реакцию используют для связывания мельчайших капель разлитой ртути.

Жидкая и парообразная сера очень реакционоспособны. В парах серы горит Zn, Fe, Cu. При пропускании Н 2 над расплавленной серой образуется

H 2 S. В реакциях с водородом и металлами сера выступает в роли окисли-

Сера способна достаточно легко окисляться под действием галогенов

и кислорода . При нагревании на воздухе сера горит голубым пламенем, окис-

ляясь до SO2 .

S + O2 = SO2

Сера окисляется концентрированной серной и азотной кислотами:

S + 2H2 SO4 (конц.) = 3SO2 + 2H2 O,

S + 6HNO3 (конц.) = H2 SO4 + 6 NO2 + 2H2 O

В горячих растворах щелочей сера диспропорционирует.

3S + 6 NaOH = 2 Na2 S + Na2 SO3 + 3 H2 O.

При взаимодействии серы с раствором сульфида аммония образуются желто-красные полисульфид-ионы (–S–S–)n или Sn 2– .

При нагревании серы с раствором сульфита получается тиосульфат, а

при нагревании с раствором цианида – тиоцианат:

S + Na 2 SO3 = Na2 S2 O3, S + KCN = KSCN

Тиоцианат или роданид калия используется для аналитического обнаружения ионов Fe3+ :

3+ + SCN – = 2+ + H2 O

Образующееся комплексное соединение имеет кроваво-красную окраску,

даже при незначительной концентрации гидратированных ионов Fe3+ в рас-

Ежегодно в мире добывается ~ 33 млн. т самородной серы. Основное количество добываемой серы перерабатывается в серную кислоту и использу-

ется в резиновой промышленности для вулканизации каучука. Сера присоеди-

няется к двойным связям макромолекул каучука, образуя дисульфидные мости-

ки –S– S–, тем самым, как бы их «сшивая», что придает каучуку прочность и упругость. При введении в каучук большого количества серы получается эбо-

нит, который является хорошим изоляционным материалом, используемым в электротехнике. Сера используется также в фармацевтике для изготовления кожных мазей и в сельском хозяйстве для борьбы с вредителями растений.

Соединения серы

Сероводород, сульфиды, полисульфиды

Сероводород H 2 S встречается в природе в серных минеральных водах,

присутствует в вулканическом и природном газе, образуется при гниении бел-

ковых тел.

Сероводород – это бесцветный газ с запахом тухлых яиц, очень ядовит.

Мало растворяется в воде, при комнатной температуре в одном объеме воды растворяются три объема газообразного H2 S. Концентрация H 2 S в насыщен-

ном растворе составляет ~ 0,1 моль/л. При растворении в воде образуется

сероводородная кислота, которая является одной из самых слабых кислот:

H2 S  H+ + HS – , K1 = 6. 10 –8 ,

HS –  H+ + S 2– ,

K2 = 1. 10 –14

Исполнитель:

вестно много природных сульфидов (см. список сульфидных минералов).

Сульфиды многих тяжелых цветных металлов (Cu, Zn, Pb, Ni, Co, Cd, Mo) яв-

ляются промышленно важными рудами. Их путем обжига на воздухе переводят в оксиды, например,

2 ZnS + 3 O2 = 2 ZnO + 2 SO2

затем оксиды чаще всего восстанавливают углем: ZnO + C = Zn + CO

Иногда оксиды переводят в раствор действием кислоты, а затем раствор подвергают электролизу с целью восстановления металла.

Сульфиды щелочных и щелочно-земельнвых металлов являются практи-

чески ионными соединениями. Сульфиды остальных металлов – преимущест-

венно ковалентные соединения, как правило, нестехиометрического состава.

Ковалентные сульфиды образуют и многие неметаллы: B, C, Si, Ge, P, As, Sb. Известны природные сульфиды As и Sb.

Сульфиды щелочных и щелочноземельных металлов, а также суль-

фид аммония хорошо растворимы в воде, остальные сульфиды нераство-

римы . Они выделяются из растворов в виде характерно окрашенных осадков,

например,

Pb(NO3 )2 + Na2 S = PbS (т.) + 2 NaNO3

Эту реакцию используют для обнаружения H2 S и S2– в растворе.

Некоторые из нерастворимых в воде сульфидов могут быть переведены в раствор кислотами, благодаря образованию очень слабой и летучей сероводо-

родной кислоты, например,

NiS + H2 SO4 = H2 S + NiSO4

В кислотах можно растворить сульфиды: FeS, NiS, CoS , MnS, ZnS .

Сульфиды металлов и значения ПР

Сульфиды

Цвет осадка

Значение ПР

5 . 10–18

1 . 10–24

2 . 10–25

2 . 10–27

6 . 10–36

4 . 10–53

коричневый

2 . 10–27

2 . 10–28

2 . 10–10

2 . 10–24

Сульфиды, характеризующиеся очень низким значением произведения растворимости, не могут растворяться в кислотах с образованием H2 S. В ки-

слотах не растворяются сульфиды: CuS, PbS, Ag2 S, HgS , SnS, Bi2 S3 , Sb2 S3 , Sb2 S5 , CdS, As2 S3 , As2 S5 , SnS2 .

Если реакция растворения сульфида за счет образования H2 S невозможна,

то в раствор его можно перевести действием концентрированной азотной ки-

слоты или царской водки.

CuS + 8HNO3 = CuSO4 + 8NO2 + 4H2 O

Сульфидный анион S 2– является сильным акцептором протона (ос-

нованием по Бренстеду). Поэтому растворимые сульфиды в сильной степени

В подгруппу кислорода входит пять элементов: кислород, сера, селен, теллур и полоний (радиоактивный металл). Это р-элементы VI группы периодической системы Д.И.Менделеева. Они имеют групповое название – халькогены , что означает «образующие руды».

Свойства элементов подгруппы кислорода

Свойства

Те

Ро

1. Порядковый номер

2. Валентные электроны

2 s 2 2р 4

З s 2 3р 4

4 s 2 4р 4

5s 2 5p 4

6s 2 6p 4

3. Энергия ио низации атома, эВ

13,62

10,36

9,75

9,01

8,43

4. Относительная электроотрицательность

3,50

2,48

2,01

1,76

5. Степень окисления в соединениях

1, -2,

2, +2, +4, +6

4, +6

4, +6

2, +2

6. Радиус атома, нм

0,066

0,104

0,117 0,137

0,164

У атомов халькогенов одинаковое строение внешнего энергетического уровня - ns 2 nр 4 . Этим объясняется сходство их химических свойств. Все халькогены в соединениях с водородом и металлами проявляют степень окисления -2, а в соединениях с кислородом и другими активными неметаллами - обычно +4 и +6. Для кислорода, как и для фтора, не типична степень окис­ления, равная номеру группы. Он проявляет степень окисления обыч­но -2 и в соединении со фтором +2. Такие значения степеней окисления следуют из электронного строения халькогенов

У атома кислорода на 2р-подуровне два неспаренных электрона. Его электроны не могут разъединяться, поскольку отсутствует d-подуровень на внешнем (втором) уровне, т. е. отсутствуют свободные орбитали . Поэтому валентность кислорода всегда равна двум, а степень окисления -2 и +2 (например, в Н 2 О и ОF 2). Таковы же валентность и степени окисления у а тома серы в невозбужденном состоянии. При переходе в возбужденное состояние (что имеет место при подводе энергии, например при нагревании) у атома серы сначала разъединяются Зр — , а затем 3s -электроны (показано стрелками). Число неспаренных электронов, а, следовательно, и валентность в первом случае равны четырем (например, в SO 2), а во втором - шести (например, в SO 3). Очевидно, четные валентности 2, 4, 6 свойственны аналогам серы - селену, теллуру и полонию, а их степени окисления могут быть равны -2, +2, +4 и +6.

Водородные соединения элементов подгруппы кислорода отвечают формуле Н 2 R (R — символ элемента): Н 2 О, Н 2 S , Н 2 S е, Н 2 Те. Они называ ются хальководородами . При растворении их в воде образуются кислоты. Сила этих кислот возрастает с ростом по­рядкового номера элемента, что объясняется уменьшением энергии связи в ряду соединений Н 2 R . Вода, диссоциирующая на ионы Н + и ОН — , является амфотерным электролитом .

Сера, селен и теллур образуют одинаковые формы соединений с кислородом типа R О 2 и R О 3- . Им соответствуют кислоты типа Н 2 R О 3 и Н 2 R О 4- . С ростом порядкового номера элемента сила этих кислот убы вает. Все они проявляют окислительные свойства, а кислоты типа Н 2 R О 3 также и восстановительные.

Закономерно изменяются свойства простых веществ: с увеличением заряда ядра ослабевают неметаллические и возрастают металлические свойства. Так, кислород и теллур - неметаллы, но последний обладает металлическим блеском и проводит электричество.

Loading...Loading...